Continuous Optimal Timing

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Krčál

Saarland University – Computer Science, Saarbrücken, Germany

May 6, 2015
Outline

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion
Motivation

Probabilistic models

- **unreliable/unpredictable system behaviour:**
 message loss, component failure, ...

- **randomized algorithms:**
 the probability of reaching consensus in leader election algorithms is almost 1
Models we work with:

- run in continuous time
- comprise non-deterministic and probabilistic behaviour

are good for:

- optimization over multiple available choices
- finding worst case results

properties:

Is the maximal probability of reaching a failure state within an hour < 0.01?
Motivation

- Model checking boils down to time-bounded reachability problem:

 What is the maximal/minimal probability to reach a given set of states within a given time bound?

- Several algorithms to tackle this problem are known
 - they are polynomial, but still slow on industrial size benchmarks
 - there is no proper comparison between all of them
 - no one has a clue which algorithm will be faster on a specific benchmark
Outline

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion
CTMDPs

Yuliya Butkova, Hassan Hatefi, Holger Hermanns, Jan Krčál

Continuous Optimal Timing
Continuous Time Markov Decision Process (CTMDP) is a tuple $C = (S, Act, R)$, where

- S - set of states
- Act - set of actions
- $R : S \times Act \times S \rightarrow \mathbb{R}_{\geq 0}$ rate function
Continuous Time Markov Decision Process (CTMDP)
is a tuple $C = (S, Act, R)$, where

- S - set of states
- Act - set of actions
- $R : S \times Act \times S \mapsto \mathbb{R}_{\geq 0}$ rate function

- **Exit Rate** $E(s, \alpha) = \sum_{s' \in S} R(s, \alpha, s')$

- CTMDP is **Uniform** if exit rates over all states and all available actions are the same
What is the probability of becoming rich before I die?
What is the probability of becoming reach before I die?

The answer depends on chosen actions.
Resolution of Non-Determinism. Schedulers.

What is the probability of becoming reach before I die?

The answer depends on chosen actions

- A **Scheduler** σ (or **controller**, **policy**):

 $$\sigma : \text{History} \rightarrow \text{Act}$$

- Classes of schedulers:
 - **Timed/Untimed** - knowledge of time passed (Tim/Unt)
 - **Early/Late** - decision is fixed on entering a state/maybe changed at any time later
Reachability Problem

What is the maximal/minimal probability to reach a given set of states within given time?

\[\text{val}^\nabla(s) := \sup_{\sigma \in T_{im}} \Pr^s_{\sigma} \left[\diamondsuit \leq T \right] \]

\[\nabla \in \{\ell, e\} \]
Outline

- Motivation
- Preliminaries
- **Existing Algorithms**
- Our Algorithm
- Empirical Evaluation
- Conclusion
Existing Algorithms

Early
- Exponential Approximation
 ExpStep-1
 (by M. Neuhaeussar, L. Zhang)
- Improved Exponential Approximation
 ExpStep-k
 (by H. Hatefi, H. Hermanns)

Late
- Polynomial Approximation
 PolyStep-k
 (by J. Fearnley, M. Rabe, et al.)
- Adaptive Step Approximation
 AdaptStep
 (by P. Buchholz, I. Schulz)

All existing approaches use discretization
Outline

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion
Our Approach

Features:
- Does NOT discretize the time horizon, instead approximate via different class of schedulers:
 - Less powerful Untimed - for lower bound
 - More powerful “Prophetic” - for upper bound
Our Algorithm (UNIF$^+$)

input : CTMDP $C = (S, Act, R)$, goal states $G \subseteq S$, horizon $T \in \mathbb{R}_{>0}$, scheduler class $\nabla \in \{\ell, e\}$, and approximation error $\varepsilon > 0$

params: truncation error ratio $\kappa \in (0,1)$

output : vector v such that $\|v - \text{val}_\nabla\|_\infty \leq \varepsilon$

1. $\lambda \leftarrow$ maximal exit rate E_{max} in C

2. repeat
3. $C_\lambda^{\nabla} \leftarrow \nabla$-uniformisation of C to the rate λ
4. $v \leftarrow$ approximation of the lower bound val for C_λ^{∇} up to error $\varepsilon \cdot \kappa$
5. $\overline{v} \leftarrow$ approximation of the upper bound $\overline{\text{val}}$ for C_λ^{∇} up to error $\varepsilon \cdot \kappa$
6. $\lambda \leftarrow 2 \cdot \lambda$

