Neural Programs: Towards Adaptive Control in Cyber-Physical Systems

Konstantin Selyunin¹, Denise Ratasich¹ Ezio Bartocci¹, M.A. Islam² Scott A. Smolka², Radu Grosu¹

> ¹Vienna University of Technology Cyber-Physical Systems Group E182-1 Institut of Computer Engineering

²Stony Brook University, NY, USA

Motivation

• Programs are not robust

Case studies: neural circuit simulation & parallel parking

• Parameter synthesis: plateaus are bad for optimizations

Motivation II

This presentation:

- How to incorporate "smooth" decisions in CPS to make systems more robust using neural circuits and GBN
- Technique to learn parameters of a model
- · Application to two case studies and the relation between them

- Bayesian Networks
 - express probabilistic dependencies between variables
 - are represented as DAGs
 - allow compact representation using CPDs

- Bayesian Networks
 - express probabilistic dependencies between variables
 - are represented as DAGs
 - allow compact representation using CPDs
- variables G S

- Gaussian Distributions
 - Univariate and Multivariate Gaussian distributions

- Bayesian Networks
 - express probabilistic dependencies between variables
 - are represented as DAGs
 - allow compact representation using CPDs

- Gaussian Distributions
 - Univariate and Multivariate Gaussian distributions
- Step function vs. sigmoid

Passing random variables through conditions

Towards the nif statement

Our setting:

- Program operates random variables (RVs)
- RVs are mutually dependent Gaussians

Towards the nif statement

Our setting:

- Program operates random variables (RVs)
- RVs are mutually dependent Gaussians

Questions:

- How to incorporate uncertainty of making a decision and make decisions "smooth"?
- How to avoid cutting distributions when passing a variable through a condition or a loop?

Towards the nif statement

Our setting:

- Program operates random variables (RVs)
- RVs are mutually dependent Gaussians

Questions:

- How to incorporate uncertainty of making a decision and make decisions "smooth"?
- How to avoid cutting distributions when passing a variable through a condition or a loop?

We propose to use nifs instead of traditional if statements.

Neural if

The nif statement: nif(x # y, σ^2)

- Inequality relation $\{\geq, >, <, \leq\}$
- Variance (represents our confidence of making a decision)

Example:

```
nif( x >= a, \sigma^2) S1 else S2
```

nif(x # a, σ^2): Evaluation

1. Compute the difference between x, a

$$diff(x,a) = \begin{cases} x - a - \epsilon & \text{if } \# \text{ is } >, \\ x - a & \text{if } \# \text{ is } \geq, \\ a - x - \epsilon & \text{if } \# \text{ is } <, \\ a - x & \text{if } \# \text{ is } \leq. \end{cases}$$

nif(x # a, σ^2): Evaluation

1. Compute the difference between x, a

$$diff(x,a) = \begin{cases} x - a - \epsilon & \text{if } \# \text{ is } >, \\ x - a & \text{if } \# \text{ is } \geq, \\ a - x - \epsilon & \text{if } \# \text{ is } <, \\ a - x & \text{if } \# \text{ is } \leq. \end{cases}$$

2. Compute quantiles of the probability density function

nif(x # a, σ^2): Evaluation

1. Compute the difference between x, a

$$diff(x,a) = \begin{cases} x - a - \epsilon & \text{if } \# \text{ is } >, \\ x - a & \text{if } \# \text{ is } \geq, \\ a - x - \epsilon & \text{if } \# \text{ is } <, \\ a - x & \text{if } \# \text{ is } \leq. \end{cases}$$

2. Compute quantiles of the probability density function

3. Check if a random sample is within the interval

nif: Example

Limit case $\sigma^2 \rightarrow 0$

nif(x >= a,
$$\sigma^2$$
) S1 else S2

- ullet For the case with "no uncertainty" $(\sigma^2 o 0)$ the PDF is expressed as the Dirac function:
 - $\delta(x) = +\infty$ if x = 0 else 0
 - $\int_{-\infty}^{\infty} \delta(x) dx = 1$

Limit case $\sigma^2 \rightarrow 0$

nif(x >= a,
$$\sigma^2$$
) S1 else S2

- For the case with "no uncertainty" $(\sigma^2 \to 0)$ the PDF is expressed as the Dirac function:
 - $\delta(x) = +\infty$ if x = 0 else 0
 - $\int_{-\infty}^{\infty} \delta(x) dx = 1$
- $\sigma^2 \to 0$: the nif statement is equivalent to the if condition

nwhile

Extension of a traditional while statement that incorporates uncertainty

nwhile(x # a,
$$\sigma^2$$
){ P_1 }

nwhile

Extension of a traditional while statement that incorporates uncertainty

nwhile(x # a,
$$\sigma^2$$
){ P_1 }

Evaluation:

