Dress Code Tutorial Speaker as SAT Problem

- propositional logic:
 - variables
 - negation \(\neg \) (not)
 - disjunction \(\lor \) (or)
 - conjunction \(\land \) (and)

- clauses (conditions / constraints)
 1. clearly one should not wear a tie without a shirt
 \[\neg \text{tie} \lor \text{shirt} \]
 2. not wearing a tie nor a shirt is impolite
 \[\text{tie} \lor \text{shirt} \]
 3. wearing a tie and a shirt is overkill
 \[\neg (\text{tie} \land \text{shirt}) \equiv \neg \text{tie} \lor \neg \text{shirt} \]

- Is this formula in conjunctive normal form (CNF) satisfiable?

\[
(\neg \text{tie} \lor \text{shirt}) \land (\text{tie} \lor \text{shirt}) \land (\neg \text{tie} \lor \neg \text{shirt})
\]
What is Practical SAT Solving?

1st part

encoding

reencoding

simplifying

inprocessing

invited talk

search

2nd part
How to check that these two versions are equivalent?
Compilation

\[
\text{original} \equiv \text{if } \neg a \land \neg b \text{ then } h \text{ else if } \neg a \text{ then } g \text{ else } f
\]
\[
\equiv (\neg a \land \neg b) \land h \lor \neg(\neg a \land \neg b) \land \text{if } \neg a \text{ then } g \text{ else } f
\]
\[
\equiv (\neg a \land \neg b) \land h \lor \neg(\neg a \land \neg b) \land (\neg a \land g \lor a \land f)
\]

\[
\text{optimized} \equiv \text{if } a \text{ then } f \text{ else if } b \text{ then } g \text{ else } h
\]
\[
\equiv a \land f \lor \neg a \land \text{if } b \text{ then } g \text{ else } h
\]
\[
\equiv a \land f \lor \neg a \land (b \land g \lor \neg b \land h)
\]

\[
(\neg a \land \neg b) \land h \lor \neg(\neg a \land \neg b) \land (\neg a \land g \lor a \land f) \not\equiv a \land f \lor \neg a \land (b \land g \lor \neg b \land h)
\]

satisfying assignment gives counter-example to equivalence
Tseitin Transformation: Circuit to CNF

\[o \land (x \leftrightarrow a \land c) \land (y \leftrightarrow b \lor x) \land (u \leftrightarrow a \lor b) \land (v \leftrightarrow b \lor c) \land (w \leftrightarrow u \land v) \land (o \leftrightarrow y \oplus w) \]

\[o \land (x \to a) \land (x \to c) \land (x \leftarrow a \land c) \land \ldots \]

\[o \land (\overline{x} \lor a) \land (\overline{x} \lor c) \land (x \lor \overline{a} \lor \overline{c}) \land \ldots \]
Tseitin Transformation: Gate Constraints

Negation: \(x \leftrightarrow y \leftrightarrow (x \rightarrow y) \land (y \rightarrow x) \)
\(\leftrightarrow (\overline{x} \lor y) \land (y \lor x) \)

Disjunction: \(x \leftrightarrow (y \lor z) \leftrightarrow (y \rightarrow x) \land (z \rightarrow x) \land (x \rightarrow (y \lor z)) \)
\(\leftrightarrow (\overline{y} \lor x) \land (\overline{z} \lor x) \land (\overline{x} \lor y \lor z) \)

Conjunction: \(x \leftrightarrow (y \land z) \leftrightarrow (x \rightarrow y) \land (x \rightarrow z) \land ((y \land z) \rightarrow x) \)
\(\leftrightarrow (\overline{x} \lor y) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z} \lor x) \)

Equivalence: \(x \leftrightarrow (y \leftrightarrow z) \leftrightarrow (x \rightarrow (y \leftrightarrow z)) \land ((y \leftrightarrow z) \rightarrow x) \)
\(\leftrightarrow (x \rightarrow ((y \rightarrow z) \land (z \rightarrow y))) \land ((y \leftrightarrow z) \rightarrow x) \)
\(\leftrightarrow (x \rightarrow (y \rightarrow z)) \land (x \rightarrow (z \rightarrow y)) \land ((y \leftrightarrow z) \rightarrow x) \)
\(\leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land ((y \land z) \rightarrow x) \)
\(\leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land ((y \land z) \rightarrow x) \land ((\overline{y} \land \overline{z}) \rightarrow x) \)
\(\leftrightarrow (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (\overline{y} \lor \overline{z} \lor x) \land (y \lor z \lor x) \)
Bit-Blasting of Bit-Vector Addition

