
Synthesis by Quantifier

Instantiation in CVC4
Andrew Reynolds

 May 4, 2015

Overview

• SMT solvers : how they work

• Synthesis Problem : f. x. P(f, x)

• New approaches for synthesis problems in an SMT solver [CAV 15]

• Implemented in the SMT solver CVC4

• Evaluation

There exists a function f such that for all x, P(f, x)

SMT solvers

• Are powerful tools used in many formal methods applications:
• Software and Hardware verification

• Automated Theorem Proving

• Scheduling and Planning

• Software synthesis

• Reason about Boolean combinations of theory constraints:
• Linear arithmetic : 2*a+1>0

• Bitvectors : bvsgt(a,#bin0001)

• Arrays : select(store(a,5,b),c)=5

• Datatypes : tail(cons(a,b))=b

• ….

SMT Solver for Theory T

• Combines:
• Off the shelf SAT solver

• (Possibly combined) decision procedure for decidable theory T

• Components communicate via DPLL(T) framework

SAT

Solver

Decision

Procedure

for T

SMT Solver

DPLL(T)

SMT Solver for Theory T

• Determines if set of formulas F is T-satisfiable

SAT

Solver

Decision

Procedure

for T

SMT Solver

DPLL(T)

F

unsat sat

SMT Solver for Theory T

SAT

Solver

Decision

Procedure

for T

SMT Solver

DPLL(T)

f(a)>0f(a)<4

unsat sat • Model, for example f(a)=1

unsat

SMT Solver for Theory T

SAT

Solver

Decision

Procedure

for T

SMT Solver

DPLL(T)

f(a)>0f(a)<-1

sat • No model

unsat

SMT Solver for Theory T

SAT

Solver

Decision

Procedure

for T

SMT Solver

DPLL(T)

f(a)>0f(a)<-1

sat

• For decidable theories (e.g. here T is TUF+TLIA)

• Solver is terminating ǁith either ͞unsat͟ or ͞sat͟

SMT Solver + Quantified Formulas

• SMT solvers have limited support for (first-order) quantified formulas

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)
Quantifiers

Module

SMT solver

SMT Solver + Quantified Formulas

• For input f(a)>0 x.f(x)<0

• Ground solver maintains a set of ground (variable-free) constraints : f(a)>0

• Quantifiers Module maintains a set of axioms : x.f(x)<0

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)

f(a)>0

Quantifiers

Module

 x.f(x)<0

SMT Solver + Quantified Formulas

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)

f(a)>0

Quantifiers

Module

 x.f(x)<0

SMT Solver + Quantified Formulas

• Ground solver checks T-satisfiability of current set of constraints

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)

f(a)>0

Quantifiers

Module

 x.f(x)<0

unsat
sat

SMT Solver + Quantified Formulas

• Quantifiers Module adds instances of axioms

• Goal : add iŶstaŶces uŶtil grouŶd solǀer caŶ aŶsǁer ͞unsat͟

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)

f(a)>0,f(a)<0,f(b)<0,…

Quantifiers

Module

 x.f(x)<0

instances

SMT Solver + Quantified Formulas

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)

f(a)>0,f(a)<0,f(b)<0,…

Quantifiers

Module

 x.f(x)<0

unsat • Since f(a)>0 and f(a)<0

SMT Solver + Quantified Formulas

• Generally, a sound but incomplete procedure

• Difficult to answer sat (when have we added enough instances of Q[x]?)

SAT

Solver

Decision

Procedure

for T

Ground solver

DPLL(T)

F,Q[t1],Q[t2],…

Quantifiers

Module

Q[x]

unsat
sat

instances

of Q

sat

 sat

Approaches for Quantifiers in SMT

• Heuristic instantiation ;good for ͞unsat͟Ϳ:
• E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

• Complete approaches ;ŵay aŶsǁer ͞sat͟Ϳ:
• Local theory extensions [Sofronie-Stokkermans 2005]

• Array fragments [Bradley et al 2006, Alberti et al 2014]

• Complete instantiation [Ge/de Moura 2009]

• Finite model finding [Reynolds et al 2013]

