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Sarisfiability (SAT) related tepics have aracted researchers frem various disciplines. Loglc, Frontiers in Artificial Intelligence and Applications

appled areas such as planning, scheduling, operatiens research and combinatonal epomizatian,

but also theoredcal ssues en the theme of complexicy, and much mere, they all are conneceed

through SAT.

My personal interest in SAT sterms from acoual solving: The increase in power of modern AT H AN D BO O K

salvers over the past |5 years has been phenomenal |t bis become the key erabling technolegy .

in auremaeed verification of beth compurer hardware and sofoware, Bounded Model Checking - o le

(BMC) of computer hardware is now probably the mest widely used model checking technigue. f = f‘ b‘ I' f t f b I t

The counterexarnples that it finds are just satisfying instances of a Boolean farmula obtained by ﬂ Satls Ia I Ity . . . S a. I S I a I I y
unwinding to some fixed depth a sequential circuit and its specification in Enear temporal logic.

Ewtending model checking to software verification is 2 much more difficult problem on the frontier .
of current research. One promising approach for Binguages like © with finite word-length integers

is to use the same idea as in BMC but with a decision procedure for the theary of bit-vectors .
instead of SAT. All decision pracedures for bit-wectors that | am farmiliar with ulimately make use

of a fast 54T soher to handle complex formailas. . .

Decision procedures for more complicated theories, like linear real and moeper arichmetic, are Edimrs.
also used in program werification, Most of them use powerful 5AT solwers in an essential way :

Armin Biere

Clearly, efficient SAT sobeing & a key technology for 2|5t century computer science. | expect .
this callection of papers on all theoredcal and praciical aspects of SAT solvng will be exoremaly Hal‘ljl’l Heule
useful to bath soudencs and researchars and will lead o many furthar advances n the fleld, Hans van Maaren

Edmund Clarke Toby Walsh

Edmund M. Clovke, FORE Systems University Professor of Compurter Science and Projessor of Elecrrical
ond Computer Engimeering ot Cormegie Mellan University, 2 one af the initiators and main contributors
to the fedd of Mode! Crecking, for wivich e ofe recelved the 200 7 ACH Turing Aword,

In the late $0s Professor Clarke was one of the first researchers to realize that SAT salving bas the
potential to became one of the most important technologies in model checking.
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® Armin Biere
®

Marijn Heule
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Special thanks are due to Armin Biere. Randy Bryvant. Sam Buss. Niklas Eén.
lan Gent, Marijn Heule, Holger Hoos., Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz. Niklas Sorensson, Udo Wermuth, Ryvan Williams, and . .. for their detailed
comments on my early attempts at exposition. as well as to numerons other cor
respondents who have contributed crucial corrections. Thanks also to Stanford’s
Information Systems Laboratory for providing extra computer power when my
laptop machine was inadequate.

Wow  Section 7.2.2.2 has turned out to be the longest section, by far. in
The Art of Computer Programming. The SAT problem is evidently a “killer
app. because it is kev to the solution of so manyv other problems. Consequently
I can only hope that my lengthy treatment does not also kill off my faithful
readers!  As | wrote this material, one topic alwavs seemed to flow naturally
into another. so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn't allow for a Section
7.2.2.2.1.)
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What is Practical SAT Solving?

tutorial (1st part)

encoding

-

reencoding

Inprocessing

simplifying |-

this invited talk

~ search
tutorial (2nd part)




DP Procedure

[DavisPutnam’60]

forever

if F =T return satisfiable

if L € F return unsatisfiable
pick remaining variable x
add all resolvents on x

remove all clauses with x and —x

= Bounded Variable Elimination [EénBiere-SAT'05]



Bounded Variable Elimination
[EénBiere-SAT’05]

(|x|Va); ([x]vavb),
Replace (|1Xx|Vb)y ([x|Vd)s by
(J? \/6)3

® number of clauses not increasing
® strengthen and remove subsumbed clauses too

® most important and most effective preproessing we have

Bounded Variable Addition
[MantheyHeuleBiere-HVC’12]