- 1. Compute diff(x,a), obtain quantiles q1 and q2
- 2. Check if a random sample is within the interval
- 3. If sample within the interval, execute P1 and go to 1, else exit

Case study 1: C.elegans

C.elegans

- a 1-mm round worm
- each adult individual has exactly 302 neurons
- extensively studied in evolutional- and neurobiology

Tap withdrawal response

- apply stimulus to mechanosensory (input) neurons
- observe the behavior: forward / backward movemen

Goal

express the behavior using neural program

Case study 1: C.elegans

C.elegans

- a 1-mm round worm
- each adult individual has exactly 302 neurons
- extensively studied in evolutional- and neurobiology

Tap withdrawal response

- apply stimulus to mechanosensory (input) neurons
- observe the behavior: forward / backward movement

Goa

express the behavior using neural program

Case study 1: C.elegans

C.elegans

- a 1-mm round worm
- each adult individual has exactly 302 neurons
- extensively studied in evolutional- and neurobiology

Tap withdrawal response

- apply stimulus to mechanosensory (input) neurons
- observe the behavior: forward / backward movement

Goal

express the behavior using neural program

Neural connections 101

Synaptic connection

- chemical nature
- either active or not
- synaptic weight w_{syn}
- use nif to model each synaptic connection

Gap junction connection

- instantaneous resistive connection
- linear combination of inputs
- gap junction weight w_{gap}

Tap Withdrawal Simulations as Neural Program

Biological Model

$$\frac{dV^{(i)}}{dt} = \frac{V_{Leak} - V^{(i)}}{R_m^{(i)} C_m^{(i)}} + \frac{\sum_{j=1}^N (I_{syn}^{(ij)} + I_{gap}^{(ij)}) + I_{stim}^{(i)}}{C_m^{(i)}}$$
(1)

$$I_{gap}^{(ij)} = w_{gap}^{(ij)} g_{gap}^{(ij)} (V_i - V_i)$$
 (2)

$$I_{\text{syn}}^{(ij)} = w_{\text{syn}}^{(ij)} g_{\text{syn}}^{(ij)} (E^{(ij)} - V^{(j)})$$
 (3)

$$g_{syn}^{(ij)}(V^{(j)}) = \frac{\overline{g}_{syn}}{K\left(\frac{V^{(j)} - V_{eq_j}}{V_{range}}\right)} \tag{4}$$

Neural Program

```
1: nwhile (t \le t_{dur}, 0)

2: compute I_{gap}^{(ij)} using equation 2

3: nwhile (k \le w_{syn}^{(ij)}, 0)

4: nif (V^{(j)} \le V_{eq}, K/V_{range})

5: g_{syn}^{(ij)} \leftarrow g_{syn}^{(ij)} + g_{syn}

6: compute I_{syn}^{(ij)} using equation 3

7: compute dV^{(i)} using equation 1

8: V^{(i)} \leftarrow V^{(i)} + dV^{(i)}
```

 $t \leftarrow t + dt$

C.elegans Tap withdrawal simulations

Case study 2: Parallel parking

Given:

- P3AT-SH Pioneer rover
- Carma Devkit
- ROS on Ubuntu 12.04
- Pi with Gertboard

Goal:

Write a parallel parking controller as a neural program

Program skeleton

```
nwhile(currentDistance < targetLocation1, sigma1){</pre>
moving();
currentDistance = getPose();
}
updateTargetLocations();
nwhile(currentAngle < targetLocation2,</pre>
                                              sigma2){
turning();
currentAngle = getAngle();
}
updateTargetLocations();
nwhile(currentDistance < targetLocation3, sigma3){</pre>
moving();
currentDistance = getPose();
```

Program skeleton

```
nwhile(currentDistance < targetLocation1, sigma1){</pre>
moving();
currentDistance = getPose();
}
updateTargetLocations();
nwhile(currentAngle < targetLocation2,</pre>
                                              sigma2){
turning();
currentAngle = getAngle();
}
updateTargetLocations();
nwhile(currentDistance < targetLocation3, sigma3){</pre>
moving();
currentDistance = getPose();
```

Question: how to find the unknown parameters and how uncertain are we about each of them?

