Program Analysis with Local Policy Iteration

George Karpenkov

VERIMAG

May 6, 2015

George Karpenkov Program Analysis with Local Policy Iteration m

Outline

Introduction
Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI
Motivation

George Karpenkov Program Analysis with Local Policy Iteration @

Motivation

* Program verification

George Karpenkov Program Analysis with Local Policy Iteration @

Motivation

* Program verification

¢ Finding inductive invariants

George Karpenkov Program Analysis with Local Policy Iteration @

Program verification

Finding inductive invariants
LPI

Scalable algorithm for policy iteration
Sent to FMCAD'15

George Karpenkov Program Analysis with Local Policy Iteration %

Program Modeling

» Control Flow Automaton (CFA)

int i=0; =0
while (i<10) {

ISt
} i<10Ad =i+ 1

George Karpenkov Program Analysis with Local Policy Iteration m

Inductive Invariant

Motivation

e Task: verify program properties
e Prove: by induction

e Aim: find inductive invariant

o Includes initial state
o Closed under transition

Inductive Invariant

George Karpenkov

Program Analysis with Local Policy Iteration %

e Usual tool: abstract interpretation

* Relies on widenings/narrowings to
enforce convergence

e Can be very brittle

George Karpenkov Program Analysis with Local Policy Iteration @

Policy Iteration

Historical Perspective

e Game-theoretique technique

* Solving markov processes

George Karpenkov Program Analysis with Local Policy Iteration m

* Game-theoretique technique

* Solving markov processes
e Used for poker Al

George Karpenkov Program Analysis with Local Policy Iteration

Finds inductive invariant in the given abstract domain
Considers the program as a set of equations
Game-theoretic algorithm adapted to find inductive invariant

Requires abstract semantics to be monotone & concave

George Karpenkov Program Analysis with Local Policy Iteration %

Policy lteration

Introduction - 2

Finds least inductive invariant in the given abstract domain

Considers the program as a set of equations

Game-theoretic algorithm adapted to find inductive invariant

Requires abstract semantics to be monotone & concave

Guarantees

George Karpenkov Program Analysis with Local Policy Iteration %

Outline

Introduction
Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI
Motivation

George Karpenkov Program Analysis with Local Policy Iteration m

Choose linear inequalities to be tracked the analysis
E.g. z,y,z+y (templates)

We want to find inductive invariant
r<di Ny <dy Nx+y <ds for all control states

An element of the domain above is a vector (3,2,4) which
correspondsto r <3Ny <2Ax+y <4

George Karpenkov Program Analysis with Local Policy Iteration

Abstract Semantics: transition relation in the abstract domain
Convex optimization:

Template z, transition 2’ = z + 1, previous element z < 5
New element given by maxz’s. t. ' =x+1Ax <5

George Karpenkov Program Analysis with Local Policy Iteration m

Template constraints domain {i}

Aim: find smallest d, s.t. ¢ < d is an
inductive invariant

Use for d

1 < 1000000 A 7' =i+ 1

George Karpenkov Program Analysis with Local Policy Iteration @

Template constraints domain {i}

Aim: find smallest d, s.t. ¢ < d is an
inductive invariant

Use for d
Necessary and sufficient condition:

1 < 1000000 A 7' =i+ 1

d =sup? s.t.
i =1+ 1Ai< 1000000 <dVi =
oV L

Disjunctions come from multiple edges

George Karpenkov Program Analysis with Local Policy Iteration @

Template constraints domain {i}

Aim: find smallest d, s.t. ¢ < d is an
inductive invariant

Use for d
Necessary and sufficient condition:

1 < 1000000 A 7' =i+ 1

d =sup? s.t.
i =1+ 1Ai< 1000000 <dVi =
oV L

Disjunctions come from multiple edges

| represents unreachable state

We take supremum as the answer can be oo
(unbounded) or —oo (unreachable)

George Karpenkov Program Analysis with Local Policy Iteration @

Policy Iteration
Explanation By Example

¢ We have a min-max equation:
d=min(supi s.t. ' =i+ 1 A3 < 1000000 Ai < dVi =
0V.L)

George Karpenkov Program Analysis with Local Policy Iteration m

We have a min-max equation:

d= (supi s.t. i =i+ 1 A7 < 1000000 Ni < dVi =
AV
We consider separate cases for disjunctions