(avd) (aVe)
Replace (bvd) (bVe)
(cvd) (cVe)

® number of clauses has to decrease strictly

® reencodes for instance naive at-most-one constraint encodings

tav-avbi4
tbv-avbiog

(cVavb)sy

(avd)ys
(bVd)as
(cVd)ss



Proofs / RES / RUP / DRUP

® resolution proofs (RES) are simple to check but large and hard(er) to produce directly

= original idea for clausal proofs and checking them:
= proof traces are sequences of “learned clauses” C

= first check clause through unit propagation | F =1 C | thenadd Cto F

= reverse unit implied clauses (RUP) [GoldbergNovikov'03] [VanGelder'12]

® deletion information:
= “deletion” proof lines tell checker to forget clause and decreases checking time substantially

= trace of added and deleted clauses (DRUP) [HeuleHuntWetzler-FMCAD13/STVR'14]
= RUP/RES tracks SAT Competion 2007, 2009, 2011, now DRUP/DRAT mandatory since 2013 to certify UNSAT

= big certified proofs:
= Pythagorean Triples [HeuleKullmannMarek-SAT'16] (200TB), Schur Number Five [Heule-AAAI'18] (2PB)

= Certification: Coq [CruzFilipeMarquesSilvaSchneiderKamp-TACAS'17/JAR’19], ACL2, Isabelle
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Blocked Clause Elimination and Plaisted-Greenbaum Encoding and Monotone Input Removal
[Kullman-DAM’99] [JarvisaloHeuleBiere-TACAS’10] [JarvisaloHeuleBiere-JAR'12] [PlaistedGreenbaum-JSC’86]

Definition. Clause C blocked on literal || € C w.r.t CNF F if )
for all resolution candidates D € F with ¢ € D the resolvent (C\/) v (D\/) is tautological.

Assume output true, thus single unit clause constraint (x)

([x]Vy) ([x]VZ)2 (XVyVz) (xVyVz) (XVyVz)
y . (Fva) VD) ([y|vavb); = (3va))s GVb) = (7Vb)
Vb) (zVe) ([z]VbVE)y (zVb) (zV[c])g (VD)

Plaisted-Greenbaum encoding drops upward propagating clauses of only positively occurring gates.
Plaisted-Greenbaum encoding drops downward propagating clauses of only negatively occurring gates.

Unconstrained or monotone inputs can be removed too.



Resolution Asymmetric Tautologies (RAT)
“Inprocessing Rules”  [JarvisaloHeuleBiere-lUCAR'12]

m justify complex preprocessing algorithms in Lingeling  [Biere-TR10]
= examples are adding blocked clauses or variable elimination

= interleaved with research (forgetting learned clauses = reduce)

® need more general notion of redundancy criteria
= extension of blocked clauses

= replace “resolvents on |/ | are tautological” by “resolvents on|/|are RUP”

example: (aV|1]) RATon/ w.rt. (aVb)AN(IVc)N(IVD)
D

= deletion information is again essential (DRAT)  [HeuleHuntWetzler-FMCAD13/STVR 14]
= now mandatory in the main track of the SAT competitions since 2013

= pretty powerful: can for instance also cover symmetry breaking



"Clause Elimination for SAT and QSAT"

by Marijn Heule, Matti Jarvisalo, Florian Lonsing, Martina Seidl and Armin Biere

has been selected as the winner of the

2019 IJCAI-JAIR Best Paper Prize

with the following citation:

This paper describes fundamental and practical results on a range of clause elimination procedures as preprocessing
and simplification techniques for SAT and QBF solvers. Since its publication, the techniques described therein have been
demonstrated to have profound impact on the efficiency of state-of-the-art SAT and QBF solvers.

The work is elegant and extends beautifully some well-established theoretical concepts. In addition, the paper gives new
emphasis and impulse to pre- and in-processing techniques - an emphasis that resonates beyond the two
key problems, SAT and QBF, covered by the authors.