7. until $\|\overline{v} - v\|_\infty \leq \varepsilon \cdot (1 - \kappa)$

8. return \overline{v}
Our Algorithm (UNIF$^+$)

input: CTMDP $C = (S, Act, R)$, goal states $G \subseteq S$, horizon $T \in \mathbb{R}_{>0}$, scheduler class $\nabla \in \{\ell, e\}$, and approximation error $\varepsilon > 0$

params: truncation error ratio $\kappa \in (0, 1)$

output: vector v such that $\|v - \text{val}^\nabla\|_{\infty} \leq \varepsilon$

1. $\lambda \leftarrow$ maximal exit rate E_{max} in C

2. repeat
3. $\quad C^\nabla_\lambda \leftarrow \nabla$-uniformisation of C to the rate λ
4. $\quad v \leftarrow$ approximation of the lower bound val for C^∇_λ up to error $\varepsilon \cdot \kappa$
5. $\quad \bar{v} \leftarrow$ approximation of the upper bound $\overline{\text{val}}$ for C^∇_λ up to error $\varepsilon \cdot \kappa$
6. $\quad \lambda \leftarrow 2 \cdot \lambda$
7. until $\|\bar{v} - v\|_{\infty} \leq \varepsilon \cdot (1 - \kappa)$
8. return v
Uniformization

Uniformize to the rate 4.5:

Original:

```
\begin{align*}
\text{s}_0 & \xrightarrow{a} \text{s}_1 \\
\text{s}_1 & \xrightarrow{b} \text{s}_2 \\
\text{s}_2 & \xrightarrow{c} \text{s}_0
\end{align*}
```

Late:

```
\begin{align*}
\text{s}_0 & \xrightarrow{a} \text{s}_1 \\
\text{s}_1 & \xrightarrow{b} \text{s}_2 \\
\text{s}_2 & \xrightarrow{c} \text{s}_0
\end{align*}
```

Early:

```
\begin{align*}
\text{s}_0 & \xrightarrow{a} \text{s}_1 \\
\text{s}_1 & \xrightarrow{b} \text{s}_2 \\
\text{s}_2 & \xrightarrow{c} \text{s}_0
\end{align*}
```
Our Algorithm (UNIF$^+$)

input: CTMDP $C = (S, Act, R)$, goal states $G \subseteq S$, horizon $T \in \mathbb{R}_{>0}$, scheduler class $\nabla \in \{\ell, e\}$, and approximation error $\varepsilon > 0$

params: truncation error ratio $\kappa \in (0, 1)$

output: vector v such that $\|v - \text{val}^\nabla\|_\infty \leq \varepsilon$

1. $\lambda \leftarrow$ maximal exit rate E_{max} in C

2. repeat
3. \quad $C^\nabla_{\lambda} \leftarrow \nabla$-uniformisation of C to the rate λ
4. \quad $\underline{v} \leftarrow$ approximation of the lower bound for C^∇_{λ} up to error $\varepsilon \cdot \kappa$
5. \quad $\overline{v} \leftarrow$ approximation of the upper bound for C^∇_{λ} up to error $\varepsilon \cdot \kappa$
6. \quad $\lambda \leftarrow 2 \cdot \lambda$

7. until $\|\overline{v} - \underline{v}\|_\infty \leq \varepsilon \cdot (1 - \kappa)$
8. return \underline{v}
Unif$^+$. Bounds

