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Motivation

Probabilistic models

– unreliable/unpredictable system behaviour:

message loss, component failure, ...

– randomized algorithms:

the probability of reaching consensus in leader election
algorithms is almost 1
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Motivation

Models we work with:

– run in continuous time

– comprise non-deterministic and probabilistic behaviour

are good for:

– optimization over multiple available choices

– finding worst case results

properties:

Is the maximal probability of reaching a failure state within an hour

< 0.01?
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Motivation

Model checking boils down to time-bounded reachability
problem:

What is the maximal/minimal probability to reach
a given set of states within a given time bound?

Several algorithms to tackle this problem are known

they are polynomial, but still slow on industrial size
benchmarks
there is no proper comparison between all of them
no one has a clue which algorithm will be faster on a specific
benchmark
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CTMDPs
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CTMDPs

Continuous Time Markov Decision Process
(CTMDP)

is a tuple C = (S ,Act,R), where

– S - set of states

– Act - set of actions

– R : S × Act × S 7→ R≥0 rate function
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CTMDPs

Continuous Time Markov Decision Process
(CTMDP)

is a tuple C = (S ,Act,R), where

– S - set of states

– Act - set of actions

– R : S × Act × S 7→ R≥0 rate function

Exit Rate E (s, α) =
∑
s′∈S

R(s, α, s ′)

CTMDP is Uniform if exit rates over all
states and all available actions are the same
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Resolution of Non-Determinism. Schedulers.

What is the probability of becoming reach
before I die?
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Resolution of Non-Determinism. Schedulers.

What is the probability of becoming reach
before I die?

The answer depends on chosen actions
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Resolution of Non-Determinism. Schedulers.

What is the probability of becoming reach
before I die?

The answer depends on chosen actions

A Scheduler σ (or controller, policy):

σ : History→ Act

Classes of schedulers:

Timed/Untimed - knowledge of time
passed (Tim/Unt)
Early/Late - decision is fixed on
entering a state/maybe changed at any
time later

have some money

broke

do a PhDgamble

rich

waste

10

reliableris
ky

11

aa

0.0
0011

99

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Krčál Continuous Optimal Timing
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Reachability Problem

What is the maximal/minimal probability to
reach a given set of states within given time?

val∇(s) := sup
σ∈Tim∇

Prsσ
[
♦≤TG

]
∇ ∈ {`, e}
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Existing Algorithms

Early

Exponential Approximation
ExpStep-1

(by M. Neuhaeussar, L. Zhang)

Improved Exponential
Approximation

ExpStep-k
(by H. Hatefi, H. Hermanns)

Late

Polynomial Approximation
PolyStep-k

(by J. Fearnley, M. Rabe, et al.)

Adaptive Step Approximation
AdaptStep

(by P. Buchholz, I. Schulz)

All existing approaches use discretization
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Our Approach

Features:

Does NOT discretize the time horizon, instead

approximate via different class of schedulers:

Less powerfull Untimed - for lower bound
More powerfull “Prophetic” - for upper bound
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Our Algorithm (Unif+)

input : CTMDP C = (S ,Act,R), goal states G ⊆ S , horizon T ∈ R>0,
scheduler class ∇ ∈ {`, e}, and approximation error ε > 0

params: truncation error ratio κ ∈ (0, 1)
output : vector v such that ‖v − val∇‖∞ ≤ ε

1 λ← maximal exit rate Emax in C
2 repeat
3 C∇λ ← ∇-uniformisation of C to the rate λ

4 v← approximation of the lower bound val for C∇λ up to error ε · κ
5 v← approximation of the upper bound val for C∇λ up to error ε · κ
6 λ← 2 · λ
7 until ‖v − v‖∞ ≤ ε · (1− κ)
8 return v
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Our Algorithm (Unif+)

input : CTMDP C = (S ,Act,R), goal states G ⊆ S , horizon T ∈ R>0,
scheduler class ∇ ∈ {`, e}, and approximation error ε > 0

params: truncation error ratio κ ∈ (0, 1)
output : vector v such that ‖v − val∇‖∞ ≤ ε

1 λ← maximal exit rate Emax in C
2 repeat
3 C∇λ ← ∇-uniformisation of C to the rate λ

4 v← approximation of the lower bound val for C∇λ up to error ε · κ
5 v← approximation of the upper bound val for C∇λ up to error ε · κ
6 λ← 2 · λ
7 until ‖v − v‖∞ ≤ ε · (1− κ)
8 return v

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Krčál Continuous Optimal Timing
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Unif+. Uniformization

Uniformize to the rate 4.5:
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Our Algorithm (Unif+)

input : CTMDP C = (S ,Act,R), goal states G ⊆ S , horizon T ∈ R>0,
scheduler class ∇ ∈ {`, e}, and approximation error ε > 0

params: truncation error ratio κ ∈ (0, 1)
output : vector v such that ‖v − val∇‖∞ ≤ ε

1 λ← maximal exit rate Emax in C
2 repeat
3 C∇λ ← ∇-uniformisation of C to the rate λ

4 v← approximation of the lower bound for C∇λ up to error ε · κ
5 v← approximation of the upper bound for C∇λ up to error ε · κ
6 λ← 2 · λ
7 until ‖v − v‖∞ ≤ ε · (1− κ)
8 return v
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Unif+. Bounds

Lower Bound

val(s) := sup
σ∈Unt

∞∑
i=0

Pr
C∇λ ,s
σ

[
♦≤T=i G

]
Optimal reachability probability
over untimed schedulers

Upper Bound

val(s) :=
∞∑
i=0

sup
σ∈Unt

Pr
C∇λ ,s
σ

[
♦≤T=i G

]
Optimal reachability probability
over “prophetic” schedulers
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Our Algorithm (Unif+)
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Empirical Evaluation and Comparison

max. |S | max. '
range of
max. exit

rates

best in early
(# of cases)

best in late
(# of cases)

PS: 743969 7 5,6 – 129,6 u+ (32) u+ (47)
QS: 16924 36 6,5 – 44,9 u+ (32) ps-3(18), u+ (17), as (15)

DPMS: 366148 7 2,1 – 9,1 u+ (31), es-2(3), n/a(1) as (24), u+ (14), ps-3(6)
GFS: 15258 2 252 – 612 u+ (40) as (23), u+ (11)

FTWC: 2373650 5 2 – 3,02 u+ (25) u+ (32)
SJS: 18451 72 3 – 32 u+ (57), es-2(2) u+ (70), as (29)
ES: 30004 2 10 u+ (23), es-2(4), n/a(1) u+ (28), ps-3(2)

Table: Overview of experiments summarizing which algorithm performed
best how many times; n/a indicates that no algorithm completed within
15 minutes.
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Motivation Definitions and Problem Statement Existing Algorithms Our Algorithm Empirical Evaluation Conclusion

Outline

Motivation

Preliminaries

Existing Algorithms

Our Algorithm

Empirical Evaluation

Conclusion

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Krčál Continuous Optimal Timing
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Conclusion

Unif+ performs very well for early scheduling problems

Unif+ is competitive on late scheduling problems

Results on late scheduling are inconclusive. Further insight
into the problem is required

The benefits of Unif+:

– it is easily switchable between early/late schedulers
– a simplified version of Unif+ with only 1 iteration is very fast

and may give good a posteriori error bounds
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The End
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