Synthesis by Quantifier Instantiation in CVC4

Andrew Reynolds
May 4, 2015
Overview

• SMT solvers: how they work
• Synthesis Problem: $\exists f. \forall x. P(f, x)$

There exists a function f such that for all x, $P(f, x)$

• New approaches for synthesis problems in an SMT solver [CAV 15]
 • Implemented in the SMT solver CVC4
• Evaluation
SMT solvers

• Are powerful tools used in many formal methods applications:
 • Software and Hardware verification
 • Automated Theorem Proving
 • Scheduling and Planning
 • Software synthesis

• Reason about Boolean combinations of *theory* constraints:
 • Linear arithmetic : $2a + 1 > 0$
 • Bitvectors : $\text{bvsgt}(a, \#\text{bin}0001)$
 • Arrays : $\text{select}(\text{store}(a, 5, b), c) = 5$
 • Datatypes : $\text{tail}(\text{cons}(a, b)) = b$
 •
SMT Solver for Theory T

- Combines:
 - Off the shelf SAT solver
 - (Possibly combined) decision procedure for decidable theory T
- Components communicate via DPLL(T) framework
SMT Solver for Theory T

- Determines if set of formulas F is \(T \)-satisfiable

\[F \]

DPLL(T)

SAT Solver

Decision Procedure for T

• Determines if set of formulas F is \(T \)-satisfiable
SMT Solver for Theory T

\[f(a) > 0 \land f(a) < 4 \]

SMT Solver

SAT Solver

Decision Procedure for T

unsat

sat

• Model, for example \(f(a) = 1 \)
SMT Solver for Theory T

\[f(a) > 0 \land f(a) < -1 \]

SMT Solver

SAT Solver

Decision Procedure for T

DPLL(T)

- No model
 - unsat
 - sat
SMT Solver for Theory T

\[f(a) > 0 \land f(a) < -1 \]

- For decidable theories (e.g. here T is $T_{UF} + T_{LIA}$)
 - Solver is terminating with either “unsat” or “sat”
SMT Solver + Quantified Formulas

SMT solver

Ground solver

SAT Solver

Decision Procedure for T

DPLL(T)

Quantifiers Module

• SMT solvers have limited support for (first-order) quantified formulas \(\forall \)
SMT Solver + Quantified Formulas

- For input $f(a) > 0 \land \forall x. f(x) < 0$
 - **Ground solver** maintains a set of ground (variable-free) constraints: $f(a) > 0$
 - **Quantifiers Module** maintains a set of axioms: $\forall x. f(x) < 0$
SMT Solver + Quantified Formulas

\[f(a) > 0 \]

Ground solver

\[\forall x. f(x) < 0 \]

SAT Solver

Decision Procedure for T

Quantifiers Module
SMT Solver + Quantified Formulas

- Ground solver checks T-satisfiability of current set of constraints

SAT Solver → Decision Procedure for T → Quantifiers Module

\[f(a) > 0 \]

\[\forall x. f(x) < 0 \]

Ground solver

• Ground solver checks T-satisfiability of current set of constraints
SMT Solver + Quantified Formulas

- Quantifiers Module adds instances of axioms
- Goal: add instances until ground solver can answer “unsat”
SMT Solver + Quantified Formulas

\[f(a) > 0, f(a) < 0, f(b) < 0, \ldots \]

\[\forall x. f(x) < 0 \]

- Since \(f(a) > 0 \) and \(f(a) < 0 \)

Ground solver

SAT Solver

Decision Procedure for T

Quantifiers Module

unsat
SMT Solver + Quantified Formulas

• Generally, a **sound but incomplete** procedure
 • Difficult to answer sat (when have we added enough instances of $Q[x]$?)