Replacing each disjunction with one argument
d=supi st. i =0
Referred to as a policy

George Karpenkov Program Analysis with Local Policy Iteration m

d=supi st. =0

Simplified system (with no disjunctions):
Monotone and
< 2 fixpoints
Can be solved using LP

George Karpenkov Program Analysis with Local Policy Iteration

Policy lteration Example
Algorithm Run

o d=supi s.t.
=i+ 1Ai<1000000N:<dVi=0V_L

George Karpenkov Program Analysis with Local Policy Iteration %

Policy lteration Example
Algorithm Run

o d=supi s.t.
i =i+ 1Ai<1000000N:<dVi =0V _L

1. Equation d = sup i’ s.t. L evaluates to d = —c0

George Karpenkov Program Analysis with Local Policy Iteration %

d =supi s.t.
=i+ 1Ai<1000000Ni<d\Vi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L

George Karpenkov Program Analysis with Local Policy Iteration %

d =supi s.t.
=i+ 1Ai<1000000Ni<d\Vi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0

George Karpenkov Program Analysis with Local Policy Iteration

d =supi s.t.
=i+ 1Ai<1000000Ni<d\Vi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0

, does not hold:
0=supi st. i/ =i+ 1A7<1000000\7 =0V L

George Karpenkov Program Analysis with Local Policy Iteration %

d =supi s.t.
=i+ 1Ai<1000000Ni<dVi=0V_L
Equation d = sup#’ s.t. L evaluates to d = —c0
the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0
, does not hold:
0=supd st. @ =i+1Ai< 1000000V =0V L
Increase to 1000000 using
d=supi st. i =i+ 1A7i<1000000 A <d

George Karpenkov Program Analysis with Local Policy Iteration %

d =supi s.t.
=i+ 1Ai<1000000Ni<dVi=0V_L

Equation d = sup#’ s.t. L evaluates to d = —c0

the value, does not hold:
—oo=supi st. ¢/ =i+ 1A% <1000000 N <d\Vi =0V L
Increase the value to 0 using policy d = supi’ s.t. ¢/ =0

, does not hold:

0=supd st. @ =i+1Ai< 1000000V =0V L
Increase to 1000000 using
d=supi st. i =i+ 1A7i<1000000 A <d

, holds!
1000000 = sup i’ s.t. ¢/ = i+1Ai < 1000000/ < d\/ i =0\ L

George Karpenkov Program Analysis with Local Policy Iteration %

Policy p < po

repeat
v <— value determination based on p
p < policy based on v

until v converges

Po

Value determination

v converged

Exit

George Karpenkov Program Analysis with Local Policy Iteration @

Policy Improvement: SMT call
Policy which can improve current value?

Value Determination: LP call
Maximum value for current policy?

George Karpenkov Program Analysis with Local Policy Iteration

Path Focusing

Similar to Large Block Encoding

* Unknown per node per template

George Karpenkov Program Analysis with Local Policy Iteration %

Path Focusing

Similar to Large Block Encoding

* Unknown per node per template
e Over-approximates invariant in the abstract domain

e Loss of precision

George Karpenkov Program Analysis with Local Policy Iteration %

Unknown per node per template
invariant in the abstract domain

Loss of precision

(unknown()) {

X 5
+ {
X H
+
assert(x);

George Karpenkov Program Analysis with Local Policy Iteration %

Solution: remove nodes!
CFG Compaction:
Edges (A, 71, B
Converted to
Edges (A, 71, B
Converted to

, (B, 12,C), with no other incoming to B
A, 71 N 1o,C), B removed

, (A, 12, B), no other incoming to B
A, 71V 19, B)

A~ — —~ ~—

George Karpenkov Program Analysis with Local Policy Iteration %

e Solution: remove nodes!
e CFG Compaction:

o Edges (4,71, B

o Converted to

o Edges (A, 11, B

o Converted to

, (B, 12,C), with no other incoming to B
A, 71 N 1o,C), B removed

, (A, 12, B), no other incoming to B
A, 71V 19, B)

N — ~ ~—

=-1 (=1Va'=-1)A(z=0)