Lower Bound

$$\overline{\text{val}}(s) := \sup_{\sigma \in \text{Unt}} \sum_{i=0}^{\infty} \text{Pr}_{\sigma}^{C_L,s} [\Diamond \leq T G]$$

Optimal reachability probability over untimed schedulers

Upper Bound

$$\text{val}(s) := \sum_{i=0}^{\infty} \sup_{\sigma \in \text{Unt}} \text{Pr}_{\sigma}^{C_L,s} [\Diamond \leq T G]$$

Optimal reachability probability over “prophetic” schedulers
Our Algorithm (**UNIF\(^+\)**)

Input: CTMDP \(\mathcal{C} = (S, Act, R)\), goal states \(G \subseteq S\), horizon \(T \in \mathbb{R}_{>0}\), scheduler class \(\nabla \in \{\ell, e\}\), and approximation error \(\varepsilon > 0\)

Params: truncation error ratio \(\kappa \in (0, 1)\)

Output: vector \(v\) such that \(\|v - \text{val}^{\nabla}\|_{\infty} \leq \varepsilon\)

1. \(\lambda \leftarrow \text{maximal exit rate} \ E_{\text{max}} \ \text{in} \ \mathcal{C}\)

2. repeat
3. \(\mathcal{C}^{\nabla}_{\lambda} \leftarrow \nabla\text{-uniformisation of} \ \mathcal{C} \ \text{to the rate} \ \lambda\)
4. \(v \leftarrow \text{approximation of the lower bound} \ \text{val} \ \text{for} \ \mathcal{C}^{\nabla}_{\lambda} \ \text{up to error} \ \varepsilon \cdot \kappa\)
5. \(\overline{v} \leftarrow \text{approximation of the upper bound} \ \overline{\text{val}} \ \text{for} \ \mathcal{C}^{\nabla}_{\lambda} \ \text{up to error} \ \varepsilon \cdot \kappa\)
6. \(\lambda \leftarrow 2 \cdot \lambda\)
7. until \(\|\overline{v} - v\|_{\infty} \leq \varepsilon \cdot (1 - \kappa)\)
8. return \(v\)
Outline

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion
Empirical Evaluation and Comparison

| | max. $|S|$ | max. λ | range of max. exit rates | best in early (# of cases) | best in late (# of cases) |
|------------|-------|----------------|---------------------------|-----------------------------|-----------------------------|
| PS | 743969| 7 | 5.6 – 129.6 | U^+ (32) | U^+ (47) |
| QS | 16924 | 36 | 6.5 – 44.9 | U^+ (32) | PS-3 (18), U^+ (17), AS (15) |
| DPMS | 366148| 7 | 2.1 – 9.1 | U^+ (31), ES-2(3), N/A (1) | AS (24), U^+ (14), PS-3 (6) |
| GFS | 15258 | 2 | 252 – 612 | U^+ (40) | AS (23), U^+ (11) |
| FTWC | 2373650| 5 | 2 – 3.02 | U^+ (25) | U^+ (32) |
| SJS | 18451 | 72 | 3 – 32 | U^+ (57), ES-2(2) | U^+ (70), AS (29) |
| ES | 30004 | 2 | 10 | U^+ (23), ES-2(4), N/A (1) | U^+ (28), PS-3 (2) |

Table: Overview of experiments summarizing which algorithm performed best how many times; N/A indicates that no algorithm completed within 15 minutes.
Outline

- Motivation
- Preliminaries
- Existing Algorithms
- Our Algorithm
- Empirical Evaluation
- Conclusion
Conclusion

- \textbf{Unif}^+ performs very well for early scheduling problems
- \textbf{Unif}^+ is competitive on late scheduling problems
- Results on late scheduling are inconclusive. Further insight into the problem is required
- The benefits of \textbf{Unif}^+:
 - it is easily switchable between early/late schedulers
 - a simplified version of \textbf{Unif}^+ with only 1 iteration is very fast and may give good a posteriori error bounds
The End