Diagram:
- **Ground solver**
 - SAT Solver
 - Decision Procedure for T
- **Quantifiers Module**
 - $Q[x]$

Flow:
- $F, Q[t_1], Q[t_2], ...$
- DPLL(T)
- sat
- unsat
- \forall sat
- \exists sat
- instances of Q
Approaches for Quantifiers in SMT

- Heuristic instantiation (good for “unsat”):
 - E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]

- Complete approaches (may answer “sat”):
 - Local theory extensions [Sofronie-Stokkermans 2005]
 - Complete instantiation [Ge/de Moura 2009]
 - Finite model finding [Reynolds et al 2013]

⇒ Each limited to a particular fragment
The Synthesis problem

\[\exists f. \forall x. P(f, x) \]

There exists a function \(f \) such that for all \(x \), property \(P \) holds.

• Most existing approaches for synthesis
 • E.g. [Solar-Lezama et al 2006, Udupa et al 2013, Milicevic et al 2014]
 • Rely on specialized solver that makes subcalls to an SMT Solver
• Approach for synthesis in this talk:
 • Instrument an approach for synthesis entirely inside SMT solver
Running Example: Max of Two Integers

\[\exists f. \forall x y. (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y)) \]

- Specifies that \(f \) computes the maximum of integers \(x \) and \(y \)
- Solution:
 \[f := \lambda x y. \text{ite}(x>y, x, y) \]
How does an SMT solver handle Max example?

$$
\exists f. \forall x y. (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y))
$$
How does an SMT solver handle Max example?

\[
\begin{align*}
f : \text{Int} \times \text{Int} &\rightarrow \text{Int} \\
\forall xy. (f(x,y) \geq x \land f(x,y) \geq y \land \\
&\quad (f(x,y) = x \lor f(x,y) = y))
\end{align*}
\]

- Straightforward approach:
 - Treat \(f \) as an uninterpreted function
 - Succeed if SMT solver can find correct interpretation of \(f \), answer “sat”
 - However, this is challenging
 - SMT solvers have limited ability to find models when \(\forall \) are present
 - It is difficult to directly synthesize interpretation \(\lambda xy.\text{ite}(x>y,x,y) \)
Refutation-Based Synthesis

\[\exists f. \forall x. P(f, x) \]

• Since SMT solvers are limited at answering “sat” when \(\forall \) are present,
 \(\Rightarrow \) Can we instead use a \textit{refutation-based} approach for synthesis?
What if we negate the synthesis conjecture?

\[\neg \exists f. \forall x. P(f, x) \]

• Negate the synthesis conjecture

• If we are in a *satisfaction-complete* theory T (e.g. linear arithmetic, bitvectors):
 • *F* is *T*-satisfiable if and only if \(\neg F \) is *T*-unsatisfiable
 • In such cases:
 • If SMT solver can establish \(\neg \exists f. \forall x. P(f, x) \) is *unsatisfiable*
 • Then we know that \(\exists f. \forall x. P(f, x) \) is satisfiable (*f* has a solution)
Challenge: Second-Order Quantification

\[\neg \exists f. \forall x. P(f, x) \]

negate

\[\forall f. \exists x. \neg P(f, x) \]

• Want to show negated formula is unsatisfiable

• Challenge: outermost quantification \(\forall f \) over function \(f \)
 • No SMT solvers directly support second-order quantification

• However, we can avoid this quantification using two approaches:
 1. When property \(P \) is single invocation for \(f \)
 2. When \(f \) is given syntactic restrictions
Challenge: Second-Order Quantification

\[\neg \exists f. \forall x. P(f, x) \]

negate

\[\forall f. \exists x. \neg P(f, x) \]

• Want to show negated formula is unsatisfiable
• Challenge: outermost quantification \(\forall f \) over function \(f \)
 • No SMT solvers directly support second-order quantification
• However, we can avoid this quantification using two approaches:
 1. When property \(P \) is single invocation for \(f \) \(\iff \) Focus of this talk
 2. When \(f \) is given syntactic restrictions
Single Invocation Property : Max Example

