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Overview 

• SMT solvers : how they work 

• Synthesis Problem :   f.  x. P( f, x ) 

 

 

• New approaches for synthesis problems in an SMT solver [CAV 15] 

• Implemented in the SMT solver CVC4 

• Evaluation 

There exists a function f such that for all x, P( f, x ) 



SMT solvers 

• Are powerful tools used in many formal methods applications: 
• Software and Hardware verification 

• Automated Theorem Proving 

• Scheduling and Planning 

• Software synthesis 

• Reason about Boolean combinations of theory constraints: 
• Linear arithmetic : 2*a+1>0 

• Bitvectors : bvsgt(a,#bin0001) 

• Arrays : select(store(a,5,b),c)=5 

• Datatypes : tail(cons(a,b))=b 

• …. 



SMT Solver for Theory T 

• Combines: 
• Off the shelf SAT solver 

• (Possibly combined) decision procedure for decidable theory T 

• Components communicate via DPLL(T) framework 

SAT 
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Decision 
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for T 

SMT Solver 

DPLL(T) 



SMT Solver for Theory T 

• Determines if set of formulas F is T-satisfiable 

SAT 

Solver 

Decision 

Procedure 

for T 

SMT Solver 

DPLL(T) 

F 

unsat sat 



SMT Solver for Theory T 

SAT 

Solver 

Decision 

Procedure 

for T 

SMT Solver 

DPLL(T) 

f(a)>0f(a)<4 

unsat sat • Model, for example f(a)=1 



unsat 

SMT Solver for Theory T 

SAT 

Solver 

Decision 

Procedure 

for T 

SMT Solver 

DPLL(T) 

f(a)>0f(a)<-1 

sat • No model 



unsat 

SMT Solver for Theory T 

SAT 

Solver 

Decision 

Procedure 

for T 

SMT Solver 

DPLL(T) 

f(a)>0f(a)<-1 

sat 

• For decidable theories (e.g. here T is TUF+TLIA) 

• Solver is terminating ǁith either ͞unsat͟ or ͞sat͟ 



SMT Solver + Quantified Formulas 

• SMT solvers have limited support for (first-order) quantified formulas  
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SMT Solver + Quantified Formulas 

• For input f(a)>0   x.f(x)<0 

•  Ground solver maintains a set of ground (variable-free) constraints : f(a)>0 

•  Quantifiers Module maintains a set of axioms :  x.f(x)<0  

 

SAT 

Solver 

Decision 

Procedure 

for T 

Ground solver 

DPLL(T) 

f(a)>0 

Quantifiers 
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 x.f(x)<0 



SMT Solver + Quantified Formulas 
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Procedure 
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f(a)>0 

Quantifiers 

Module 

 x.f(x)<0 



SMT Solver + Quantified Formulas 

• Ground solver checks T-satisfiability of current set of constraints 
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 x.f(x)<0 

unsat 
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SMT Solver + Quantified Formulas 

• Quantifiers Module adds instances of axioms 

• Goal : add iŶstaŶces uŶtil grouŶd solǀer caŶ aŶsǁer ͞unsat͟ 
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Solver 

Decision 

Procedure 

for T 

Ground solver 

DPLL(T) 

f(a)>0,f(a)<0,f(b)<0,… 

Quantifiers 

Module 

 x.f(x)<0 

instances 



SMT Solver + Quantified Formulas 

SAT 

Solver 

Decision 

Procedure 

for T 

Ground solver 

DPLL(T) 

f(a)>0,f(a)<0,f(b)<0,… 

Quantifiers 

Module 

 x.f(x)<0 

unsat • Since f(a)>0 and f(a)<0 



SMT Solver + Quantified Formulas 

• Generally, a sound but incomplete procedure 

• Difficult to answer sat (when have we added enough instances of Q[x]?) 
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Approaches for Quantifiers in SMT 

• Heuristic instantiation ;good for ͞unsat͟Ϳ: 
• E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007] 

• Complete approaches ;ŵay aŶsǁer ͞sat͟Ϳ: 
• Local theory extensions [Sofronie-Stokkermans 2005] 

• Array fragments [Bradley et al 2006, Alberti et al 2014] 

• Complete instantiation [Ge/de Moura 2009] 

• Finite model finding [Reynolds et al 2013] 

 Each limited to a particular fragment 



The Synthesis problem 

f.x.P(f,x) 
 

