
Truth Assignments as Conditional Autarkies

Armin Biere

joint work with

Benjamin Kiesl (CISPA, Saarbrücken)
Marijn Heule (CMU, Pittsburgh)

17th International Symposium on
Automated Technology for Verification and Analysis

ATVA’2019
Academia Sinica, Taipei, Taiwan

October 30, 2019

What is Practical SAT Solving?

simplifying

encoding

inprocessing

search

reencoding

this invited talk

tutorial (1st part)

tutorial (2nd part)

DP Procedure
[DavisPutnam’60]

forever

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and ¬x

⇒ Bounded Variable Elimination [EénBiere-SAT’05]

Bounded Variable Elimination
[EénBiere-SAT’05]

Replace
(x̄ ∨a)1 (x ∨ ā∨ b̄)4
(x̄ ∨b)2 (x ∨d)5
(x̄ ∨ c)3

by
(a∨ ā∨ b̄)14 (a∨d)15
(b∨ ā∨ b̄)24 (b∨d)25
(c∨ ā∨ b̄)34 (c∨d)45

number of clauses not increasing

strengthen and remove subsumbed clauses too

most important and most effective preproessing we have

Bounded Variable Addition
[MantheyHeuleBiere-HVC’12]

Replace
(a∨d) (a∨ e)
(b∨d) (b∨ e)
(c∨d) (c∨ e)

by (x̄∨a) (x̄∨b) (x̄∨ c)
(x∨d) (x∨ e)

number of clauses has to decrease strictly

reencodes for instance naive at-most-one constraint encodings

Proofs / RES / RUP / DRUP

resolution proofs (RES) are simple to check but large and hard(er) to produce directly

original idea for clausal proofs and checking them:

proof traces are sequences of “learned clauses” C

first check clause through unit propagation F `1 C then add C to F

reverse unit implied clauses (RUP) [GoldbergNovikov’03] [VanGelder’12]

deletion information:

“deletion” proof lines tell checker to forget clause and decreases checking time substantially

trace of added and deleted clauses (DRUP) [HeuleHuntWetzler-FMCAD’13 / STVR’14]

RUP/RES tracks SAT Competion 2007, 2009, 2011, now DRUP/DRAT mandatory since 2013 to certify UNSAT

big certified proofs:

Pythagorean Triples [HeuleKullmannMarek-SAT’16] (200TB), Schur Number Five [Heule-AAAI’18] (2PB)

Certification: Coq [CruzFilipeMarquesSilvaSchneiderKamp-TACAS’17 / JAR’19], ACL2, Isabelle

CNF trace extended trace resolution trace RUP DRUP

p cnf 3 8
-1 -2 -3 0 1 -2 -3 -1 0 0 1 -2 -3 -1 0 0 1 -1 -3 -2 0 0
-1 -2 3 0 2 -2 3 -1 0 0 2 -2 3 -1 0 0 2 -1 3 -2 0 0
-1 2 -3 0 3 2 -3 -1 0 0 3 2 -3 -1 0 0 3 2 -1 -3 0 0
-1 2 3 0 4 2 3 -1 0 0 4 2 3 -1 0 0 4 2 -1 3 0 0
1 -2 -3 0 5 1 -3 -2 0 0 5 1 -3 -2 0 0 5 -2 -3 1 0 0
1 -2 3 0 6 1 3 -2 0 0 6 1 3 -2 0 0 6 -2 3 1 0 0
1 2 -3 0 7 1 -3 2 0 0 7 1 -3 2 0 0 7 1 -3 2 0 0
1 2 3 0 8 1 3 2 0 0 8 1 3 2 0 0 8 1 3 2 0 0

9 * 7 8 0 9 1 2 0 7 8 0 9 1 2 0 7 8 0 -2 -3 0 -2 -3 0
10 * 9 5 6 0 10 1 0 9 5 6 0 10 -2 1 0 5 6 0 -3 0 d 1 -2 -3 0
11 * 1 10 2 0 11 -2 0 1 10 2 0 11 1 0 10 9 0 2 0 d -1 -2 -3 0
12 * 10 11 4 0 12 3 0 10 11 4 0 12 -1 -2 0 1 2 0 -1 0 -2 3 0
13 * 10 11 3 12 0 13 0 10 11 3 12 0 13 -2 0 12 11 0 0 d 1 -2 3 0

