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Motivation

* Program verification
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Motivation

* Program verification

¢ Finding inductive invariants
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Program verification

Finding inductive invariants
LPI

Scalable algorithm for policy iteration
Sent to FMCAD'15
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Program Modeling

» Control Flow Automaton (CFA)

int i=0; =0
while (i<10) {

ISt
} i<10Ad =i+ 1

George Karpenkov Program Analysis with Local Policy Iteration m



Inductive Invariant

Motivation

e Task: verify program properties
e Prove: by induction

e Aim: find inductive invariant

o Includes initial state
o Closed under transition

Inductive Invariant

George Karpenkov
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e Usual tool: abstract interpretation

* Relies on widenings/narrowings to
enforce convergence

e Can be very brittle
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Policy Iteration

Historical Perspective

e Game-theoretique technique

* Solving markov processes
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* Game-theoretique technique

* Solving markov processes
e Used for poker Al
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Finds inductive invariant in the given abstract domain
Considers the program as a set of equations
Game-theoretic algorithm adapted to find inductive invariant

Requires abstract semantics to be monotone & concave
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Policy lteration

Introduction - 2

Finds least inductive invariant in the given abstract domain

Considers the program as a set of equations

Game-theoretic algorithm adapted to find inductive invariant

Requires abstract semantics to be monotone & concave

Guarantees
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Choose linear inequalities to be tracked the analysis
E.g. z,y,z+y (templates)

We want to find inductive invariant
r<di Ny <dy Nx+y <ds for all control states

An element of the domain above is a vector (3,2,4) which
correspondsto r <3Ny <2Ax+y <4
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Abstract Semantics: transition relation in the abstract domain
Convex optimization:

Template z, transition 2’ = z + 1, previous element z < 5
New element given by maxz’s. t. ' =x+1Ax <5
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Template constraints domain {i}

Aim: find smallest d, s.t. ¢ < d is an
inductive invariant

Use for d

1 < 1000000 A 7' =i+ 1
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Template constraints domain {i}

Aim: find smallest d, s.t. ¢ < d is an
inductive invariant

Use for d
Necessary and sufficient condition:

1 < 1000000 A 7' =i+ 1

d =sup? s.t.
i =1+ 1Ai< 1000000 <dVi =
oV L

Disjunctions come from multiple edges
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Template constraints domain {i}

Aim: find smallest d, s.t. ¢ < d is an
inductive invariant

Use for d
Necessary and sufficient condition:

1 < 1000000 A 7' =i+ 1

d =sup? s.t.
i =1+ 1Ai< 1000000 <dVi =
oV L

Disjunctions come from multiple edges

| represents unreachable state

We take supremum as the answer can be oo
(unbounded) or —oo (unreachable)
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Policy Iteration
Explanation By Example

¢ We have a min-max equation:
d=min(supi s.t. ' =i+ 1 A3 < 1000000 Ai < dVi =
0V.L)
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We have a min-max equation:

d= (supi s.t. i =i+ 1 A7 < 1000000 Ni < dVi =
AV
We consider separate cases for disjunctions

Replacing each disjunction with one argument
d=supi st. i =0
Referred to as a policy
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d=supi st. =0

Simplified system (with no disjunctions):
Monotone and
< 2 fixpoints
Can be solved using LP
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Policy lteration Example
Algorithm Run

o d=supi s.t.
=i+ 1Ai<1000000N:<dVi=0V_L
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Policy lteration Example
Algorithm Run

o d=supi s.t.
i =i+ 1Ai<1000000N:<dVi =0V _L

1. Equation d = sup i’ s.t. L evaluates to d = —c0
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d =supi s.t.
=i+ 1Ai<1000000Ni<d\Vi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
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d =supi s.t.
=i+ 1Ai<1000000Ni<d\Vi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0
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d =supi s.t.
=i+ 1Ai<1000000Ni<d\Vi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0