 
There exists a function f such that for all x, property P holds 

• Most existing approaches for synthesis 
• E.g. [Solar-Lezama et al 2006, Udupa et al 2013, Milicevic et al 2014] 

• Rely on specialized solver that makes subcalls to an SMT Solver 

• Approach for synthesis in this talk: 
• Instrument an approach for synthesis entirely inside SMT solver 



Running Example : Max of Two Integers 

  f.xy.(f(x,y)≥x  f(x,y)≥y   

               (f(x,y)=x  f(x,y)=y)) 

 

• Specifies that f computes the maximum of integers x and y 

• Solution: 

f := lxy.ite(x>y,x,y) 



How does an SMT solver handle Max example? 

f.xy.(f(x,y)≥x  f(x,y)≥y   

               (f(x,y)=x  f(x,y)=y)) 



• Straightforward approach: 

• Treat f as an uninterpreted function 

• Succeed if SMT solver can find correct interpretation of f, aŶsǁer ͞sat͟ 
However, this is challenging 

• SMT solvers have limited ability to find models when  are present 

• It is difficult to directly synthesize interpretation lxy.ite(x>y,x,y) 

 

f : Int  Int  Int 

xy.(f(x,y)≥x  f(x,y)≥y   

               (f(x,y)=x  f(x,y)=y)) 

How does an SMT solver handle Max example? 



Refutation-Based Synthesis 

 f. x.P(f,x) 

• “iŶce “MT solǀers are liŵited at aŶsǁeriŶg ͞sat͟ ǁheŶ  are present, 

 Can we instead use a refutation-based approach for synthesis?  



What if we negate the synthesis conjecture? 

•  Negate the synthesis conjecture 

•  If we are in a satisfaction-complete theory T (e.g. linear arithmetic, bitvectors): 

• F is T-satisfiable if and only if F is T-unsatisfiable 

• In such cases: 

• If SMT solver can establish  f. x.P(f,x) is unsatisfiable 

• Then we know that  f. x.P(f,x) is satisfiable (f has a solution) 

  f. x.P(f,x) 



Challenge: Second-Order Quantification 

• Want to show negated formula is unsatisfiable 

• Challenge: outermost quantification f over function f 

• No SMT solvers directly support second-order quantification 

• However, we can avoid this quantification using two approaches: 

1. When property P is single invocation for f 

2. When f is given syntactic restrictions 

f. x.P(f,x) 

  f. x.P(f,x) 

negate 



Challenge: Second-Order Quantification 

• Want to show negated formula is unsatisfiable 

• Challenge: outermost quantification f over function f 

• No SMT solvers directly support second-order quantification 

• However, we can avoid this quantification using two approaches: 

1. When property P is single invocation for f   Focus of this talk 

2. When f is given syntactic restrictions 

f. x.P(f,x) 

  f. x.P(f,x) 

negate 



Single Invocation Property : Max Example 

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 



Single Invocation Property : Max Example 

•  Single invocation properties 

• Are properties such that: 

• All occurrences of f are of a particular form, e.g. f(x,y) above 

• Are a common class of properties useful for: 

• Software Synthesis (post-conditions describing the result of a function) 

  

• Examples of properties that are not single invocation: 

• c.  xy.c(x,y)=c(y,x), e.g. c is commutative 

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 



Single Invocation Property : Max Example 

• Occurrences of f(x,y) are replaced with integer variable g 

• Resulting formula is equisatisfiable, and first-order 

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 

 xy.g.(g<x  g<y   

               (g≠x  g≠y)) 

Push quantification downwards 



Single Invocation Property : Max Example 

f.  xy.(f(x,y)<x  f(x,y)<y   

               (f(x,y)≠x  f(x,y)≠y)) 

 xy.g.(g<x  g<y   

               (g≠x  g≠y)) 

Push quantification downwards 

g.(g<a  g<b (g≠a  g≠b)) 

Skolemize, for fresh a and b 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Ground 

solver 

Quantifiers 

Module 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Quantifiers 

Module 
Ground 

solver 

instances 

a/g, b/g 

(a<a  a<b (a≠a  a≠b)) 
(b<a  b<b (b≠a  b≠b)) 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Quantifiers 

Module 
Ground 

solver 

a<b  
b<a  simplify 



Solving Max Example 

g.(g<a  g<b (g≠a  g≠b)) 

Quantifiers 

Module 

unsat 

Ground 

solver 

a<b  
b<a  

 g.(g<a  g<b (g≠a  g≠b)) is unsatisfable, 

        implies original synthesis conjecture has a solution  



How do we get solutions? 