\(\forall f. \exists x y. (f(x, y) < x \lor f(x, y) < y \lor (f(x, y) \neq x \land f(x, y) \neq y)) \)
Single Invocation Property: Max Example

\[\forall f. \exists x y. (f(x, y) < x \lor f(x, y) < y \lor (f(x, y) \neq x \land f(x, y) \neq y)) \]

• **Single invocation** properties
 • Are properties such that:
 • All occurrences of \(f \) are of a particular form, e.g. \(f(x, y) \) above
 • Are a common class of properties useful for:
 • Software Synthesis (post-conditions describing the result of a function)

• Examples of properties that are not single invocation:
 • \(\forall c. \exists x y. c(x, y) = c(y, x) \), e.g. \(c \) is commutative
Single Invocation Property: Max Example

\[\forall f. \exists x y. (f(x, y) < x \lor f(x, y) < y \lor \neg f(x, y) = x \land \neg f(x, y) = y) \]

Push quantification downwards

\[\exists x y. \forall g. (g < x \lor g < y \lor \neg g = x \land \neg g = y) \]

- Occurrences of \(f(x, y) \) are replaced with integer variable \(g \)
- Resulting formula is equisatisfiable, and \textit{first-order}
Single Invocation Property : Max Example

\(\forall f. \exists x y. (f(x,y) < x \lor f(x,y) < y \lor
(f(x,y) \neq x \land f(x,y) \neq y)) \)

Push quantification downwards

\(\exists x y. \forall g. (g < x \lor g < y \lor
(g \neq x \land g \neq y)) \)

Skolemize, for fresh \(a \) and \(b \)

\(\forall g. (g < a \lor g < b \lor (g \neq a \land g \neq b)) \)
Solving Max Example

$$\forall g. (g < a \lor g < b \lor (g \neq a \land g \neq b))$$
Solving Max Example

\[\forall g. (g < a \lor g < b \lor (g \neq a \land g \neq b)) \]
Solving Max Example

\[\forall g. (g < a \lor g < b \lor (g \neq a \land g \neq b))\]

Ground solver instances \(a/g, b/g\)

Quantifiers Module
Solving Max Example

\[\forall g. (g < a \lor g < b \lor (g \neq a \land g \neq b)) \]

Quantifiers Module

Ground solver

\[a < b \land b < a \]

simplify
Solving Max Example

\[\forall g. (g < a \lor g < b \lor (g \neq a \land g \neq b)) \]

\(\text{Ground solver}\)

\(\text{Quantifiers Module}\)

unsat \implies \forall g. (g < a \lor g < b \lor (g \neq a \land g \neq b)) \text{ is unsatisfable,}
implies original synthesis conjecture has a solution
How do we get solutions?

- Given refutation-based approach for synthesis conjecture $\exists f. \forall x. P(f(x), x)$
 - Solution for f can be extracted from unsatisfiable core of instantiations
How do we get solutions?

\[\exists f. \forall x. P(f(x), x) \]

negate, translate to FO

\[\forall g. \neg P(g, k) \]

Ground solver

Quantifiers Module
How do we get solutions?

\[\neg P(t_1, k), \ldots, \neg P(t_n, k) \]

Ground solver

Quantifiers Module

\[\neg P(g, k) \]

\[\exists f. \forall x. P(f(x), x) \]

instances

negate, translate to FO
How do we get solutions?

$$\neg P(t_1,k), \ldots, \neg P(t_n,k)$$

Ground solver

$$\forall g. \neg P(g,k)$$

Quantifiers Module

$\exists f. \forall x. P(f(x),x)$

negate, translate to FO

instances

unsat

$$\neg P(t_1,k), \ldots, \neg P(t_n,k) \models \text{false}$$
How do we get solutions?

\[-P(t_1, k), \ldots, -P(t_n, k)\]

Ground solver

\[\exists f. \forall x. P(f(x), x)\]

Quantifiers Module

instances

\[\forall g. -P(g, k)\]

negate, translate to FO

Claim the following is a solution for \(f\):

\[\lambda x. \text{ite}(P(t_1, k), t_1, \text{ite}(P(t_2, k), t_2, \ldots \text{ite}(P(t_{n-1}, k), t_{n-1}, t_n)\ldots)) [x/k] \]
Why is this a solution?

