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Motivation

Motivation

Probabilistic models

— unreliable/unpredictable system behaviour:
message loss, component failure, ...
— randomized algorithms:

the probability of reaching consensus in leader election
algorithms is almost 1
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Motivation

Motivation

Models we work with:
— run in continuous time

— comprise non-deterministic and probabilistic behaviour

are good for:
— optimization over multiple available choices

— finding worst case results

properties:

Is the maximal probability of reaching a failure state within an hour
< 0.017
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Motivation
Motivation

@ Model checking boils down to time-bounded reachability
problem:

What is the maximal/minimal probability to reach
a given set of states within a given time bound?

@ Several algorithms to tackle this problem are known
e they are polynomial, but still slow on industrial size
benchmarks
e there is no proper comparison between all of them
@ no one has a clue which algorithm will be faster on a specific
benchmark
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Definitions and Problem Statement

CTMDPs

have some money
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Definitions and Problem Statement

CTMDPs

Continuous Time Markov Decision Process

(CTMDP) —
is a tuple C = (S, Act, R), where !
— S - set of states llo
— Act - set of actions {\\Q, ff//;é/
NS

- R: S x Act x § — Ry rate function
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Definitions and Problem Statement

CTMDPs

Continuous Time Markov Decision Process have some money

(CTMDP) —
is a tuple C = (S, Act, R), where !
— S - set of states llo
— Act - set of actions {\(;(ﬁ’/ ff//;é/
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R : S x Act x S — R>q rate function
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Exit Rate E(s,a) = Y R(s,a,s)
s’eS a

CTMDP is Uniform if exit rates over all
states and all available actions are the same
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Definitions and Problem Statement

Resolution of Non-Determinism. Schedulers.

What is the probability of becoming reach

before | die? :waste
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Definitions and Problem Statement

Resolution of Non-Determinism. Schedulers.

What is the probability of becoming reach

before | die? :waste
. 10
The answer depends on chosen actions l
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Definitions and Problem Statement

Resolution of Non-Determinism. Schedulers.

have some money

What is the probability of becoming reach

before | die? ! waste
| |1
The answer depends on chosen actions
o ) 3
,/ ~ /@
@ A Scheduler o (or controller, policy):
o : History — Act S

o Classes of schedulers:
e Timed/Untimed - knowledge of time

passed ( Tim/Unt) I 2,
o Early/Late - decision is fixed on

entering a state/maybe changed at any
time later
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Definitions and Problem Statement

Reachability Problem

have some money

gamble

:Waste
What is the maximal/minimal probability to llo
reach a given set of states within given time? {&/f%é/
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Existing Algorithms

Existing Algorithms

Early Late
@ Exponential Approximation @ Polynomial Approximation
ExXpPSTEP-1 PoLySTEP-k
(by M. Neuhaeussar, L. Zhang) (by J. Fearnley, M. Rabe, et al.)
@ Improved Exponential @ Adaptive Step Approximation
Approximation ADAPTSTEP
ExXPSTEP-k (by P. Buchholz, I. Schulz)

(by H. Hatefi, H. Hermanns)

All existing approaches use discretization
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Our Algorithm
Our Approach

Features:
@ Does NOT discretize the time horizon, instead

@ approximate via different class of schedulers:

o Less powerfull Untimed - for lower bound
e More powerfull “Prophetic” - for upper bound
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Our Algorithm

Our Algorithm (UNIF™)

input : CTMDP C = (S, Act, R), goal states G C S, horizon T € R+,
scheduler class V € {¢, e}, and approximation error ¢ > 0

params: truncation error ratio x € (0,1)

output : vector v such that ||v —val¥||o < &

1 A < maximal exit rate E, . in C

2 repeat

3 CY < V-uniformisation of C to the rate A

4 v < approximation of the lower bound val for CY up to error € - K
5 ¥ < approximation of the upper bound val for CY up to error € - K
6 A—2-A

