Synthesis by Quantifier Instantiation in CVC4

Andrew Reynolds

May 4, 2015

Overview

- SMT solvers : how they work
- Synthesis Problem : \exists f. \forall x. P(f, x)

There exists a function f such that for all x, P(f, x)

- New approaches for synthesis problems in an SMT solver [CAV 15]
 - Implemented in the SMT solver CVC4
- Evaluation

SMT solvers

- Are powerful tools used in many formal methods applications:
 - Software and Hardware verification
 - Automated Theorem Proving
 - Scheduling and Planning
 - Software synthesis
- Reason about Boolean combinations of *theory* constraints:
 - Linear arithmetic : 2*a+1>0
 - Bitvectors: bvsgt(a, #bin0001)
 - Arrays:select(store(a,5,b),c)=5
 - Datatypes:tail(cons(a,b))=b
 -

SMT Solver for Theory T

- Combines:
 - Off the shelf SAT solver
 - (Possibly combined) decision procedure for decidable theory T
- Components communicate via DPLL(T) framework

• Determines if set of formulas F is *T-satisfiable*

- For decidable theories (e.g. here T is T_{UF}+T_{LIA})
 - Solver is terminating with either "unsat" or "sat"

SMT Solver + Quantified Formulas

• SMT solvers have limited support for (first-order) quantified formulas \forall

- For input f (a) >0 $\land \forall x.f(x) < 0$
 - Ground solver maintains a set of ground (variable-free) constraints : f (a) >0
 - Quantifiers Module maintains a set of axioms : $\forall x \cdot f(x) < 0$

• Ground solver checks T-satisfiability of current set of constraints

- Quantifiers Module adds instances of axioms
 - Goal : add instances until ground solver can answer "unsat"

- Generally, a sound but incomplete procedure
 - Difficult to answer sat (when have we added enough instances of Q[x]?)

Approaches for Quantifiers in SMT

- Heuristic instantiation (good for "unsat"):
 - E-matching [Detlefs et al 2003, Ge et al 2007, de Moura/Bjorner 2007]
- Complete approaches (may answer "sat"):
 - Local theory extensions [Sofronie-Stokkermans 2005]
 - Array fragments [Bradley et al 2006, Alberti et al 2014]
 - Complete instantiation [Ge/de Moura 2009]
 - Finite model finding [Reynolds et al 2013]
 - \Rightarrow Each limited to a particular fragment

The Synthesis problem

$$\exists f. \forall x. P(f, x)$$

There exists a function f such that for all \mathbf{x} , property P holds

- Most existing approaches for synthesis
 - E.g. [Solar-Lezama et al 2006, Udupa et al 2013, Milicevic et al 2014]
 - Rely on specialized solver that makes subcalls to an SMT Solver
- Approach for synthesis in this talk:
 - Instrument an approach for synthesis entirely inside SMT solver

Running Example : Max of Two Integers

$$\exists f. \forall xy. (f(x, y) \ge x \land f(x, y) \ge y \land$$
$$(f(x, y) = x \lor f(x, y) = y))$$

- Specifies that f computes the maximum of integers x and y
- Solution:

f :=
$$\lambda xy.ite(x>y, x, y)$$

How does an SMT solver handle Max example?

$$\exists f. \forall xy. (f(x, y) \ge x \land f(x, y) \ge y \land (f(x, y) = x \lor f(x, y) = y))$$

How does an SMT solver handle Max example?

- Straightforward approach:
 - Treat f as an *uninterpreted function*
 - Succeed if SMT solver can find correct interpretation of \pm , answer "sat"
 - \Rightarrow However, this is challenging
 - SMT solvers have limited ability to find models when \forall are present
 - It is difficult to directly synthesize interpretation λxy .ite(x>y, x, y)

Refutation-Based Synthesis ∃f.∀x.P(f,x)

Since SMT solvers are limited at answering "sat" when ∀ are present,
 ⇒ Can we instead use a *refutation-based* approach for synthesis?

What if we negate the synthesis conjecture?