14 2 3 0 11 4 0 d -1 -2 3 0
15 3 0 14 13 0 2 -3 0
16 2 -3 0 11 3 0 d 1 2 -3 0
17 -3 0 16 13 0 d -1 2 -3 0
18 0 17 15 0 2 3 0

d 1 2 3 0
d -1 2 3 0
-2 0
0

picosat -t picosat -T tracecheck -B cadical cadical -P1

Blocked Clause Elimination and Plaisted-Greenbaum Encoding and Monotone Input Removal
[Kullman-DAM’99] [JärvisaloHeuleBiere-TACAS’10] [JärvisaloHeuleBiere-JAR’12] [PlaistedGreenbaum-JSC’86]

Definition. Clause C blocked on literal ` ∈C w.r.t CNF F if
for all resolution candidates D ∈ F with ¯̀∈ D the resolvent (C\`)∨ (D\ ¯̀) is tautological.

Assume output true, thus single unit clause constraint (x)

a

b

c

x

y z

(x)

(x ∨ ȳ)1 (x ∨ z̄)2 (x̄∨ y∨ z)

(ȳ∨a) (ȳ∨b) (y ∨ ā∨ b̄)3

(z̄∨ b̄) (z̄∨ c) (z ∨b∨ c̄)4

⇒

(x)

(x̄∨ y∨ z)

(ȳ∨ a)5 (ȳ∨b)

(z̄∨ b̄) (z̄∨ c)6

⇒

(x)

(x̄∨ y∨ z)

(ȳ∨b)

(z̄∨ b̄)

Plaisted-Greenbaum encoding drops upward propagating clauses of only positively occurring gates.
Plaisted-Greenbaum encoding drops downward propagating clauses of only negatively occurring gates.

Unconstrained or monotone inputs can be removed too.

Resolution Asymmetric Tautologies (RAT)
“Inprocessing Rules” [JärvisaloHeuleBiere-IJCAR’12]

justify complex preprocessing algorithms in Lingeling [Biere-TR’10]

examples are adding blocked clauses or variable elimination

interleaved with research (forgetting learned clauses = reduce)

need more general notion of redundancy criteria

extension of blocked clauses

replace “resolvents on l are tautological” by “resolvents on l are RUP”

example: (a∨ l) RAT on l w.r.t. (a∨b)∧ (l∨ c)∧ (l̄∨b)︸ ︷︷ ︸
D

deletion information is again essential (DRAT) [HeuleHuntWetzler-FMCAD’13 / STVR’14]

now mandatory in the main track of the SAT competitions since 2013

pretty powerful: can for instance also cover symmetry breaking

Structural Reasoning Methods for
Satisfiability Solving and Beyond

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Benjamin Kiesl, BSc
Registration Number 1127227

to the Faculty of Informatics

at the TU Wien

Advisors: Assoc.-Univ.Prof. Dr. Martina Seidl
a.o. Univ.-Prof. Dr. Hans Tompits

The dissertation has been reviewed by:

Olaf Beyersdorff Christoph Weidenbach

Vienna, 20th February, 2019
Benjamin Kiesl

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Set Blocked Clauses (SBC)
[KieslSeidlTompitsBiere-IJCAR’16] [KieslSeidlTompitsBiere-LMCS’18]

C is set blocked on L⊆C iff (C\L)∪ L̄∪D is a tautology for all D ∈ F with a literal in L̄

Example:

C = a ∨ b set blocked

in F = (ā∨b) ∧ (a∨ b̄)

by L = {a,b}

easy to check if the “witness” L is given

NP hard to check otherwise (“exponential” in |L|)

local redundancy property

only considering the resolution environment of a clause

in constrast to (R)AT / RUP

strictly more powerful than blocked clauses (|L| = 1)

most general local redundancy property super blocked clauses

strictly more powerful than blocked clauses

ΠP
2 complete to chec

Redundancy
“Short Proofs Without New Variables” [HeuleKieslBiere-CADE’17] best paper

Definition. A partial assignment α blocks a clause C if α assigns the literals in C to false (and no other literal).