Learning

Parking example:

- Sequence of moves and turns
- Each action depends on the previous one
- The dependence is probabilistic
- RVs are normally distributed (assumption)

Learning

Parking example:

- Sequence of moves and turns
- Each action depends on the previous one
- The dependence is probabilistic
- RVs are normally distributed (assumption)

Gaussian Bayesian Network:

Learning: Good traces

Task: learn the parameters of the GBN from the good traces

Learning: Good traces

Task: learn the parameters of the GBN from the good traces

- 1. Convert the GBN to the MGD[HG95]
- 2. Update the precision matrix T of the MGD[Nea03]
- 3. Extract σ^2 s and b_{ij} s from **T**

Learning: Update step

- Iterative learning procedure
- Incrementally update mean μ and covariance matrix β of the prior
- Mean update:

$$\overline{\mathbf{x}} = \frac{\sum_{h=1}^{M} \mathbf{x}^{(h)}}{M}$$
$$\mu^* = \frac{v\mu + M\overline{\mathbf{x}}}{v + M}$$

Learning: Update step

- Iterative learning procedure
- Incrementally update mean μ and covariance matrix β of the prior
- Mean update:

$$\bar{\mathbf{x}} = \frac{\sum_{h=1}^{M} \mathbf{x}^{(h)}}{M}$$
$$\mu^* = \frac{v\mu + M\bar{\mathbf{x}}}{v + M}$$

Covariance matrix update:

$$\mathbf{s} = \sum_{h=1}^{M} \left(\mathbf{x}^{(h)} - \overline{\mathbf{x}} \right) \left(\mathbf{x}^{(h)} - \overline{\mathbf{x}} \right)^{T}$$
$$\beta^{*} = \beta + s + \frac{vM}{v + M} \left(\mathbf{x}^{(h)} - \overline{\mathbf{x}} \right) \left(\mathbf{x}^{(h)} - \overline{\mathbf{x}} \right)^{T}$$
$$(\mathbf{T}^{*})^{-1} \sim \beta^{*}$$

"Good trajectories":

- *.bag files (collection of messages that are broadcasted in ROS)
- extract coordinates in the 2-D space and angle
- find important points
- obtain samples in the form: l_1 , α_1 , l_2 , α_2 , l_3 , α_3 , l_4

:	:	:
1.204	-0.911	-1.221
1.207	-0.920	-1.221
1.209	-0.927	-1.221
1.211	-0.930	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.215
:	:	

"Good trajectories":

- *.bag files (collection of messages that are broadcasted in ROS)
- extract coordinates in the 2-D space and angle
- find important points
- obtain samples in the form:

:	:	:
1.204	-0.911	-1.221
1.207	-0.920	-1.221
1.209	-0.927	-1.221
1.211	-0.930	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.215
:	:	:

"Good trajectories":

- *.bag files (collection of messages that are broadcasted in ROS)
- extract coordinates in the 2-D space and angle
- find important points
- obtain samples in the form:

:	:	:
1.204	-0.911	-1.221
1.207	-0.920	-1.221
1.209	-0.927	-1.221
1.211	-0.930	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.215
:	:	:

"Good trajectories"

- *.bag files (collection of messages that are broadcasted in ROS)
- extract coordinates in the 2-D space and angle
- find important points
- obtain samples in the form: l_1 , α_1 , l_2 , α_2 , l_3 , α_3 , l_4

:	:	:
1.204	-0.911	-1.221
1.207	-0.920	-1.221
1.209	-0.927	-1.221
1.211	-0.930	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.221
1.211	-0.931	-1.215
:	:	:

Parking system architecture

Conclusion and Future Work

Recap:

- use of smooth *Probit* distribution in conditional and loop statements
- use of Gaussian Bayesian Network to capture dependencies between *Probit* distributions
- Case studies: robust parking controller and tap withdrawal simulation

Future work:

Apply these techniques to monitoring

References I

Learning bayesian networks: A unification for discrete and gaussian domains.

In UAI, pages 274-284, 1995.

📄 Richard E. Neapolitan.

Learning Bayesian Networks.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2003.

