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Motivation

e Programs are not robust
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e Parameter synthesis: plateaus are bad for optimizations



Motivation

Motivation I

This presentation:

e How to incorporate “smooth” decisions in CPS to make
systems more robust using neural circuits and GBN

e Technique to learn parameters of a model

e Application to two case studies and the relation between them
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Background

e Bayesian Networks Q 0

e express probabilistic dependencies between variables e e
e are represented as DAGs
e allow compact representation using CPDs

e Gaussian Distributions
e Univariate and Multivariate Gaussian distributions

e Step function vs. sigmoid
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Background

Background

e Passing random variables through conditions
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Our setting:
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Neural Code

Towards the nif statement

Our setting:
e Program operates random variables (RVs)

e RVs are mutually dependent Gaussians

Questions:

e How to incorporate uncertainty of making a decision and
make decisions “smooth”?

e How to avoid cutting distributions when passing a variable
through a condition or a loop?

We propose to use nifs instead of traditional if statements.
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Neural if

The nif statement: nif( x # y, o2 )

e Inequality relation {>, >, <, <}

e Variance (represents our confidence of making a decision)

Example:

nif( x >= a, 02) S1 else S2
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: 2 . ;
nif( x # a, o° ) : Evaluation

1. Compute the difference between x, a

Xx - a—e€ if#is >,

- if #is >

diff(x,a) =4 it 2,
a-x—¢€ if#is <,

a - x if #is <.
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nif( x # a, o ) : Evaluation

1. Compute the difference between x, a

Xx - a—e€ if#is >,

_ TR

diff(x,a) =4 !#!S -’
a-x—¢ if#is <

a - x if #is <.

2. Compute quantiles of the probability density function
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nif( x # a, o ) : Evaluation

1. Compute the difference between x, a

Xx - a—e€ if#is >,

_ TR

diff(x,a) =4 !#!S -’
a-x—¢€ if#is <,

a - x if #is <.

2. Compute quantiles of the probability density function
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3. Check if a random sample is within the interval
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nif: Example

if(x>015{ &
x ~N(0,0.1) X; £
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Limit case 02 — 0

nif( x >= a, o2) S1 else S2

e For the case with “no uncertainty” (02 — 0) the PDF is
expressed as the Dirac function:
® )(x)=4occif x=0else 0
o [T d(x)dx=1
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Limit case 02 — 0

nif( x >= a, o2) S1 else S2

e For the case with “no uncertainty” (02 — 0) the PDF is
expressed as the Dirac function:

® )(x)=4occif x=0else 0
o [T d(x)dx=1

e 02 — 0 : the nif statement is equivalent to the if condition
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nwhile

Extension of a traditional while statement that incorporates
uncertainty

nwhile( x # a,0?){P1}
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nwhile

Extension of a traditional while statement that incorporates
uncertainty

nwhile( x # a,0?){P1}

Evaluation:
1. Compute diff (x,a), obtain quantiles g1 and g2
2. Check if a random sample is within the interval
3. If sample within the interval, execute P1 and go to 1, else exit
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Case study 1: C.elegans

C.elegans

e a 1-mm round worm
e each adult individual has exactly 302 neurons

e extensively studied in evolutional- and neurobiology
Tap withdrawal response

e apply stimulus to mechanosensory (input) neurons

e observe the behavior: forward / backward movement
Goal

e express the behavior using neural program
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C.elegans tap withdrawal simulation

Parallel parking Conclusion

Neural connections 101

E®

H
T

v g (V) Vo

Synaptic connection
e chemical nature
e either active or not
e synaptic weight wsy,
e use nif to model each
synaptic connection

Wy
(v} -----(w) %\ﬁ@%

Gap junction connection
e instantaneous resistive connection
e linear combination of inputs

e gap junction weight wgap
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C.elegans Tap withdrawal circuit
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C.elegans tap withdrawal simulation

Parallel parking

Tap Withdrawal Simulations as Neural Program

Biological Model

dV(’) _ Vieak — V(’) lezl(ls()yn + IgU)) + Istlm
dr Rr(nf) CI(T;‘) Cr(nl)
(i) _ ) () o
lggp = Wgap gggp(v - V) (2)
15 = wil) g8 (ED) — vO)) 3)
gAV) = — P~ @