- Negate the synthesis conjecture
- If we are in a *satisfaction-complete* theory T (e.g. linear arithmetic, bitvectors):
 - *F* is *T*-satisfiable if and only if $\neg F$ is *T*-unsatisfiable
 - In such cases:
 - If SMT solver can establish ¬∃ f.∀x.P(f,x) is *unsatisfiable*
 - Then we know that ∃ f. ∀ x. P(f, x) is satisfiable (f has a solution)

Challenge: Second-Order Quantification

- Want to show negated formula is unsatisfiable
- Challenge: outermost quantification $\forall \pm \text{ over function } \pm$
 - No SMT solvers directly support second-order quantification
- However, we can avoid this quantification using two approaches:
 - **1.** When property P is single invocation for f
 - 2. When f is given syntactic restrictions

Challenge: Second-Order Quantification

- Want to show negated formula is unsatisfiable
- Challenge: outermost quantification $\forall \, \texttt{f} \text{ over function } \texttt{f}$
 - No SMT solvers directly support second-order quantification
- However, we can avoid this quantification using two approaches:
 - 1. When property P is single invocation for $f \leftarrow Focus of this talk$
 - 2. When \pm is given syntactic restrictions

$\forall f. \exists xy. (f(x,y) < x \lor f(x,y) < y \lor (f(x,y) \neq x \land f(x,y) \neq y))$

$$\forall f. \exists xy. (f(x, y) < x \lor f(x, y) < y \lor (f(x, y) \neq x \land f(x, y) \neq y))$$

- *Single invocation* properties
 - Are properties such that:
 - All occurrences of f are of a particular form, e.g. f (x, y) above
 - Are a common class of properties useful for:
 - Software Synthesis (post-conditions describing the result of a function)
- Examples of properties that are not single invocation:
 - $\forall c . \exists xy.c(x, y) = c(y, x)$, e.g. c is commutative

 $\forall f. \exists xy. (f(x, y) < x \lor f(x, y) < y \lor (f(x, y) \neq x \land f(x, y) \neq y))$ Push quantification downwards $\exists xy. \forall g. (g < x \lor g < y \lor (g \neq x \land g \neq y))$

- Occurrences of f(x, y) are replaced with integer variable g
- Resulting formula is equisatisfiable, and first-order

$\forall g.(g < a \lor g < b \lor (g \neq a \land g \neq b))$

Ground solver

How do we get solutions?

 $\exists f. \forall x. P(f(x), x)$

• Given refutation-based approach for synthesis conjecture $\exists f . \forall x . P(f(x), x) \Rightarrow$ Solution for f can be extracted from unsatisfiable core of instantiations

 $\neg P(t_1, \mathbf{k}), ..., \neg P(t_n, \mathbf{k}) \mid = false$

Found
$$\neg P(t_1, \mathbf{k}), \dots, \neg P(t_n, \mathbf{k}) \mid = false$$

Claim the following is a solution for f:

$$\lambda \mathbf{x}$$
. ite(P(t₁, \mathbf{k}), t₁,
ite(P(t₂, \mathbf{k}), t₂,
...
ite(P(t_{n-1}, \mathbf{k}), t_{n-1},
t_n)...) [\mathbf{x}/\mathbf{k}]

Found
$$\neg P(t_1, \mathbf{k}), \dots, \neg P(t_n, \mathbf{k}) | = false$$

Claim the following is a solution for f:

$$\lambda \mathbf{x}$$
. ite(P(t₁, \mathbf{k}), t₁,
ite(P(t₂, \mathbf{k}), t₂,
...
ite(P(t_{n-1}, \mathbf{k}), t_{n-1},
t_n)...) [\mathbf{x}/\mathbf{k}]

- If P holds for t_1 , return t_1

Found
$$\neg P(t_1, \mathbf{k}), \dots, \neg P(t_n, \mathbf{k}) | = false$$

Claim the following is a solution for f:

$$\lambda \mathbf{x}$$
. ite(P(t₁, \mathbf{k}), t₁,
ite(P(t₂, \mathbf{k}), t₂,
...
ite(P(t_{n-1}, \mathbf{k}), t_{n-1},
t_n)...) [\mathbf{x}/\mathbf{k}]

 \rightarrow If P holds for t_2 , return t_2

Found
$$\neg P(t_1, \mathbf{k}), \dots, \neg P(t_n, \mathbf{k}) | = false$$

$$\begin{array}{c} \text{Claim the following is a solution for f:} \\ \lambda \textbf{x. ite(P(t_1, \textbf{k}), t_1, \\ ite(P(t_2, \textbf{k}), t_2, \\ ... \\ ... \\ ite(P(t_{n-1}, \textbf{k}), t_{n-1}, \\ t_n) ...) [\textbf{x}/\textbf{k}] \end{array} \right] \rightarrow \text{If P holds for } t_{n-1}, \text{ return } t_{n-1} \\ \end{array}$$

Found
$$\neg P(t_1, \mathbf{k}), \dots, \neg P(t_n, \mathbf{k}) | = false$$

Claim the following is a solution for f:

$$\lambda \mathbf{x}$$
. ite (P(t₁, \mathbf{k}), t₁,
ite (P(t₂, \mathbf{k}), t₂,
...
ite (P(t_{n-1}, \mathbf{k}), t_{n-1},
 t_n)...) [\mathbf{x}/\mathbf{k}] \rightarrow Why does P(t_n, \mathbf{k}) hold?