Learning Parameters in a Neural Program

Integration into ROS

- Rover Interface
- Sensor Fusion
- GBN and Engine

Denotational Semantics

```
E ::= x_i | c | bop(E_1, E_2) | uop(E_1)
S ::= skip | x_i := E | S_1; S_2 | nif(x_i \# c, \sigma^2) S_1 else S_2 |
nwhile(x_i \# c, \sigma^2) \{ S_1 \}
```


Denotational Semantics

$$\begin{aligned} & [\![\mathtt{skip}]\!](\mathtt{x}) = \mathtt{x} \\ & [\![\mathtt{x}_i := E \]\!](\mathtt{x}) = \mathtt{x} [\![E \]\!](\mathtt{x}) \mapsto \mathtt{x}_i] \\ & [\![S_1; S_2 \]\!](\mathtt{x}) = [\![S_2 \]\!]([\![S_1 \]\!](\mathtt{x})) \\ & [\![\mathtt{nif}(\mathtt{x}_i \# c, \sigma^2) \ S_1 \ \mathtt{else} \ S_2]\!](\mathtt{x}) = \\ & [\![\mathtt{check}(\mathtt{x}_i, a, \sigma^2, \#)]\!](\mathtt{x}) [\![S_1 \]\!](\mathtt{x}) + \\ & [\![\neg \mathtt{check}(\mathtt{x}_i, a, \sigma^2, \#)]\!](\mathtt{x}) [\![S_2 \]\!](\mathtt{x}) \\ & [\![\mathtt{nwhile}(\mathtt{x}_i \# c, \sigma^2) \{ \ S_1 \ \}\!](\mathtt{x}) = \\ & \mathtt{x} [\![\neg \mathtt{check}(\mathtt{x}_i, a, \sigma^2, \#)]\!](\mathtt{x}) [\![\mathtt{nwhile}(\mathtt{x}_i \# c, \sigma^2) \{ \ S_1 \ \}\!]([\![S_1 \]\!]\mathtt{x}) \end{aligned}$$

$$\underbrace{(l_1)}^{b_{21}}\underbrace{(\alpha_1)}^{b_{32}}\underbrace{(l_2)}^{b_{43}}\underbrace{(\alpha_2)}^{b_{54}}\underbrace{(l_3)}^{b_{65}}\underbrace{(\alpha_3)}^{b_{76}}\underbrace{(l_4)}$$

1. Define an ordering starting from initial node

$$t_1 = rac{1}{\sigma_1^2}$$
 $b_i = egin{pmatrix} b_{i1} \ dots \ b_{i,i-1} \end{pmatrix}$ $\mu = egin{pmatrix} \mu_1 \ dots \ \mu_n \end{pmatrix}$

1. Define an ordering starting from initial node

$$t_1 = rac{1}{\sigma_1^2}$$
 $egin{aligned} \mathbf{b}_i = egin{pmatrix} b_{i1} \ dots \ b_{i,i-1} \end{pmatrix}$ $\mu = egin{pmatrix} \mu_1 \ dots \ \mu_n \end{pmatrix}$

2. Use iterative algorithm from [Heckerman and Geiger, 1995]:

$$\mathbf{T}_1 = (t_1);$$
 $\mathbf{for}(i = 2; i \le n; i + +)$
 $\mathbf{T}_i = \begin{pmatrix} \mathbf{T}_{i-1} + t_i \mathbf{b}_i \mathbf{b}_i^T & -t_i \mathbf{b}_i \\ -t_i \mathbf{b}_i^T & t_i \end{pmatrix};$

 $T = T_n$;

$$\underbrace{\begin{pmatrix} l_1 \end{pmatrix}^{b_{21}} \begin{pmatrix} \alpha_1 \end{pmatrix}^{b_{32}} \begin{pmatrix} l_2 \end{pmatrix}^{b_{43}} \begin{pmatrix} \alpha_2 \end{pmatrix}^{b_{54}} \begin{pmatrix} l_3 \end{pmatrix}^{b_{65}} \begin{pmatrix} \alpha_3 \end{pmatrix}^{b_{76}} \begin{pmatrix} l_4 \end{pmatrix}}$$