, does not hold:
0=supi st. i/ =i+ 1A7<1000000\7 =0V L
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d =supi s.t.
=i+ 1Ai<1000000Ni<dVi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0
, does not hold:
0=supd st. @ =i+1Ai< 1000000V =0V L
Increase to 1000000 using
d=supi st. i =i+ 1A7i<1000000 A <d
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d =supi s.t.
=i+ 1Ai<1000000Ni<dVi=0V_L

Equation d = sup#’ s.t. L evaluates to d = —c0

the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0

, does not hold:

0=supd st. @ =i+1Ai< 1000000V =0V L
Increase to 1000000 using
d=supi st. i =i+ 1A7i<1000000 A <d

, holds!
1000000 = sup i’ s.t. ¢/ = i+1Ai < 1000000/ < d\/ i =0\ L
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Policy p < po

repeat
v <— value determination based on p
p < policy based on v

until v converges

Po

Value determination

v converged

Exit
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Policy Improvement: SMT call
Policy which can improve current value?

Value Determination: LP call
Maximum value for current policy?
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Path Focusing

Similar to Large Block Encoding

* Unknown per node per template
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Path Focusing

Similar to Large Block Encoding

* Unknown per node per template
e Over-approximates invariant in the abstract domain

e Loss of precision
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Unknown per node per template
invariant in the abstract domain

Loss of precision

(unknown()) {

X 5
+ {
X H
+
assert(x );
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Solution: remove nodes!
CFG Compaction:
Edges (A, 71, B
Converted to
Edges (A, 71, B
Converted to

, (B, 12,C), with no other incoming to B
A, 71 N 1o,C), B removed

, (A, 12, B), no other incoming to B
A, 71V 19, B)

A~ — —~ ~—
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e Solution: remove nodes!
e CFG Compaction:

o Edges (4,71, B

o Converted to

o Edges (A, 11, B

o Converted to

, (B, 12,C), with no other incoming to B
A, 71 N 1o,C), B removed

, (A, 12, B), no other incoming to B
A, 71V 19, B)

N — ~ ~—

=-1 (=1Va'=-1)A(z=0)
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Path Focusing

Properties

® For a well-structured graph: only loop-heads remain
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For a well-structured graph: only loop-heads remain

Disjunctions create new policies
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For a well-structured graph: only loop-heads remain
Disjunctions create new policies

Possible improvement: cut-set
Set of nodes which cut all the cycles in the graph

Disadvantage: requires pre-processing
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Problems with the approach above:

. at each step, we update each policy, and at each
step, we solve the global equation system (of the size of the
entire program)

. policy iterations don't fit into any existing
framework, pre-processing makes it worse
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Our work: LPI (Local Policy Iteration)

the locality to avoid redundant computation
Avoids solving the global equation at each point
policy iteration with other approaches using CPA
(Configurable Program Analysis Framework)
is involved

George Karpenkov Program Analysis with Local Policy Iteration



/I __
<4 r=xz+1 @

Transfer Relation:

Similar to abstract interpretation
Record the bound along with the policy
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/I __
<4 r=xz+1 @

Transfer Relation:

Similar to abstract interpretation
Record the bound along with the policy

Global map M : location — abstract state
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/I __
v <4 r=xz+1 @

Transfer Relation:

Similar to abstract interpretation
Record the bound along with the policy

Global map M : location — abstract state

When two states for the same node, merge

When merge closes the loop, perform value determination
Follow backpointers to re-create global problem
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Two lattices:
Abstracted State (element of template constraints domain)
Intermediate State (formula)

Idea: avoid pre-processing
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Two lattices:

Abstracted State (element of template constraints domain)
Intermediate State (formula)

Idea: avoid pre-processing

Propagate intermediate states, convert to abstracted at
loop-heads
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LPIl Abstract Domain

Abstracted States

Abstracted State
bound

* Abstracted state example: {i: ( ,7/ =0, 4)}
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LPIl Abstract Domain