Definition. A clause C is redundant w.r.t. a formula F if F and F ∪{C} are satisfiability equivalent.

Definition. A formula F simplified by a partial assignment α is written as F |α.

Theorem.

Let F be a formula, C a clause, and α the assignment blocked by C.

Then C is redundant w.r.t. F iff exists an assignment ω such that

(i) ω satisfies C and (ii) F |α |= F |ω.

Propagation Redundant (PR)
[HeuleKieslBiere-CADE’17] [HeuleKieslBiere-JAR’19]

more general than RAT: short proofs for pigeon hole formulas without new variables

C propagation redundant (PR) if exists assignment ω satisfying C with F |α `1 F |ω

so in essence replacing “|=” by “`1” (implied by unit propagation) where again α is the clause that blocks C

Satisfaction Driven Clause Learning (SDCL) [HeuleKieslSeidlBiere-HVC’17] best paper

first automatically generated PR proofs

prune assignments for which we have other at least as satisfiable assignments

(filtered) positive reduct in SaDiCaL [HeuleKieslBiere-TACAS’19] nominated best paper

translate PR to DRAT [HeuleBiere-TACAS’18]

only one additional variable needed

shortest proofs for pigeon hole formulas

translate DRAT to extended resolution [KieslRebolaPardoHeule-IJCAR’18] best paper

recent seperation results in [BussThapen-SAT’19]

Mutilated Chessboard [HeuleKieslBiere-NFM’19]

CDCL

SDCL

Landscape of Clausal Redundancy [HeuleKieslBiere-JAR’19]

R

PR SPR LPR

RAT

RS

BCSBC

RUP

IMP

S

F |α `0 ⊥

F |α `1 ⊥

F |α ⊇ F |αL

F |α `1 F |αL⊆C F |α `1 F |αl

F |α `0 F |αl

F |α ⊇ F |αl

F |α |= F |ω F |α |=⊥

F |α `1 F |ω

satisfiability
equivalence

logical
equivalence

CDCL(formula F)

1 α := /0

2 forever do
3 α := UnitPropagate(F,α)
4 if α falsifies a clause in F then
5 C := AnalyzeConflict()
6 F := F ∧C
7 if C is the empty clause ⊥ then return UNSAT
8 α := BackJump(C,α)

13 else
14 if all variables are assigned then return SAT
15 l := Decide()
16 α := α∪{l}

SDCL(formula F)

1 α := /0

2 forever do
3 α := UnitPropagate(F,α)
4 if α falsifies a clause in F then
5 C := AnalyzeConflict()
6 F := F ∧C
7 if C is the empty clause ⊥ then return UNSAT
8 α := BackJump(C,α)
9 else if the pruning predicate Pα(F) is satisfiable then

10 C := AnalyzeWitness()
11 F := F ∧C
12 α := BackJump(C,α)
13 else
14 if all variables are assigned then return SAT
15 l := Decide()
16 α := α∪{l}

Positive and Filtered Positive Reduct [HeuleKieslSeidlBiere-HVC’17] [HeuleKieslBiere-TACAS’19]

In the positive reduct consider all clauses satisfied by α but remove unassigned literals and add C:

Definition. Let F be a formula and α an assignment. Then, the positive reduct of F and α is the formula G∧C
where C is the clause that blocks α and G = {touchedα(D) | D ∈ F and D |α =>}.

Theorem. Let F be a formula, α an assignment, and C the clause that blocks α.
Then, C is SBC by an L⊆C with respect to F if and only if the assignment αL satisfies the positive reduct.

We obtain the filtered positive reduct by not taking all satisfied clauses of F but only those for which the untouched
part is not implied by F |α via unit propagation:

Definition. Let F be a formula and α an assignment. Then, the filtered positive reduct of F and α is the formula
G∧C where C is the clause that blocks α and G = {touchedα(D) | D ∈ F and F |α 6`1 untouchedα(D)}.