The IJCAI-JAIR Best Paper Prize is awarded to an outstanding paper published in the
Journal of Artificial Intelligence Research in the preceding five calendar years.
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Set Blocked Clauses (SBC)
[KiesISeidlTompitsBiere-lJCAR’16] [KieslSeidl TompitsBiere-LMCS’18]

C issetblockedon LCC iff (C\L)ULUD is atautology for all D € F with a literal in L

® easy to check if the “witness” L is given
= NP hard to check otherwise (“exponential”in |L|)

= |ocal redundancy property Example:
= only considering the resolution environment of a clause
= in constrast to (R)AT / RUP C =|a|V|b| set blocked
= strictly more powerful than blocked clauses (|L| = 1) in F = (avb) A (aVDb)
by L={a,b}

® most general local redundancy property super blocked clauses
= strictly more powerful than blocked clauses

= II} complete to chec



Redundancy
“Short Proofs Without New Variables” [HeuleKiesIBiere-CADE’17]  best paper

Definition. A partial assignment a blocks a clause C if o assigns the literals in C to false (and no other literal).

Definition. A clause C is redundant w.r.t. a formula F if F and F U{C} are satisfiability equivalent.

Definition. A formula F simplified by a partial assignment a is written as F | g.

Theorem.
Let F' be a formula, C a clause, and o the assignment blocked by C.

Then Cisredundant w.r.t. F iff exists an assignment w such that
(i) o satisfiesC and (ii) Flo E Flo.



Propagation Redundant (PR)
[HeuleKiesIBiere-CADE’17] [HeuleKiesIBiere-JAR19]

® more general than RAT: short proofs for pigeon hole formulas without new variables

C propagation redundant (PR) if exists assignment w satisfying C with  F|o i Flw

SO in essence replacing “=" by “r-;” (implied by unit propagation) where again o is the clause that blocks C

m Satisfaction Driven Clause Learning (SDCL) [HeuleKieslSeidIBiere-HVC'17]  best paper
= first automatically generated PR proofs

= prune assignments for which we have other at least as satisfiable assignments

= (filtered) positive reduct in SaDiCal [HeuleKiesIBiere-TACAS'19]  nominated best paper

m translate PR to DRAT  [HeuleBiere-TACAS'18]
= only one additional variable needed

= shortest proofs for pigeon hole formulas
® translate DRAT to extended resolution [KiesIRebolaPardoHeule-lJCAR18]  best paper

® recent seperation results in  [BussThapen-SAT'19]



Mutilated Chessboard

CDCL

SDCL




Landscape of Clausal Redundancy [HeuleKies|Biere-JAR'19]

FloEFlo FlakE= L

R § L IMP
FlaFi Flo Fl(xl_lF’(ngC F|OC|_1F’061
| PR | SPR - LPR
FloF1 L
RAT | RUP
F|OC'_OF’OCZ F|0(|—0J_
| RS § B
Flo 2 Floy Flo 2 Floy
satisfiability SBC " BC logical

equivalence | equivalence
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CDCL (formula F)

o:=0
forever do
o := UnitPropagate(F,o.)
iIf o falsifies a clause in F then
C := AnalyzeConflict()
F.=FNC
if Cisthe empty clause L then return UNSAT
o := Backdump(C, )

else
if all variables are assigned then return SAT
[ = Decide()
o :=oU{l}
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SDCL (formula F)

o:=0
forever do
o := UnitPropagate(F, o)
if a falsifies a clause in F' then
C := AnalyzeConflict()
F=FNC
if Cisthe empty clause L then return UNSAT
o := Backdump(C, )
else if the pruning predicate Py (F) is satisfiable then
C := AnalyzeWitness()

=FANC
o := BackJump(C, )
else
if all variables are assigned then return SAT
[ = Decide()

o :=oU{l}



Positive and Filtered Positive Reduct [HeuleKiesISeidIBiere-HVC’17] [HeuleKiesIBiere-TACAS’19]

In the positive reduct consider all clauses satisfied by o but remove unassigned literals and add C:

Definition. Let F be a formula and a an assignment. Then, the positive reduct of F and « is the formula GAC
where C is the clause that blocks o and G = {touched (D) | D€ F and D | = T }.