Abstracted States

Abstracted State
bound

* Abstracted state example: {i: ( ,7/ =0, 4)}
» Partial order given by component-wise comparison
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LPIl Abstract Domain

Abstracted States

Abstracted State
bound

* Abstracted state example: {i: ( ,7/ =0, 4)}

» Partial order given by component-wise comparison
e On merge:

o Pick the upper bound for each template
o Keep the corresponding policy and backpointer

George Karpenkov
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LPIl Abstract Domain

Intermediate States

Intermediate State
Formula

* Intermediate State example:
o =1ANQ=AVv2e=0NQ=BRB
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LPIl Abstract Domain

Intermediate States

Intermediate State
Formula

* Intermediate State example:
o =1ANQ=AVv2e=0NQ=BRB
* Propagation: symbolic execution

» Can be converted to abstracted state using abstraction
o Maximizing for every template
o Recording policy and backpointer
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LPI

Propagation Overview

e Start with abstracted state at node A: {z: (0,2’ =0,1)}
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LPI

Propagation Overview

e Start with abstracted state at node A: {z: (0,2’ =0,1)}
e Successor under edge ' =z + 5
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Start with abstracted state at node A: {z : (0,2 =0,1)}
Successor under edge ' =z + 5
Intermediate state: 2’ =2z +5A2<0AQ=A
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Start with abstracted state at node A: {z : (0,2 =0,1)}
Successor under edge ' =z + 5
Intermediate state: 2’ =2z +5A2<0AQ=A

If we need to perform abstraction, we get
{z:(5,2’ =x+5,A)}
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On closing the loop (at abstracted state):

Follow backpointers, keep adding constraints
Create value determination problem

Potentially size of the largest loop

George Karpenkov Program Analysis with Local Policy Iteration %



Local Policy Iteration
Algorithm Example

1. Start with abstracted state T

i<10AY =i+1
—(i < 10)

J<10Af =j+1

George Karpenkov Program Analysis with Local Policy Iteration %



Local Policy Iteration
Algorithm Example

1. Start with abstracted state T

. g g _
oA i 2. Intermediate state ' = 0A ' =0AQ =1

=(i < 10)

J<10Af =j+1
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Local Policy Iteration
Algorithm Example

1. Start with abstracted state T
ictons—is1 2- Intermediate state ' = 0N =0AQ =1
(i < 10) 3. Abstracted to {i: (0,1),5:(0,1)}

J<10Af =j+1
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. Start with abstracted state T

. Intermediate state i’ =0A 7' =0AQ =1
. Abstracted to {¢: (0,1),5:(0,1)}

. Intermediate state i KON jJ <O0AQ=A

P =0Aj =0

—(i < 10)

S~ W NN =

J<10Af =j+1
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P=0Aj=0
Pi<10Ad =i+1
—(i < 10)

J<10Af =j+1

George Karpenkov

1.
2.
3.
4.
5.

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
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om0 1. Start with abstracted state T
oA i1 2. Intermediate state /' = 0A ' =0AQ =1
(i < 10) 3. Abstracted to {i: (0,1),5: (0,1)}
j<10nj=j+1 4. Intermediate state it < OAJ<O0OAQ=A
5. Abstracted to {i: (1,A),5:(0,A)}
6. Merge A, : {i:(10,4),5:(0,1)}
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i<10AY =i+1

j<10/\j’:j+1

George Karpenkov

R G o D

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A
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P=0A7 =0

Pi<10AY =i+1
—(i < 10)

J<10Af =j+1

George Karpenkov

o e R A i

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A

Abstracted: {7 : (10, A4),j : (0,4)}
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B O B o

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A

Abstracted: {7 : (10, A4),j : (0,4)}
Intermediate:
i=10Aj<O0Aj'=j+1AQ=RB
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P'=0Aj=0 1.
i<10AT =i+1 2.
(i < 10) 3.
j<l0Af=j+1 4.
5.

6.

1.

3.