Given
\[\exists f . \forall x . P (f (x) , x) \]

Found
\[\neg P (t_1 , k) , \ldots , \neg P (t_n , k) \models \text{false} \]

Claim the following is a solution for \(f \):
\[
\lambda x . \text{ite} (P (t_1 , k) , t_1 , \ldots , \text{ite} (P (t_{n-1} , k) , t_{n-1} , t_n) \ldots) [x / k]
\]
Why is this a solution?

Given \(\exists f. \forall x. P(f(x), x) \)

Found \(\neg P(t_1, k), \ldots, \neg P(t_n, k) \models \text{false} \)

Claim the following is a solution for \(f \):
\[
\lambda x. \text{ite}(P(t_1, k), t_1, \\
\quad \text{ite}(P(t_2, k), t_2, \\
\quad \quad \ldots \\
\quad \quad \text{ite}(P(t_{n-1}, k), t_{n-1}, \\
\quad \quad \quad t_n) \ldots) [x/k]
\]

If \(P \) holds for \(t_1 \), return \(t_1 \)
Why is this a solution?

Given $\exists f. \forall x. P(f(x), x)$

Found $\neg P(t_1, k), \ldots, \neg P(t_n, k) \models false$

Claim the following is a solution for f:

$\lambda x. \text{ite}(P(t_1, k), t_1, \text{ite}(P(t_2, k), t_2, \ldots \text{ite}(P(t_{n-1}, k), t_{n-1}, t_n)\ldots)[x/k]$

If P holds for t_2, return t_2
Why is this a solution?

Given \(\exists f . \forall x . P(f(x), x) \)

Found \(\neg P(t_1, k), \ldots, \neg P(t_n, k) \models \text{false} \)

Claim the following is a solution for \(f \):
\[
\lambda x. \ite(P(t_1, k), t_1, \\
\ite(P(t_2, k), t_2, \\
\ldots \\
\ite(P(t_{n-1}, k), t_{n-1}, t_n) \ldots) [x/k]
\]

\(\text{If } P \text{ holds for } t_{n-1}, \text{ return } t_{n-1} \)
Why is this a solution?

Given \(\exists f . \forall x . P(f(x), x) \)

Found \(\neg P(t_1, k), \ldots, \neg P(t_n, k) \models \text{false} \)

Claim the following is a solution for \(f \):

\[
\lambda x. \text{ite}(P(t_1, k), t_1, \\
\text{ite}(P(t_2, k), t_2, \\
\ldots \\
\text{ite}(P(t_{n-1}, k), t_{n-1}, \\
t_n) \ldots) [x/k]
\]

Why does \(P(t_n, k) \) hold?
Why is this a solution?

Given \(\exists f. \forall x. P(f(x), x) \)

Found \(\neg P(t_1, k), \ldots, \neg P(t_{n-1}, k) \models P(t_n, k) \)

Claim the following is a solution for \(f \):
\[
\lambda x. \text{ite} (P(t_1, k), t_1, \\
\text{ite} (P(t_2, k), t_2, \\
\ldots \\
\text{ite} (P(t_{n-1}, k), t_{n-1}, \\
\quad t_n) \ldots) [x/k]
\]

Due to unsatisfiable core
Solution for Max Example

Given \(\exists f. \forall x y. (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y)) \)
Solution for Max Example

Given \(\exists f. \forall x y. (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y)) \)

Found
\[\neg (a \geq a \land a \geq b \land (a = a \lor a = b)), \]
\[\neg (b \geq a \land b \geq b \land (b = a \lor b = b)) \quad |\quad = \quad \text{false} \]
Solution for Max Example