Found
$$\neg P(t_1, k), ..., \neg P(t_{n-1}, k) = P(t_n, k)$$

Claim the following is a solution for f:

$$\lambda \mathbf{x}$$
. ite (P(t₁, \mathbf{k}), t₁,
ite (P(t₂, \mathbf{k}), t₂,
...
ite (P(t_{n-1}, \mathbf{k}), t_{n-1},
 t_n)...) [\mathbf{x}/\mathbf{k}] Due to unsatisfiable core

Given $\exists f. \forall xy. (f(x, y) \ge x \land f(x, y) \ge y \land (f(x, y) = x \lor f(x, y) = y))$

Given $\exists f. \forall xy. (f(x, y) \ge x \land f(x, y) \ge y \land (f(x, y) = x \lor f(x, y) = y))$

Found
$$\neg (a \ge a \land a \ge b \land (a = a \lor a = b)), = false$$

Given $\exists f. \forall xy. (f(x, y) \ge x \land f(x, y) \ge y \land (f(x, y) = x \lor f(x, y) = y))$

Found
$$\neg (a \ge a \land a \ge b \land (a = a \lor a = b)), = false$$

Claim the following is a solution for f: λxy . ite($a \ge a \land a \ge b \land (a = a \lor a = b)$, a, b)...)[x/a][y/b]

Given $\exists f. \forall xy. (f(x, y) \ge x \land f(x, y) \ge y \land (f(x, y) = x \lor f(x, y) = y))$

Found
$$\neg (a \ge a \land a \ge b \land (a = a \lor a = b)), = false$$

Claim the following is a solution for f: λxy . ite ($x \ge x \land x \ge y \land (x = x \lor x = y)$, x, y)...)

Given $\exists f. \forall xy. (f(x, y) \ge x \land f(x, y) \ge y \land (f(x, y) = x \lor f(x, y) = y))$

Found
$$\neg (a \ge a \land a \ge b \land (a = a \lor a = b)), = false$$

Claim the following is a solution for f: λxy . ite ($x \ge_Y$, x , y)

Evaluation

- Implemented techniques in SMT solver CVC4
- Compared CVC4 against tools taken from 2014 SyGuS competition
 - In particular: enumerative CEGIS solver **ESolver** (Upenn)
- Of 243 benchmarks from this competition:
 - 176 were single invocation

Results

	array (32)		bv (7)		hd (56)		icfp (50)		int (15)		let (8)		multf (8)		Total (176)	
	#	time	#	time	#	time	#	time	#	time	#	time	#	time	#	time
Esolver	3	467.6	2	71.6	50	888	0	0	5	1380.4	2	0.1	7	0.6	69	2808.3
cvc4	30	1448.6	5	0.1	52	2311.3	0	0	6	0.1	2	0.5	7	0.1	102	3760.7

- In total,
 - cvc4 finds solution for 35 that ESolver does not
 - ESolver finds solution for 2 that cvc4 does not
- Solves 25 benchmarks unsolved by any other known solver
 - Many of these in fraction of a second

Results : Max Example

	2	3	4	5	6	7	8	9	10
Esolver	0.01	1377.10							—
cvc4	0.01	0.02	0.03	0.05	0.1	0.3	1.6	8.9	81.5

- For class of properties synthesizing function taking max of n integers
 - cvc4 scales well to max9+
 - No solver from SyGuS competition synthesized max5 with timeout of an hour

Summary

- Refutation-based approach for synthesis
- Solutions constructed from unsatisfiable core of instantiations
- Implemented in CVC4
- Highly competitive for single invocation properties

\Rightarrow For more details, see CAV 15 paper

"Counterexample Guided Quantifier Instantiation for Synthesis in SMT" with Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark Barrett

Thanks!

• CVC4 publicly available at:

http://cvc4.cs.nyu.edu/web/

- Handles inputs in the sygus language format *.sl
 - Techniques in this presentation enabled by argument "--cegqi-si"