George Karpenkov Program Analysis with Local Policy Iteration %

Path Focusing

Properties

® For a well-structured graph: only loop-heads remain

George Karpenkov Program Analysis with Local Policy Iteration %

For a well-structured graph: only loop-heads remain

Disjunctions create new policies

George Karpenkov Program Analysis with Local Policy Iteration %

For a well-structured graph: only loop-heads remain
Disjunctions create new policies

Possible improvement: cut-set
Set of nodes which cut all the cycles in the graph

Disadvantage: requires pre-processing

George Karpenkov Program Analysis with Local Policy Iteration

Outline

Introduction
Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI
Motivation

George Karpenkov Program Analysis with Local Policy Iteration %

Problems with the approach above:

. at each step, we update each policy, and at each
step, we solve the global equation system (of the size of the
entire program)

. policy iterations don't fit into any existing
framework, pre-processing makes it worse

George Karpenkov Program Analysis with Local Policy Iteration

Our work: LPI (Local Policy Iteration)

the locality to avoid redundant computation
Avoids solving the global equation at each point
policy iteration with other approaches using CPA
(Configurable Program Analysis Framework)
is involved

George Karpenkov Program Analysis with Local Policy Iteration

/I __
<4 r=xz+1 @

Transfer Relation:

Similar to abstract interpretation
Record the bound along with the policy

George Karpenkov Program Analysis with Local Policy Iteration

/I __
<4 r=xz+1 @

Transfer Relation:

Similar to abstract interpretation
Record the bound along with the policy

Global map M : location — abstract state

George Karpenkov Program Analysis with Local Policy Iteration

/I __
v <4 r=xz+1 @

Transfer Relation:

Similar to abstract interpretation
Record the bound along with the policy

Global map M : location — abstract state

When two states for the same node, merge

When merge closes the loop, perform value determination
Follow backpointers to re-create global problem

George Karpenkov Program Analysis with Local Policy Iteration

Two lattices:
Abstracted State (element of template constraints domain)
Intermediate State (formula)

Idea: avoid pre-processing

George Karpenkov Program Analysis with Local Policy Iteration %

Two lattices:

Abstracted State (element of template constraints domain)
Intermediate State (formula)

Idea: avoid pre-processing

Propagate intermediate states, convert to abstracted at
loop-heads

George Karpenkov Program Analysis with Local Policy Iteration

LPIl Abstract Domain

Abstracted States

Abstracted State
bound

* Abstracted state example: {i: (,7/ =0, 4)}

George Karpenkov Program Analysis with Local Policy Iteration %

LPIl Abstract Domain

Abstracted States

Abstracted State
bound

* Abstracted state example: {i: (,7/ =0, 4)}
» Partial order given by component-wise comparison

George Karpenkov Program Analysis with Local Policy Iteration %

LPIl Abstract Domain

Abstracted States

Abstracted State
bound

* Abstracted state example: {i: (,7/ =0, 4)}

» Partial order given by component-wise comparison
e On merge:

o Pick the upper bound for each template
o Keep the corresponding policy and backpointer

George Karpenkov

Program Analysis with Local Policy Iteration @

LPIl Abstract Domain

Intermediate States

Intermediate State
Formula

* Intermediate State example:
o =1ANQ=AVv2e=0NQ=BRB

George Karpenkov Program Analysis with Local Policy Iteration @

LPIl Abstract Domain

Intermediate States

Intermediate State
Formula

* Intermediate State example:
o =1ANQ=AVv2e=0NQ=BRB
* Propagation: symbolic execution

» Can be converted to abstracted state using abstraction
o Maximizing for every template
o Recording policy and backpointer

George Karpenkov Program Analysis with Local Policy Iteration @

LPI

Propagation Overview

e Start with abstracted state at node A: {z: (0,2’ =0,1)}

George Karpenkov Program Analysis with Local Policy Iteration %

LPI

Propagation Overview

e Start with abstracted state at node A: {z: (0,2’ =0,1)}
e Successor under edge ' =z + 5

George Karpenkov Program Analysis with Local Policy Iteration %

Start with abstracted state at node A: {z : (0,2 =0,1)}
Successor under edge ' =z + 5
Intermediate state: 2’ =2z +5A2<0AQ=A

George Karpenkov Program Analysis with Local Policy Iteration %

Start with abstracted state at node A: {z : (0,2 =0,1)}
Successor under edge ' =z + 5
Intermediate state: 2’ =2z +5A2<0AQ=A