9.

10

George Karpenkov

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A

Abstracted: {7 : (10, A4),j : (0,4)}
Intermediate:
i=10Aj<O0Aj'=j+1AQ=RB

. Abstracted: {i:(10,B),5:(1,B)}
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P'=0Aj=0 1.
i<10AT =i+1 2.
(i < 10) 3.
j<l0Af=j+1 4.

5.

6.

1.

3.

9.

10.

11.

George Karpenkov

Start with abstracted state T

Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}

Merge A, :{i:(10,A),5:(0,1)}
Intermediate i <10Aj < 0A-(i<10)AQ=A
Abstracted: {7 : (10, A4),j : (0,4)}
Intermediate:
i=10Aj<O0Aj'=j+1AQ=RB
Abstracted: {i: (10, B),j: (1, B)}

Merge B, : {i:(10,B),7: (10, A)}
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Reachability of Bad States

o Whether we are safe:

o ¢ A E is unsat
o Example: (z < 10) A (z = 11)
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Whether we are safe:

¢ A\ E is unsat
Example: (z < 10) A (z = 11)

Whether we are unsafe:

¢ N —F is unsat
Example: (x =0) A (z =0)
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Algorithm Properties

* Soundness
© Only terminate when inductive
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Soundness
Only terminate when inductive
Termination

Bounds can only grow
Each bound corresponds to some policy
Finite number of policies
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Soundness
Only terminate when inductive
Termination

Bounds can only grow
Each bound corresponds to some policy
Finite number of policies

Least invariant property
Only select feasible policies
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Configurations
Intervals (£x)
Octagons (above and +x,+x + y)
Rich Templates (above and +2z + y, o +y 4+ 2z, +22 + y + 2)
Unrolling
Simple Congruence Analysis
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Configurations

Intervals (£x)

Octagons (above and +x,+x + y)

Rich Templates (above and +2z + y, o +y 4+ 2z, +22 + y + 2)
Unrolling

Simple Congruence Analysis

Refinement: progressively switch to more expensive config
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Only update policies which need updating

Run value determination on a reduced program section
Stated in CPA framework

(Unguided) refinement of template precision

Local value determination optimizations

Not in the presentation
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Local Policy lteration

Code analysis tool

Tool

» Configurations:
o -policy-intervals
o -policy
O —-policy-ensemble
o0 -policy-counterexample-checking
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Evaluated on SV-Comp “Loops” category
Compared with

BLAST(2014)
CPACHECKER-SVcoOMP15
PAGAI

Across benchmarks
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vs. LPI PAGAlI BLAST CPAchecker Unique Verified Incorrect

LPI 13 21 22 8 60 1
PAGAI 5 14 15 0 52 1
BLAST 4 7 0 43 1
CPAchecker 19 20 12 57 2

Difference between approaches
Reads: A vs. B
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103

1 PAGAI
B 1 = LPI-Refinement
10% £ 1 «BLAST(2014)
— B 1 * CPAchecker
<= 10t + LPl-Intervals

CPU Time
2

H
o
A

H
T
no
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New scalable algorithm for policy iteration
Tool for program analysis (using CPAchecker framework)
The only policy-iteration based tool capable of dealing with C
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Questions?
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Concavity and monotonicity limits the number of fixpoints

Can solve for z = f(x)

(7 /
¥ = @

F(f(f(=0)))
F(f(=0))

f(zo)

zo
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Policy Iteration

Concavity of Abstract Semantics

e Linear Semantics: 2/ = Tx A G(2)
o Lett/ =t(Tx)

maxt'zs t. ¢ € Gz) Atz < d
t

Program Analysis with Local Policy Iteration %

George Karpenkov



	Introduction
	Motivation
	Finding Inductive Invariants

	Background
	Template Constraints Domain
	Policy Iteration Algorithm
	Path Focusing

	LPI
	Motivation
	Algorithm
	Example
	Contribution

	Results
	Appendix