 Each limited to a particular fragment

The Synthesis problem

f.x.P(f,x)

There exists a function f such that for all x, property P holds

• Most existing approaches for synthesis
• E.g. [Solar-Lezama et al 2006, Udupa et al 2013, Milicevic et al 2014]

• Rely on specialized solver that makes subcalls to an SMT Solver

• Approach for synthesis in this talk:
• Instrument an approach for synthesis entirely inside SMT solver

Running Example : Max of Two Integers

 f.xy.(f(x,y)≥x f(x,y)≥y

 (f(x,y)=x f(x,y)=y))

• Specifies that f computes the maximum of integers x and y

• Solution:

f := lxy.ite(x>y,x,y)

How does an SMT solver handle Max example?

f.xy.(f(x,y)≥x f(x,y)≥y

 (f(x,y)=x f(x,y)=y))

• Straightforward approach:

• Treat f as an uninterpreted function

• Succeed if SMT solver can find correct interpretation of f, aŶsǁer ͞sat͟
However, this is challenging

• SMT solvers have limited ability to find models when are present

• It is difficult to directly synthesize interpretation lxy.ite(x>y,x,y)

f : Int Int Int

xy.(f(x,y)≥x f(x,y)≥y

 (f(x,y)=x f(x,y)=y))

How does an SMT solver handle Max example?

Refutation-Based Synthesis

 f. x.P(f,x)

• “iŶce “MT solǀers are liŵited at aŶsǁeriŶg ͞sat͟ ǁheŶ are present,

 Can we instead use a refutation-based approach for synthesis?

What if we negate the synthesis conjecture?

• Negate the synthesis conjecture

• If we are in a satisfaction-complete theory T (e.g. linear arithmetic, bitvectors):

• F is T-satisfiable if and only if F is T-unsatisfiable

• In such cases:

• If SMT solver can establish f. x.P(f,x) is unsatisfiable

• Then we know that f. x.P(f,x) is satisfiable (f has a solution)

 f. x.P(f,x)

Challenge: Second-Order Quantification

• Want to show negated formula is unsatisfiable

• Challenge: outermost quantification f over function f

• No SMT solvers directly support second-order quantification

• However, we can avoid this quantification using two approaches:

1. When property P is single invocation for f

2. When f is given syntactic restrictions

f. x.P(f,x)

 f. x.P(f,x)

negate

Challenge: Second-Order Quantification

• Want to show negated formula is unsatisfiable

• Challenge: outermost quantification f over function f

• No SMT solvers directly support second-order quantification

• However, we can avoid this quantification using two approaches:

1. When property P is single invocation for f Focus of this talk

2. When f is given syntactic restrictions

f. x.P(f,x)

 f. x.P(f,x)

negate

Single Invocation Property : Max Example

f. xy.(f(x,y)<x f(x,y)<y

 (f(x,y)≠x f(x,y)≠y))

Single Invocation Property : Max Example

• Single invocation properties

• Are properties such that:

• All occurrences of f are of a particular form, e.g. f(x,y) above

• Are a common class of properties useful for:

• Software Synthesis (post-conditions describing the result of a function)

• Examples of properties that are not single invocation:

• c. xy.c(x,y)=c(y,x), e.g. c is commutative

f. xy.(f(x,y)<x f(x,y)<y

 (f(x,y)≠x f(x,y)≠y))

Single Invocation Property : Max Example

• Occurrences of f(x,y) are replaced with integer variable g

• Resulting formula is equisatisfiable, and first-order

f. xy.(f(x,y)<x f(x,y)<y

 (f(x,y)≠x f(x,y)≠y))

 xy.g.(g<x g<y

 (g≠x g≠y))

Push quantification downwards

Single Invocation Property : Max Example

f. xy.(f(x,y)<x f(x,y)<y

 (f(x,y)≠x f(x,y)≠y))

 xy.g.(g<x g<y

 (g≠x g≠y))

Push quantification downwards

g.(g<a g<b (g≠a g≠b))

Skolemize, for fresh a and b

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Ground

solver

Quantifiers

Module

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Quantifiers

Module
Ground

solver

instances

a/g, b/g

(a<a a<b (a≠a a≠b))
(b<a b<b (b≠a b≠b))

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Quantifiers

Module
Ground

solver

a<b
b<a simplify

Solving Max Example

g.(g<a g<b (g≠a g≠b))

Quantifiers

Module

unsat

Ground

solver

a<b
b<a

 g.(g<a g<b (g≠a g≠b)) is unsatisfable,

 implies original synthesis conjecture has a solution

How do we get solutions?