K< V(C —Veq; >
1 +e range

Neural Program

1: nwhile ( t < tg,,, 0)
2 compute Ig‘), using equation 2
3: nwhile (k< w) 0)

4: nif (V) < Vg, K/Viange)
5: gs(yn) <~ gs(}lxjn) + &syn

6 compute Is(y,,) using equation 3
7 compute dV() using equation 1
8 v — v 4 gv()

9 tt+dt

Conclusion
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C.elegans Tap withdrawal simulations

ODE Neural Program: One execution Neural Program: Averagé
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Case study 2: Parallel parking

G iwven: Raspberry Pl with
Sonars
Carma Board running

e P3AT-SH Pioneer rover accelerometer and oyroscope
e Carma Devkit Ubuntu & ROS
e ROS on Ubuntu 12.04 i
e Pi with Gertboard /

Goal:
Write a parallel parking controller as a neural program



Motivation Background Neural Code C.elegans tap withdrawal simulation Parallel parking Conclusion

Program skeleton

nwhile (currentDistance < targetLocationl, sigmal){
moving () ;
currentDistance = getPose();

}

updateTargetLocations ();

nwhile (currentAngle < targetLocation2, sigma2){
turning () ;

currentAngle = getAngle ();

}

updateTargetLocations ();

nwhile (currentDistance < targetLocation3, sigma3){
moving () ;

currentDistance = getPose();

}




Parallel parking

Program skeleton

nwhile (currentDistance < targetLocationl, sigmal){
moving () ;
currentDistance = getPose();

}

updateTargetLocations ();

nwhile (currentAngle < targetLocation2, sigma2){
turning () ;

currentAngle = getAngle ();

}

updateTargetLocations () ;

nwhile (currentDistance < targetLocation3, sigma3){
moving () ;

currentDistance = getPose();

}

Question: how to find the unknown parameters and how uncertain
are we about each of them?
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Learning

Parking example:
e Sequence of moves and turns
e Each action depends on the previous one
e The dependence is probabilistic

e RVs are normally distributed (assumption)

Parallel parking

Conclusion



Parallel parking

Learning

Parking example:
e Sequence of moves and turns
e Each action depends on the previous one
e The dependence is probabilistic

e RVs are normally distributed (assumption)

Gaussian Bayesian Network:

b21f\b32/\b43/\b54/\b65/\b76©
NSNS,
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Learning: Good traces

050205050020

Task: learn the parameters of the GBN from the good traces
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Learning: Good traces

050205050020

Task: learn the parameters of the GBN from the good traces
1. Convert the GBN to the MGD[HG95]
2. Update the precision matrix T of the MGD[Nea03|

3. Extract o%s and bjjs from T

Conclusion
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Learning: Update step

e lterative learning procedure
e Incrementally update mean p and covariance matrix 3 of the
prior
e Mean update:
Zi,\y/lzl x(")
M
v+ Mx
v+ M

X =

*_



Parallel parking

Learning: Update step

Iterative learning procedure
Incrementally update mean p and covariance matrix 3 of the
prior
Mean update:
Zil\y/lzl x(")
M

v+ Mx

v+ M

X =

*_

Covariance matrix update:

5= f (¢ —%) (x® —x)"

h=1
B* :B+5+VZLMM (x(h) —i) (x(h) —i)T
(T~
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Learning: Data

“Good trajectories” :

e *.bag files (collection of messages

1.204 -0.911 -1.221

that are broadcasted in ROS)

\L 1.207 -0.920 -1.221

1.209 -0.927 -1.221

1.211 -0.930 -1.221

1211 -0.931 -1.221

1211 -0.931 -1.221

1211 -0.931 -1.221

1.211 -0.931 -1.215




Learning: Data

“Good trajectories” :

e *.bag files (collection of messages
that are broadcasted in ROS)

e extract coordinates in the 2-D
space and angle

|

Parallel parking
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Learning: Data