Theorem. Let F be a formula, α an assignment, and C the clause that blocks α.
Then, C is SPR by an L⊆C with respect to F if and only if the assignment αL satisfies the filtered positive reduct.

where SPR extends SBC in the same way by propagation as RAT extends BC

Experiments [HeuleKieslBiere-TACAS’19]

formula MapleChrono [HVC’17] plain CDCL positive filtered ACL2
Urquhart-s3-b1 2.95 5.86 16.31 > 3600 0.02 0.09
Urquhart-s3-b2 1.36 2.4 2.82 > 3600 0.03 0.13
Urquhart-s3-b3 2.28 19.94 2.08 > 3600 0.03 0.16
Urquhart-s3-b4 10.74 32.42 7.65 > 3600 0.03 0.17
Urquhart-s4-b1 86.11 583.96 > 3600 > 3600 0.32 2.37
Urquhart-s4-b2 154.35 1824.95 183.77 > 3600 0.11 0.78
Urquhart-s4-b3 258.46 > 3600 129.27 > 3600 0.16 1.12
Urquhart-s4-b4 > 3600 > 3600 > 3600 > 3600 0.14 1.17
Urquhart-s5-b1 > 3600 > 3600 > 3600 > 3600 1.27 9.86
Urquhart-s5-b2 > 3600 > 3600 > 3600 > 3600 0.58 4.38
Urquhart-s5-b3 > 3600 > 3600 > 3600 > 3600 1.67 17.99
Urquhart-s5-b4 > 3600 > 3600 > 3600 > 3600 2.91 24.24
hole20 > 3600 1.13 > 3600 0.22 0.55 6.78
hole30 > 3600 8.81 > 3600 1.71 4.30 87.58
hole40 > 3600 43.10 > 3600 7.94 20.38 611.24
hole50 > 3600 149.67 > 3600 25.60 68.46 2792.39
mchess 15 51.53 1473.11 2480.67 > 3600 13.14 29.12
mchess 16 380.45 > 3600 2115.75 > 3600 15.52 36.86
mchess 17 2418.35 > 3600 > 3600 > 3600 25.54 57.83
mchess 18 > 3600 > 3600 > 3600 > 3600 43.88 100.71

Simulating Headlines FAN Algorithm from ATPG [Fujiwara-ISCAS’85]

CNF
F ′(I,S,T,x,y,z) = H ′(J,x,y,z,T)∧G′(K,S,x) with

H ′(J,x,y,z,T) = (x∨ y)∧ (x∨ z)∧ (x∨ y∨ z)︸ ︷︷ ︸
Tseitin encoding of top AND gate in H

∧H ′′(J,y,z,T)

Formula F(I) = G(H(J),K) = ∃x.(x = H(J))∧G(x,K)

...J... ...K...

headline x

zy

H G

F

assume σ0(H(J)) = σ0(x) = 0

assume σ1(H(J)) = σ1(x) = 1

Drop H?

Autarkies and Conditional Autarkies
[MonienSpeckenmeyer-DAM’85] [HeuleKieslSeidlBiere-HVC’17]

Definition. Assignment α is an autarky for F if α satisfies all C ∈ F with var(α)∩ var(C) 6= /0.

In other words, an autarky satisfies every clause it touches.

Example. Let F = (a∨b∨ c)∧ (b∨ c∨d)∧ (a∨d) and α = bc.
Then, α touches only the first two clauses. Since it satisfies them, it is an autarky for F .

Definition. Assignment α = γ ∪β is a conditional autarky for F with conditional part γ and autarky part β if
β satisfies all C ∈ F |γ with var(α)∩ var(C) 6= /0.

Thus a conditional autarky satisfies every clause its autarky part touches after applying the conditional part.

Example. Let F = (a∨b∨ c)∧ (a∨b∨d)∧ (a∨b∨ c)∧ (a∨d) and α = γ ∪β = abc, γ = a, β = bc.
Then, β touches the first three clauses, α satisfies them, thus α is a conditional autarky for F
with conditional part γ and autarky part β.