• l_1, α_1 :

$$\mathbf{T}_1=(t_1)=\frac{1}{\sigma_1^2};$$

$$\mathbf{T}_2 = egin{pmatrix} rac{1}{\sigma_1^2} + rac{b_{21}^2}{\sigma_2^2} & -rac{b_{21}}{\sigma_2^2} \ -rac{b_{21}}{\sigma_2^2} & rac{1}{\sigma_2^2} \end{pmatrix}$$

$$\mathbf{b}_2 = \left(b_{21}\right)$$

$$\underbrace{\begin{pmatrix} l_1 \end{pmatrix}^{b_{21}} \begin{pmatrix} \alpha_1 \end{pmatrix}^{b_{32}} \begin{pmatrix} l_2 \end{pmatrix}^{b_{43}} \begin{pmatrix} \alpha_2 \end{pmatrix}^{b_{54}} \begin{pmatrix} l_3 \end{pmatrix}^{b_{65}} \begin{pmatrix} \alpha_3 \end{pmatrix}^{b_{76}} \begin{pmatrix} l_4 \end{pmatrix}}$$

b

$$\mathbf{T}_{3} = \begin{pmatrix} \frac{1}{\sigma_{1}^{2}} + \frac{b_{21}^{2}}{\sigma_{2}^{2}} & -\frac{b_{21}}{\sigma_{2}^{2}} & 0\\ -\frac{b_{21}}{\sigma_{2}^{2}} & \frac{1}{\sigma_{2}^{2}} + \frac{b_{32}^{2}}{\sigma_{3}^{2}} & -\frac{b_{32}}{\sigma_{3}^{2}}\\ 0 & -\frac{b_{32}}{\sigma_{3}^{2}} & \frac{1}{\sigma_{3}^{2}} \end{pmatrix} \qquad \mathbf{b}_{3} = \begin{pmatrix} 0\\ b_{21} \end{pmatrix}$$

$$\underbrace{(l_1)}^{b_{21}}\underbrace{(\alpha_1)}^{b_{32}}\underbrace{(l_2)}^{b_{43}}\underbrace{(\alpha_2)}^{b_{54}}\underbrace{(l_3)}^{b_{65}}\underbrace{(\alpha_3)}^{b_{76}}\underbrace{(l_4)}$$

$$\mathbf{T}_{4} = \begin{pmatrix} \frac{1}{\sigma_{1}^{2}} + \frac{b_{21}^{2}}{\sigma_{2}^{2}} & -\frac{b_{21}}{\sigma_{2}^{2}} & 0 & 0\\ -\frac{b_{21}}{\sigma_{2}^{2}} & \frac{1}{\sigma_{2}^{2}} + \frac{b_{32}^{2}}{\sigma_{3}^{2}} & -\frac{b_{32}}{\sigma_{3}^{2}} & 0\\ 0 & -\frac{b_{32}}{\sigma_{3}^{2}} & \frac{1}{\sigma_{3}^{2}} + \frac{b_{43}^{2}}{\sigma_{4}^{2}} & -\frac{b_{43}}{\sigma_{4}^{2}}\\ 0 & 0 & -\frac{b_{43}}{\sigma_{4}^{2}} & \frac{1}{\sigma_{4}^{2}} \end{pmatrix} \qquad \mathbf{b}_{4} = \begin{pmatrix} 0\\ 0\\ b_{43} \end{pmatrix}$$

$$\mathbf{b}_4 = egin{pmatrix} 0 \ 0 \ b_{43} \end{pmatrix}$$

I₃

$$\mathbf{T}_{5} = \begin{pmatrix} \frac{1}{\sigma_{1}^{2}} + \frac{b_{21}^{2}}{\sigma_{2}^{2}} & -\frac{b_{21}}{\sigma_{2}^{2}} & 0 & 0 & 0\\ -\frac{b_{21}}{\sigma_{2}^{2}} & \frac{1}{\sigma_{2}^{2}} + \frac{b_{32}^{2}}{\sigma_{3}^{2}} & -\frac{b_{32}}{\sigma_{3}^{2}} & 0 & 0\\ 0 & -\frac{b_{32}}{\sigma_{3}^{2}} & \frac{1}{\sigma_{3}^{2}} + \frac{b_{43}^{2}}{\sigma_{4}^{2}} & -\frac{b_{43}}{\sigma_{4}^{2}} & 0\\ 0 & 0 & -\frac{b_{43}}{\sigma_{4}^{2}} & \frac{1}{\sigma_{4}^{2}} + \frac{b_{54}^{2}}{\sigma_{5}^{2}} & -\frac{b_{54}}{\sigma_{5}^{2}}\\ 0 & 0 & 0 & -\frac{b_{54}}{\sigma_{4}^{2}} & \frac{1}{\sigma_{4}^{2}} \end{pmatrix} \mathbf{b}_{5} = \begin{pmatrix} 0\\ 0\\ 0\\ b_{54} \end{pmatrix}$$

We can generalize T for arbitrary number of moves