Boosting k-Induction with
Continuously-Refined Invariants
Accepted to CAV’'15

Matthias Dangl
Joint work with Dirk Beyer and Philipp Wendler

University of Passau, Germany




Bounded Model Checking (BMC) is successful for finding
bugs

But not all loop bounds are small enough or even

known /computable

BMC is good for falsification, but often cannot prove
absence of bugs



Bounded Model Checking (BMC) is successful for finding
bugs

But not all loop bounds are small enough or even

known /computable

BMC is good for falsification, but often cannot prove
absence of bugs

(k-)Induction extends BMC towards unbounded safety
proofs



1-Induction:
Check that the safety property holds in the first loop
iteration: P(1)
Equivalent to BMC with loop bound 1
Check that the safety property is 1-inductive:
Vn:P(n) = P(n+1)
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int main() {
unsigned int x1 = 0, x2 = 0; — data variables

int s =1, » state variable

while (nondet()) { > unbounded loop
if (s ==1)x1++; > some calculations
else if (s == 2) x2++; ,
SI:"(: ——5)s—1; » state computation
if (s == 1) assert(x] == x2); — safety property

¥

return 0;

}
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int main() {

}

unsigned int x1 = 0, x2 = 0;
int s =1;

while (nondet()) {
if (s ==1)xl++;
else if (s == 2) x2++;

S+,
if (s ==05)s=1;

if (s == 1) assert(xl == x2);
}

return O;

Explicit state analysis?
Too many states.

Predicate analysis?

“Interpolants suck”

Intervals, Octagons?
Too imprecise.
BMC?

Unbounded loop.
1-Induction?
Hypothesis too weak.

k-Induction
Hypothesis too weak!
Needs s > 0



Proofs still fail too often
Introduce auxiliary invariants to strengthen the hypothesis:

Vi - (Inv(n)/\Z\lP(nJri— 1)) — P(n+k)

Auxilary invariants must hold
Auxiliary invariants must be inductive

Where do these invariants come from?



An additional component provides auxiliary invariants: The
invariant generator

Should be strong enough so that the proof succeeds
Should not waste more resources than necessary



2 814 verification tasks taken from SV-COMP'15

Kl«Al

A h KI
pproac weakest weak  strongest

Correct results | 1082 1900 1934 1861
CPU time (h) 380 190 180 200

k-Values for correct safe results only:
Max. final k| 101 | 101 100 86
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An additional component provides auxiliary invariants: The
invariant generator

Should be strong enough so that the proof succeeds
Should not waste more resources than necessary

But no single fixed-precision configuration can provide this!
Invariant generator can be run in parallel and provide
invariants continuously

Invariant generator improves invariants continuously over
time

Pick up current set of auxiliary invariants in each
k-Induction iteration



Induction: Invariant generation:

1: k=0 1: prec = <weak>

2: while !finished do 2: invariants = {)

3. BMC(K) 3. while !finished do

4:  Induction(k, invariants) 4 —invariants = Genlnv(prec)
5. k++ 5. prec = RefinePrec(prec)



Invariant Generation

How to generate invariants?
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2 814 verification tasks taken from SV-COMP'15

Best static configuration solved 1934 tasks
in 180 CPU hours

Approach Kl | KI<&-Al | KI+&-KI | KI<&-KI+S-Al

Correct Results | 1082 1984 1690 2005
CPU Time (h) 380 170 240 170




Tool CBMC EsBMmC CPACHECKER
Configuration sequential parallel | KI<&-KI«&-Al
Correct results | 1216 2214 2137 2005
Wrong proofs 261 184 137 4
Wrong alarms 4 28 24 25
CPU time (h) 350 100 130 170
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Read the upcoming paper:

Boosting k-Induction with Continuously-Refined Invariants
[CAV'15]

... or email me at dangl@fim.uni-passau.de