Globally Blocked Clauses
contribution of the paper in the proceedings

Definition. A clause C is globally blocked by a set L of literals in a formula F if L∩C 6= /0 and
for all D ∈ F with a literal in L but no literal from L, the clause (D\L)∨C is a tautology.

Example. Let F = (a∨b∨ c)∧ (a∨b∨d)∧ (a∨b∨ c)∧ (a∨d)
then the clauses (a→ b) and (a→ c) are both globally blocked for L = {b,c}.

Theorem. Let F be a formula, let C be a clause, let L be a set of literals such that L∩C 6= /0,
Define the assignments γ =C \L and β = L. Then, C is globally blocked by L in F iff γ ∪β is a conditional autarky.

Thus globally blocked clauses can be found by “computing” conditional autarkies!

Algorithms

LeastConditionalPart(assignment α, formula F)
1 αc := /0

2 for C ∈ F do
3 if α touches C without satisfying C then
4 αc := αc∪ (α∩C)

5 return αc

IsGloballyBlocked(clause C, formula F , assignment α)

6 αc := LeastConditionalPart(α,F), αa := α\αc

7 α′ := αa ∪ (αc∩C)

8 if (α′ = α) then return αa∩C 6= /0

9 return IsGloballyBlocked(C,F,α′)

1. Split the assignment into a conditional part αc and an autarky part αa (one initial call to LeastConditionalPart).
Mark the resulting literals of αc and save them on a conditional stack, gather candidate clauses (those with a literal that is
true but not yet in the conditional part) and watch a true literal in all clauses with a true literal.

2. For each candidate clause C:

3. If C contains no literal from αa, continue with next clause (goto 2).

4. Watch one literal la of αa in C and mark all literals in C to be part of C. Actually have a variable pointing to the literal la.

5. For each unprocessed literal lc on the conditional stack:

6. If lc ∈ C (cheap check since literals in C are marked) continue (goto 5).

7. Unassign lc ∈ C and push it on an unassigned stack.

8. For each unassigned literal u on the unassigned stack not processed yet:

9. For each clause D watched by u (through watches initialized in step 1):

10. Search for a replacement literal r ∈ D which satisfies D. If such r is found, stop watching D with u, watch it with r instead,
and continue with next clause D watched by u (goto 9).

11. Otherwise no replacement is found.

12. If there is no literal k ∈ αa with k ∈ D, continue with next clause D watched by u (goto 9).

13. For each literal k ∈ αa with k ∈ D:

14. Put k into the conditional part αc by using another mark bit and push it onto the conditional stack.

15. If k is different from the watched literal la ∈ C (see step 4), continue with the next unassigned and unprocessed literal u on
the unassigned stack.

16. Otherwise, search for a replacement of la in C.

17. If no replacement is found, C is not a globally-blocked clause; continue with next candidate clause

(goto 2 – thus jump out of four loops) .

18. If there are no unprocessed literals, neither on the conditional nor on the unassigned stack, and we still watch a literal of αa

in the candidate clause C, then we now reached a fix-point and C is globally blocked.

19. Eliminate C and put the autarky part as witness (found by traversing the assignment trail) and C on the extension stack for
witness reconstruction.

20. Pop literals from unassigned stack and reassign them to their original value.

21. Pop literals from conditional stack pushed after initialization in step 1 and unmark their conditional bit.

22. Now we are back to the initial assignment after step 1, with the initial literals of the conditional part αc marked as such and
the literals of αa unmarked.

23. Unmark literals marked in step 4 and continue with next clause (goto 2).

https://github.com/arminbiere/cadical/blob/master/src/condition.cpp

Personal SAT Solver History

19801960 2000 20101970

DPL

DP

CDCL

LBD

Phase

Tseitin
Encoding

BMC

SAT
NP complete

Solvers
Arithmetic

WalkSAT

GSAT

Handbook of SAT

ProbSAT

Saving

Avatar

Inprocessing

Cube & Conquer

VSIDS

SMT

Bounded
Variable

Elimination

competition

Look Ahead

SAT for
Planing

1st SAT

1990

Portfolio QBF
working

Massively
Parallel

Donald Knuth
SAT Chapter

everywhere
SAT

Proofs

*