“Good trajectories” :

e *.bag files (collection of messages
that are broadcasted in ROS)

e extract coordinates in the 2-D
space and angle

|

e find important points

|
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Learning: Data

“Good trajectories” :

e *.bag files (collection of messages
that are broadcasted in ROS)

e extract coordinates in the 2-D
space and angle

|

e find important points

|

e obtain samples in the form:
h, a1, b, az, k5, az, I

Parallel parking

1.204 -0.911 -1.221
1.207 -0.920 -1.221
1.209 -0.927 -1.221
1.211 -0.930 -1.221
1211 -0.931 -1.221
1.211 -0.931 -1.221
1211 -0.931 -1.221
1.211 -0.931 -1.215




Parking system architecture

GBN
(distributions)

Parallel parking

initial motion
commands‘ XY,
resampled Engine o ° Sensor
commands_ - Fusion
— >
 actual nwhile (.)
position moving(); A
nwhile (.)
turning();
velocity
commands
Rover VpVya, w

Interface




Conclusion

Conclusion and Future Work

Recap:
e use of smooth Probit distribution in conditional and loop
statements

e use of Gaussian Bayesian Network to capture dependencies
between Probit distributions

e Case studies: robust parking controller and tap withdrawal
simulation

Future work:

e Apply these techniques to monitoring



Motivation Background Neural Code C.elegans tap withdrawal simulation Parallel parking Conclusion

References |

[§ David Heckerman and Dan Geiger.
Learning bayesian networks: A unification for discrete and
gaussian domains.
In UAI, pages 274-284, 1995.

[@ Richard E. Neapolitan.
Learning Bayesian Networks.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.



Q>



Learning Parameters in a Neural Program

FeE========== S = =1
. Execution phase
I
! Sampling
! »| from GBN
! with learned
: parameters
e
v
v
! 1 Parameters
' e
L]
L]
Neural Program . Set of traces « | Learning
with Uncertain Parameters |; | procedure
L]
L}

Conclusion



Integration into ROS

e Rover Interface
e Sensor Fusion
e GBN and Engine

pose

pioneer_driver

sf_filter

left wheel velocity,

right wheel velocity desired

angular -
velocity

velocity

acceleration

---------------

rover sensors and actuators

—— e —
—— = -

Conclusion
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Denotational Semantics

E:= x| c]| bop(Ei, Ep) | uop(Ei)
S:= skip|x:=E|S;S |nif(x;#c,0%) S else S, |
nwhile(x; #c, 02){ 51 }



Motivation Background Neural Code C.elegans tap withdrawal simulation Parallel parking Conclusion

Denotational Semantics

[sipl(x) =
[xi = E](x) = =[[E](x) — xi]
[ 5152 1(x) = [S20([5:](x))
[nif(x;# c,0%) S else S])(x) =
[check(x;, a, 0%, #)[(x)[S1](x) +
[-check(x;, a, 02, #)](x)[S2] (x)
[nwhile(x; #c, 02){ S1 Y (x) =
x[check(x;,a,02, #)](x) +
[check(x;, a, 0%, # )](x)[nwhile(x; # c, 02){ S1 }([S1]%)
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Learning: Conversion step

0r 0205020020

1. Define an ordering starting from initial node

1
1 bii—1 Hn



Conclusion

Learning: Conversion step

0r 0205020020

1. Define an ordering starting from initial node
b1 K1
, 1
1= >
1 bj i1 Hon
2. Use iterative algorithm from [Heckerman and Geiger, 1995]:
T =(t1);
for(i=2;i <nji++)
T1+ t,'b,'bl-T —t;b;
T, = ;
—t,'bl-T t;

T=Tp
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Learning: Conversion step

0r 0202020020

o [1,a1:
T (t1)=%,
1
b2:<b21>
e t+4 -4
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Learning: Conversion step

0r 0205020020

o |y
1 b3, boy
=+ = —= 0
o1 ) ) 0
b 1, b b
T3 = —by L B by b3 =
P 92 g3 03 b21
0 b3z 1



Conclusion

Learning: Conversion step

0r 0202020020

® (!
L+% & o0 o
o1 93 93 0
b b
=R S
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Conclusion

Learning: Conversion step

0r 0205020020

o [3:
b2
L+ b 0 0 0
o1 92 92 0
b2
- M- 0 0
03 2 g3 93 0
b 1, B b -
= o - L4l oo |bs
3 3 4 4 0
b. 1 b b
0 0 = A s |
4 4 5 5 b54
0 0 0 bss

N
mqm‘ =

We can generalize T for arbitrary number of moves
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