Quantifiers

Module
Ground

solver

f.x.P(f(x),x)

• Given refutation-based approach for synthesis conjecture f.x.P(f(x),x)

 Solution for f can be extracted from unsatisfiable core of instantiations

How do we get solutions?

g.P(g,k)

Quantifiers

Module
Ground

solver

f.x.P(f(x),x)

negate, translate to FO

How do we get solutions?

g.P(g,k)

Quantifiers

Module
Ground

solver

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)

instances

negate, translate to FO

How do we get solutions?

g.P(g,k)

Quantifiers

Module
Ground

solver

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)

instances

negate, translate to FO

unsat

P(t1,k),…,P(tn,k)|= false

How do we get solutions?

g.P(g,k)

Quantifiers

Module
Ground

solver

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)

instances

negate, translate to FO

unsat

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,

 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

If P holds for t1, return t1

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

If P holds for t2, return t2

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

If P holds for tn-1, return tn-1

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn,k)|= false

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

Why does P(tn,k) hold?

Why is this a solution?

f.x.P(f(x),x)

P(t1,k),…,P(tn-1,k)|= P(tn,k)

Claim the following is a solution for f:

 lx. ite(P(t1,k), t1,
 ite(P(t2,k), t2,

 …
 ite(P(tn-1,k), tn-1,

 tn)…)[x/k]

Given

Found

Due to unsatisfiable core

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y)) Given

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y))

|= false

Given

Found
(a≥a a≥b (a=a a=b)),

(b≥a b≥b (b=a b=b))

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y))

|= false

Claim the following is a solution for f:

 lxy. ite(a≥a a≥b (a=a a=b), a,

 b)…)[x/a][y/b]

Given

Found
(a≥a a≥b (a=a a=b)),

(b≥a b≥b (b=a b=b))

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y))

|= false

Claim the following is a solution for f:

 lxy. ite(x≥x x≥y (x=x x=y), x,

 y)…)

Given

Found
(a≥a a≥b (a=a a=b)),

(b≥a b≥b (b=a b=b))

Solution for Max Example

f.xy.(f(x,y)≥x f(x,y)≥y (f(x,y)=x f(x,y)=y))

|= false

Claim the following is a solution for f:

 lxy. ite(x≥y , x, y)

Given

Found
(a≥a a≥b (a=a a=b)),

(b≥a b≥b (b=a b=b))

Evaluation

• Implemented techniques in SMT solver CVC4

• Compared CVC4 against tools taken from 2014 SyGuS competition

• In particular: enumerative CEGIS solver ESolver (Upenn)

• Of 243 benchmarks from this competition:

• 176 were single invocation

Results

• In total,

• cvc4 finds solution for 35 that ESolver does not

• ESolver finds solution for 2 that cvc4 does not

• Solves 25 benchmarks unsolved by any other known solver

• Many of these in fraction of a second

Results : Max Example

• For class of properties synthesizing function taking max of n integers

• cvc4 scales well to max9+

• No solver from SyGuS competition synthesized max5 with timeout of an hour

Summary

• Refutation-based approach for synthesis

• Solutions constructed from unsatisfiable core of instantiations

• Implemented in CVC4

• Highly competitive for single invocation properties

 For more details, see CAV 15 paper

͞CouŶtereǆaŵple Guided QuaŶtifier IŶstaŶtiatioŶ for “ǇŶthesis iŶ “MT͟

 with Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett

Thanks!

• CVC4 publicly available at:

 http://cvc4.cs.nyu.edu/web/

• Handles inputs in the sygus language format *.sl

• Techniques in this presentation enabled by argument “--cegqi-si”

http://cvc4.cs.nyu.edu/web/
http://cvc4.cs.nyu.edu/web/