Quantifiers 

Module 
Ground 

solver 

f.x.P(f(x),x) 

• Given refutation-based approach for synthesis conjecture f.x.P(f(x),x) 

  Solution for f can be extracted from unsatisfiable core of instantiations 



How do we get solutions? 

g.P(g,k) 

Quantifiers 

Module 
Ground 

solver 

f.x.P(f(x),x) 

negate, translate to FO 



How do we get solutions? 

g.P(g,k) 

Quantifiers 

Module 
Ground 
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f.x.P(f(x),x) 

P(t1,k),…,P(tn,k) 

instances 

negate, translate to FO 



How do we get solutions? 

g.P(g,k) 

Quantifiers 

Module 
Ground 

solver 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k) 

instances 

negate, translate to FO 

unsat 

P(t1,k),…,P(tn,k)|= false 



How do we get solutions? 

g.P(g,k) 

Quantifiers 

Module 
Ground 

solver 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k) 

instances 

negate, translate to FO 

unsat 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx.  ite( P(t1,k), t1, 

 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

           tn)…)[x/k] 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

If P holds for t1, return t1 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

If P holds for t2, return t2 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

If P holds for tn-1, return tn-1 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn,k)|= false 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

Why does P(tn,k) hold? 



Why is this a solution? 

f.x.P(f(x),x) 

P(t1,k),…,P(tn-1,k)|= P(tn,k) 

Claim the following is a solution for f:          

 lx. ite( P(t1,k), t1, 
 ite( P(t2,k), t2, 

 … 
 ite( P(tn-1,k), tn-1, 

             tn)…)[x/k] 

Given 

Found 

Due to unsatisfiable core 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) Given 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) 

|= false 

Given 

Found 
(a≥a  a≥b (a=a  a=b)), 

(b≥a  b≥b (b=a  b=b)) 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) 

|= false 

Claim the following is a solution for f:          

 lxy. ite( a≥a  a≥b (a=a  a=b), a,              

        b)…)[x/a][y/b] 

Given 

Found 
(a≥a  a≥b (a=a  a=b)), 

(b≥a  b≥b (b=a  b=b)) 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) 

|= false 

Claim the following is a solution for f:          

 lxy. ite( x≥x  x≥y (x=x  x=y), x,              

        y)…) 

Given 

Found 
(a≥a  a≥b (a=a  a=b)), 

(b≥a  b≥b (b=a  b=b)) 



Solution for Max Example 

f.xy.(f(x,y)≥x  f(x,y)≥y (f(x,y)=x  f(x,y)=y)) 

|= false 

Claim the following is a solution for f:          

 lxy. ite( x≥y , x, y ) 

Given 

Found 
(a≥a  a≥b (a=a  a=b)), 

(b≥a  b≥b (b=a  b=b)) 



Evaluation 

• Implemented techniques in SMT solver CVC4 

• Compared CVC4 against tools taken from 2014 SyGuS competition 

• In particular: enumerative CEGIS solver ESolver (Upenn) 

• Of 243 benchmarks from this competition: 

• 176 were single invocation 

 



Results 

• In total, 

• cvc4 finds solution for 35 that ESolver does not 

• ESolver finds solution for 2 that cvc4 does not 

• Solves 25 benchmarks unsolved by any other known solver 

• Many of these in fraction of a second 



Results : Max Example 

• For class of properties synthesizing function taking max of n integers 

• cvc4 scales well to max9+ 

• No solver from SyGuS competition synthesized max5 with timeout of an hour 



Summary 

• Refutation-based approach for synthesis 

• Solutions constructed from unsatisfiable core of instantiations 

• Implemented in CVC4 

• Highly competitive for single invocation properties 

 

 

 For more details, see CAV 15 paper 

͞CouŶtereǆaŵple Guided QuaŶtifier IŶstaŶtiatioŶ for “ǇŶthesis iŶ “MT͟ 

 with Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett 



Thanks! 

• CVC4 publicly available at: 

 http://cvc4.cs.nyu.edu/web/ 

 

• Handles inputs in the sygus language format *.sl 

• Techniques in this presentation enabled by argument “--cegqi-si” 

http://cvc4.cs.nyu.edu/web/
http://cvc4.cs.nyu.edu/web/