If we need to perform abstraction, we get
{z:(5,2’ =x+5,A)}

George Karpenkov Program Analysis with Local Policy Iteration

On closing the loop (at abstracted state):

Follow backpointers, keep adding constraints
Create value determination problem

Potentially size of the largest loop

George Karpenkov Program Analysis with Local Policy Iteration %

Local Policy Iteration
Algorithm Example

1. Start with abstracted state T

i<10AY =i+1
—(i < 10)

J<10Af =j+1

George Karpenkov Program Analysis with Local Policy Iteration %

Local Policy Iteration
Algorithm Example

1. Start with abstracted state T

. g g _
oA i 2. Intermediate state ' = 0A ' =0AQ =1

=(i < 10)

J<10Af =j+1

George Karpenkov Program Analysis with Local Policy Iteration %

Local Policy Iteration
Algorithm Example

1. Start with abstracted state T
ictons—is1 2- Intermediate state ' = 0N =0AQ =1
(i < 10) 3. Abstracted to {i: (0,1),5:(0,1)}

J<10Af =j+1

George Karpenkov Program Analysis with Local Policy Iteration %

. Start with abstracted state T

. Intermediate state i’ =0A 7' =0AQ =1
. Abstracted to {¢: (0,1),5:(0,1)}

. Intermediate state i KON jJ <O0AQ=A

P =0Aj =0

—(i < 10)

S~ W NN =

J<10Af =j+1

George Karpenkov Program Analysis with Local Policy Iteration %

P=0Aj=0
Pi<10Ad =i+1
—(i < 10)

J<10Af =j+1

George Karpenkov

1.
2.
3.
4.
5.

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}

Program Analysis with Local Policy Iteration

om0 1. Start with abstracted state T
oA i1 2. Intermediate state /' = 0A ' =0AQ =1
(i < 10) 3. Abstracted to {i: (0,1),5: (0,1)}
j<10nj=j+1 4. Intermediate state it < OAJ<O0OAQ=A
5. Abstracted to {i: (1,A),5:(0,A)}
6. Merge A, : {i:(10,4),5:(0,1)}

George Karpenkov Program Analysis with Local Policy Iteration %

i<10AY =i+1

j<10/\j’:j+1

George Karpenkov

R G o D

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A

Program Analysis with Local Policy Iteration

P=0A7 =0

Pi<10AY =i+1
—(i < 10)

J<10Af =j+1

George Karpenkov

o e R A i

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A

Abstracted: {7 : (10, A4),j : (0,4)}

Program Analysis with Local Policy Iteration

George Karpenkov

B O B o

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A

Abstracted: {7 : (10, A4),j : (0,4)}
Intermediate:
i=10Aj<O0Aj'=j+1AQ=RB

Program Analysis with Local Policy Iteration

P'=0Aj=0 1.
i<10AT =i+1 2.
(i < 10) 3.
j<l0Af=j+1 4.
5.

6.

1.

3.

9.

10

George Karpenkov

Start with abstracted state T
Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}
Merge A, :{i:(10,A),5:(0,1)}

Intermediate i <10Aj < 0A-(i<10)AQ=A

Abstracted: {7 : (10, A4),j : (0,4)}
Intermediate:
i=10Aj<O0Aj'=j+1AQ=RB

. Abstracted: {i:(10,B),5:(1,B)}

Program Analysis with Local Policy Iteration

P'=0Aj=0 1.
i<10AT =i+1 2.
(i < 10) 3.
j<l0Af=j+1 4.

5.

6.

1.

3.

9.

10.

11.