Theorem. Let F be a formula, oo an assignment, and C the clause that blocks o.
Then, Cis |SBC|by an L C C with respect to F if and only if the assignment o, satisfies the positive reduct.

We obtain the filtered positive reduct by not taking all satisfied clauses of F but only those for which the untouched
part is not implied by F | via unit propagation:

Definition. Let F be a formula and o an assignment. Then, the filtered positive reduct of F and « is the formula
G A C where C is the clause that blocks o and G = {touched (D) | D € F and F | I/ untouchedq(D)}.

Theorem. Let F be a formula, o an assignment, and C the clause that blocks a.
Then, Cis|SPR|by an L C C with respect to F if and only if the assignment «; satisfies the filtered positive reduct.
where SPR extends SBC in the same way by propagation as RAT extends BC




Experiments

[HeuleKiesIBiere-TACAS’19]

formula MapleChrono | [HVC'17] plain CDCL | positive | filtered ACL2
Urquhart-s3-b1 2.95 5.86 16.31 > 3600 0.02 0.09
Urquhart-s3-b2 1.36 2.4 2.82 | >3600 0.03 0.13
Urquhart-s3-b3 2.28 19.94 2.08 > 3600 0.03 0.16
Urquhart-s3-b4 10.74 32.42 7.65 | > 3600 0.03 0.17
Urquhart-s4-b1 86.11 583.96 > 3600 | > 3600 0.32 2.37
Urquhart-s4-b2 154.35 | 1824.95 183.77 | > 3600 0.11 0.78
Urquhart-s4-b3 258.46 | > 3600 129.27 | > 3600 0.16 1.12
Urquhart-s4-b4 > 3600 > 3600 > 3600 > 3600 0.14 1.17
Urquhart-s5-b1 > 3600 > 3600 > 3600 > 3600 1.27 9.86
Urquhart-s5-b2 > 3600 | > 3600 > 3600 | > 3600 0.58 4.38
Urquhart-s5-b3 > 3600 | > 3600 > 3600 | > 3600 1.67 17.99
Urquhart-s5-b4 > 3600 > 3600 > 3600 > 3600 291 24.24
hole20 > 3600 1.13 > 3600 0.22 0.55 6.78
hole30 > 3600 8.81 > 3600 1.71 4.30 87.58
hole40 > 3600 43.10 > 3600 7.94 20.38 611.24
hole50 > 3600 149.67 > 3600 25.60 68.46 2792.39
mchess_15 51.53 | 1473.11 2480.67 | > 3600 13.14 29.12
mchess 16 380.45 | > 3600 2115.75 | > 3600 15.52 36.86
mchess 17 2418.35 | > 3600 >3600 | >3600 | 25.54 57.83
mchess 18 > 3600 | > 3600 >3600 | >3600 | 43.88 100.71




Simulating Headlines FAN Algorithm from ATPG [Fujiwara-ISCAS’85]

Formula

F'(1,S,T,x,y,z) = H'(J,x,y,2,T) NG (K,S,x) with
CNF H(UxyaT) = GVYAEV)AEVIVE AH"(J,y,2,T)

Tseitin encoding ortop AND gate in H

headline

assume oy(H(J)) =0op(x) =0

assume o(H(J))=o01(x)=1

Drop H?




Autarkies and Conditional Autarkies
[MonienSpeckenmeyer-DAM’85] [HeuleKiesl|SeidIBiere-HVC'17]

Definition. Assignment a is an autarky for F if a satisfies all C € F with var(o) Nvar(C) # 0.

In other words, an autarky satisfies every clause it touches.

Example. Let F = (aVbVe)A(bVevd)A(aVvd) and o= be.
Then, a touches only the first two clauses. Since it satisfies them, it is an autarky for F.