7 until [[V—v|o <e-(1—k)

8 return v
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Our Algorithm

Our Algorithm (UNIF™)

input : CTMDP C = (S, Act, R), goal states G C S, horizon T € R+,
scheduler class V € {¢, e}, and approximation error ¢ > 0

params: truncation error ratio x € (0,1)

output : vector v such that ||v —val¥||o < &

1 A < maximal exit rate E, . in C

2 repeat

3 CY + V-uniformisation of C to the rate \

4 v < approximation of the lower bound val for CY up to error € - K
5 ¥ < approximation of the upper bound val for CY up to error € - K
6 A—2-A

7 until [[V—v|o <e-(1—k)

8 return v

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Kr&al Continuous Optimal Timing



Our Algorithm

UNIFT. Uniformization

Uniformize to the rate 4.5:

original
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Our Algorithm

Our Algorithm (UNIF™)

input : CTMDP C = (S, Act, R), goal states G C S, horizon T € R+,
scheduler class V € {¢, e}, and approximation error ¢ > 0

params: truncation error ratio x € (0,1)

output : vector v such that ||v —val¥||o < &

1 A < maximal exit rate E, . in C

2 repeat

3 CY < V-uniformisation of C to the rate A

4 v < approximation of the lower bound for C; up to error ¢ - K
5 vV < approximation of the upper bound for C/\v up to error ¢ - K
6 A—2-)

7 until [[V—v|o <e-(1—k)

8 return v

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Kr&al Continuous Optimal Timing



Our Algorithm
UNIF". Bounds

Lower Bound Upper Bound
[o¢] v 00
val(s) := sup ZPFSA * [QE,TG] val(s) := Z sup Prgkv’5 [OEITG]
oeUnt i—0 i—0°€ Unt
Optimal reachability probability Optimal reachability probability
over untimed schedulers over “prophetic”’ schedulers
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Our Algorithm

Our Algorithm (UNIF™)

input : CTMDP C = (S, Act, R), goal states G C S, horizon T € R+,
scheduler class V € {¢, e}, and approximation error ¢ > 0

params: truncation error ratio x € (0,1)

output : vector v such that ||v —val¥||o < &

1 A < maximal exit rate E, . in C

2 repeat

3 CY < V-uniformisation of C to the rate A

4 v < approximation of the lower bound val for CY up to error € - K
5 ¥ < approximation of the upper bound val for CY up to error € - K
6 A2

7 until [[V—v|o <e-(1—k)

8 return v
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Empirical Evaluation and Comparison

Empirical Evaluation

PS:
QS:
DPMS:
GFS:

FTWC

SJS:
ES:

range of

max. S| max. A max. exit best in early best in late
’ ) a'tes (# of cases) (# of cases)
73969 7 56-1204 vF (32) R C)
16924 36 6,5-449 | Ut (32) ps-3(18), Ut (17), as (15)
366148 7 2,1-9,1 | ut(31), Es-2(3), N/A(L) | As (24), Ut (14), Ps-3(6)
15258 2 252-612 | Ut (40) As (23), Ut (11)
. 2373650 5 2-3,02 | Ut (25) Ut (32)
18451 72 3-32 | ut(57), BS-2(2) Ut (70), As (29)
30004 2 10 ut(23), Es-2(4), N/A(1) | UT(28), Ps-3(2)

Table: Overview of experiments summarizing which algorithm performed
best how many times; N/A indicates that no algorithm completed within

15 mi
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Empirical Evaluation
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Conclusion

Conclusion

e UNIFT performs very well for early scheduling problems

e UNIFT is competitive on late scheduling problems

@ Results on late scheduling are inconclusive. Further insight
into the problem is required

@ The benefits of UNIF™:

— it is easily switchable between early/late schedulers
— a simplified version of UNIF' with only 1 iteration is very fast
and may give good a posteriori error bounds
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The End
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