George Karpenkov

Start with abstracted state T

Intermediate state i =0A ' =0AQ =1
Abstracted to {3 : (0,1),5:(0,I)}
Intermediate state it < OAJ<O0OAQ=A
Abstracted to {7 : (1, A4),5:(0,4)}

Merge A, :{i:(10,A),5:(0,1)}
Intermediate i <10Aj < 0A-(i<10)AQ=A
Abstracted: {7 : (10, A4),j : (0,4)}
Intermediate:
i=10Aj<O0Aj'=j+1AQ=RB
Abstracted: {i: (10, B),j: (1, B)}

Merge B, : {i:(10,B),7: (10, A)}

Program Analysis with Local Policy Iteration %

Reachability of Bad States

o Whether we are safe:

o ¢ A E is unsat
o Example: (z < 10) A (z = 11)

George Karpenkov Program Analysis with Local Policy Iteration %

Whether we are safe:

¢ A\ E is unsat
Example: (z < 10) A (z = 11)

Whether we are unsafe:

¢ N —F is unsat
Example: (x =0) A (z =0)

George Karpenkov Program Analysis with Local Policy Iteration

Algorithm Properties

* Soundness
© Only terminate when inductive

George Karpenkov Program Analysis with Local Policy Iteration %

Soundness
Only terminate when inductive
Termination

Bounds can only grow
Each bound corresponds to some policy
Finite number of policies

George Karpenkov Program Analysis with Local Policy Iteration @

Soundness
Only terminate when inductive
Termination

Bounds can only grow
Each bound corresponds to some policy
Finite number of policies

Least invariant property
Only select feasible policies

George Karpenkov Program Analysis with Local Policy Iteration @

Configurations
Intervals (£x)
Octagons (above and +x,+x + y)
Rich Templates (above and +2z + y, o +y 4+ 2z, +22 + y + 2)
Unrolling
Simple Congruence Analysis

George Karpenkov Program Analysis with Local Policy Iteration %

Configurations

Intervals (£x)

Octagons (above and +x,+x + y)

Rich Templates (above and +2z + y, o +y 4+ 2z, +22 + y + 2)
Unrolling

Simple Congruence Analysis

Refinement: progressively switch to more expensive config

George Karpenkov Program Analysis with Local Policy Iteration %

Only update policies which need updating

Run value determination on a reduced program section
Stated in CPA framework

(Unguided) refinement of template precision

Local value determination optimizations

Not in the presentation

George Karpenkov Program Analysis with Local Policy Iteration

Outline

Introduction
Motivation
Finding Inductive Invariants

Background
Template Constraints Domain
Policy Iteration Algorithm
Path Focusing

LPI

George Karpenkov Program Analysis with Local Policy Iteration %

Local Policy lteration

Code analysis tool

Tool

» Configurations:
o -policy-intervals
o -policy
O —-policy-ensemble
o0 -policy-counterexample-checking

George Karpenkov Program Analysis with Local Policy Iteration

Evaluated on SV-Comp “Loops” category
Compared with

BLAST(2014)
CPACHECKER-SVcoOMP15
PAGAI

Across benchmarks

George Karpenkov Program Analysis with Local Policy Iteration

vs. LPI PAGAlI BLAST CPAchecker Unique Verified Incorrect

LPI 13 21 22 8 60 1
PAGAI 5 14 15 0 52 1
BLAST 4 7 0 43 1
CPAchecker 19 20 12 57 2

Difference between approaches
Reads: A vs. B

George Karpenkov Program Analysis with Local Policy Iteration

103

1 PAGAI
B 1 = LPI-Refinement
10% £ 1 «BLAST(2014)
— B 1 * CPAchecker
<= 10t + LPl-Intervals

CPU Time
2

H
o
A

H
T
no

George Karpenkov Program Analysis with Local Policy Iteration %

New scalable algorithm for policy iteration
Tool for program analysis (using CPAchecker framework)
The only policy-iteration based tool capable of dealing with C

George Karpenkov Program Analysis with Local Policy Iteration %

Questions?

George Karpenkov Program Analysis with Local Policy Iteration %

Concavity and monotonicity limits the number of fixpoints

Can solve for z = f(x)

(7 /
¥ = @

F(f(f(=0)))
F(f(=0))

f(zo)

zo

George Karpenkov Program Analysis with Local Policy Iteration @

Policy Iteration

Concavity of Abstract Semantics

e Linear Semantics: 2/ = Tx A G(2)
o Lett/ =t(Tx)

maxt'zs t. ¢ € Gz) Atz < d
t

Program Analysis with Local Policy Iteration %

George Karpenkov

	Introduction
	Motivation
	Finding Inductive Invariants

	Background
	Template Constraints Domain
	Policy Iteration Algorithm
	Path Focusing

	LPI
	Motivation
	Algorithm
	Example
	Contribution

	Results
	Appendix