Definition. Assignment oo =y U is a conditional autarky for F with conditional part y and autarky part f3 if
B satisfies all C € F|y with var(o) Nvar(C) # 0.

Thus a conditional autarky satisfies every clause its autarky part touches after applying the conditional part.

Example. Let F = (aVbVc)A(avbVvd)A(@vbve)A(avd)and a=yUB=abc, y=a, p=bc.
Then, 3 touches the first three clauses, a satisfies them, thus o is a conditional autarky for F
with conditional part y and autarky part .



Globally Blocked Clauses

contribution of the paper in the proceedings

Definition. A clause C is globally blocked by a set |L| of literals in a formula F if LnC # 0 and
for all D € F with a literal in L but no literal from L, the clause (D\ L)V C is a tautology.

Example. LetF = (avbVe)A(@vbVd)A(@VvbVe)A(avd)
then the clauses (a — ) and (a — c¢) are both globally blocked for L = {b,c}.

Theorem. Let F be aformula, let C be a clause, let L be a set of literals such that LNC # 0,
Define the assignments y=C\ L and B = L. Then, C is globally blocked by L in F iff y U is a conditional autarky.

Thus globally blocked clauses can be found by “computing” conditional autarkies!



Algorithms

LeastConditionalPart(assignment o, formula F)

Oc:=0
for C € F do
If o touches C without satisfying C then
Oc := 0cU (N C)
return o

IsGloballyBlocked(clause C, formula F, assignment a)

Ol :=
o ;=0 U (0cNC)

if (o/ = o) then return o, NC # 0
return IsGloballyBlocked(C, F, o)

LeastConditionalPart(a, F), 0 := o\ O

10.

11.
12.
13.
14.
15.

16.
17.

18.

19.

20.
21.
22.

23.

. Split the assignment into a conditional part o and an autarky part a, (one initial call to LeastConditionalPart).

Mark the resulting literals of a. and save them on a conditional stack, gather candidate clauses (those with a literal that is
true but not yet in the conditional part) and watch a true literal in all clauses with a true literal.

. For each candidate clause C":

. If C contains no literal from a,, continue with next clause (goto 2).

. Watch one literal [, of a, in C' and mark all literals in C' to be part of C'. Actually have a variable pointing to the literal [,.
. For each unprocessed literal I. on the conditional stack:

. If I, € C (cheap check since literals in C' are marked) continue (goto 5).

. Unassign I € C and push it on an unassigned stack.

. For each unassigned literal v on the unassigned stack not processed yet:

. For each clause D watched by u (through watches initialized in step 1):

Search for a replacement literal » € D which satisfies D. If such r is found, stop watching D with u, watch it with r instead,
and continue with next clause D watched by u (goto 9).

Otherwise no replacement is found.

If there is no literal k € o, with k € D, continue with next clause D watched by u (goto 9).

For each literal k € a, with k € D:

Put £ into the conditional part a. by using another mark bit and push it onto the conditional stack.

If k is different from the watched literal I, € C' (see step 4), continue with the next unassigned and unprocessed literal v on
the unassigned stack.

Otherwise, search for a replacement of I, in C.

If no replacement is found, C' is not a globally-blocked clause; continue with next candidate clause
(goto 2 — thus jump out of four loops) .

If there are no unprocessed literals, neither on the conditional nor on the unassigned stack, and we still watch a literal of «,
in the candidate clause C, then we now reached a fix-point and C is globally blocked.

Eliminate C' and put the autarky part as witness (found by traversing the assignment trail) and C on the extension stack for
witness reconstruction.

Pop literals from unassigned stack and reassign them to their original value.
Pop literals from conditional stack pushed after initialization in step 1 and unmark their conditional bit.

Now we are back to the initial assignment after step 1, with the initial literals of the conditional part a. marked as such and
the literals of a, unmarked.

Unmark literals marked in step 4 and continue with next clause (goto 2).

https://github.com/arminbiere/cadical/blob/master/src/condition.cpp
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