Given

$$\exists f. \forall xy. (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y))$$

Found

$$\neg (a \geq a \land a \geq b \land (a = a \lor a = b)) \land \neg (b \geq a \land b \geq b \land (b = a \lor b = b)) \models false$$

Claim

the following is a solution for $$f$$:

$$\lambda xy. \text{ite}(a \geq a \land a \geq b \land (a = a \lor a = b), a, b)\ldots)[x/a][y/b]$$
Solution for Max Example

Given \(\exists f. \forall x y. (f(x, y) \geq x \land f(x, y) \geq y \land (f(x, y) = x \lor f(x, y) = y)) \)

Found \[\neg (a \geq a \land a \geq b \land (a = a \lor a = b)), \quad \neg (b \geq a \land b \geq b \land (b = a \lor b = b)) \]

\(|\rightarrow \text{false} \)

Claim the following is a solution for \(f \):
\[\lambda x y. \text{ite}(x \geq x \land x \geq y \land (x = x \lor x = y), x, y) \ldots \)
Solution for Max Example

Given
\[\exists f. \forall xy. (f(x,y) \geq x \land f(x,y) \geq y \land (f(x,y) = x \lor f(x,y) = y)) \]

Found
\[\neg (a \geq a \land a \geq b \land (a = a \lor a = b)) \]
\[\neg (b \geq a \land b \geq b \land (b = a \lor b = b)) \]
\[\models false \]

Claim
The following is a solution for \(f \):
\[\lambda xy. \text{ite}(x \geq y, x, y) \]
Evaluation

• Implemented techniques in SMT solver CVC4
• Compared CVC4 against tools taken from 2014 SyGuS competition
 • In particular: enumerative CEGIS solver **ESolver** (Upenn)
• Of 243 benchmarks from this competition:
 • 176 were single invocation
Results

<table>
<thead>
<tr>
<th></th>
<th>array (32)</th>
<th>bv (7)</th>
<th>hd (56)</th>
<th>icfp (50)</th>
<th>int (15)</th>
<th>let (8)</th>
<th>mutl (8)</th>
<th>Total (176)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#</td>
<td>time</td>
<td>#</td>
<td>time</td>
<td>#</td>
<td>time</td>
<td>#</td>
<td>time</td>
</tr>
<tr>
<td>Esolver</td>
<td>3</td>
<td>467.6</td>
<td>2</td>
<td>71.6</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1380.4</td>
</tr>
<tr>
<td>cvc4</td>
<td>30</td>
<td>1448.6</td>
<td>5</td>
<td>0.1</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0.1</td>
</tr>
</tbody>
</table>

- In total,
 - cvc4 finds solution for 35 that ESolver does not
 - ESolver finds solution for 2 that cvc4 does not
- Solves 25 benchmarks unsolved by any other known solver
 - Many of these in fraction of a second
Results: Max Example

<table>
<thead>
<tr>
<th>Solver</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Esolver</td>
<td>0.01</td>
<td>1377.10</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>cvc4</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.05</td>
<td>0.1</td>
<td>0.3</td>
<td>1.6</td>
<td>8.9</td>
<td>81.5</td>
</tr>
</tbody>
</table>

- For class of properties synthesizing function taking max of n integers
 - cvc4 scales well to max9+
 - No solver from SyGuS competition synthesized max5 with timeout of an hour
Summary

• Refutation-based approach for synthesis
• Solutions constructed from unsatisfiable core of instantiations
• Implemented in CVC4
• Highly competitive for single invocation properties

⇒ For more details, see CAV 15 paper
“Counterexample Guided Quantifier Instantiation for Synthesis in SMT”
with Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett
Thanks!

- CVC4 publicly available at:
 http://cvc4.cs.nyu.edu/web/

- Handles inputs in the sygus language format *.sl
 - Techniques in this presentation enabled by argument "--cegqi-si"