addition of 4-bit numbers \(x, y \) with result \(s \) also 4-bit: \(s = x + y \)

\[
[s_3, s_2, s_1, s_0]_4 = [x_3, x_2, x_1, x_0]_4 + [y_3, y_2, y_1, y_0]_4
\]

\[
[s_3, \cdot]_2 = \text{FullAdder}(x_3, y_3, c_2)
\]
\[
[s_2, c_2]_2 = \text{FullAdder}(x_2, y_2, c_1)
\]
\[
[s_1, c_1]_2 = \text{FullAdder}(x_1, y_1, c_0)
\]
\[
[s_0, c_0]_2 = \text{FullAdder}(x_0, y_0, false)
\]

where

\[
[s, o]_2 = \text{FullAdder}(x, y, i) \quad \text{with}
\]
\[
s = x \text{ xor } y \text{ xor } i
\]
\[
o = (x \land y) \lor (x \land i) \lor (y \land i) = ((x + y + i) \geq 2)
\]
Booletor Architecture

API

Expr

parse

rewrite

O1

BTOR

SMT

Expr

subst

O2

slice

norm

O3

synthesize

AIG Vector

optimize

AIG

Lingeling / PicoSAT / MiniSAT / CaDiCaL

SAT Solver

encode

CNF

O1 = bottom up simplification
O2 = global but almost linear
O3 = normalizing (often non-linear) [default]
Intermediate Representations

- encoding directly into CNF is hard, so we use intermediate levels:
 1. application level
 2. bit-precise semantics world-level operations (bit-vectors)
 3. bit-level representations such as And-Inverter Graphs (AIGs)
 4. conjunctive normal form (CNF)
- encoding “logical” constraints is another story
XOR as AIG

\[x \text{ xor } y \equiv (\overline{x} \land y) \lor (x \land \overline{y}) \equiv (\overline{x} \land y) \land (x \land \overline{y}) \]

negation/sign are edge attributes

not part of node
4-bit adder

8-bit adder
bit-vector of length 16 shifted by bit-vector of length 4
Encoding Logical Constraints

- Tseitin construction suitable for most kinds of “model constraints”
 - assuming simple operational semantics: encode an interpreter
 - small domains: one-hot encoding large domains: binary encoding

- harder to encode properties or additional constraints
 - temporal logic / fix-points
 - environment constraints

- example for fix-points / recursive equations: \(x = (a \lor y), \quad y = (b \lor x) \)
 - has unique least fix-point \(x = y = (a \lor b) \)
 - and unique largest fix-point \(x = y = true \) but unfortunately . . .
 - . . . only largest fix-point can be (directly) encoded in SAT
 otherwise need stable models / logical programming / ASP
Example of Logical Constraints: Cardinality Constraints

- given a set of literals \(\{l_1, \ldots l_n\} \)
 - constraint the number of literals assigned to \(\text{true} \)
 - \(l_1 + \cdots + l_n \geq k \) or \(l_1 + \cdots + l_n \leq k \) or \(l_1 + \cdots + l_n = k \)
 - combined make up exactly all fully symmetric boolean functions

- multiple encodings of cardinality constraints
 - naïve encoding exponential: \atmostone \text{ quadratic}, \atmosttwo \text{ cubic}, etc.
 - quadratic \(O(k \cdot n) \) encoding goes back to Shannon
 - linear \(O(n) \) parallel counter encoding \cite{Sin'05}

- many variants even for \atmostone constraints
 - for an \(O(n \cdot \log n) \) encoding see Prestwich’s chapter in Handbook of SAT

- \textbf{Pseudo-Boolean} constraints (PB) or 0/1 ILP constraints have many encodings too
 \[2 \cdot a + \overline{b} + c + \overline{d} + 2 \cdot e \geq 3 \]

actually used to handle MaxSAT in SAT4J for configuration in Eclipse
BDD-Based Encoding of Cardinality Constraints

\[2 \leq l_1 + \cdots l_9 \leq 3 \]

If-Then-Else gates (MUX) with “then” edge downward, dashed “else” edge to the right
Tseitin Encoding of If-Then-Else Gate

\[
x \leftrightarrow (c \oplus t : e) \iff (x \rightarrow (c \rightarrow t)) \land (x \rightarrow (\bar{c} \rightarrow e)) \land (\bar{x} \rightarrow (c \rightarrow \bar{t})) \land (\bar{x} \rightarrow (\bar{c} \rightarrow \bar{e})) \\
\iff (\bar{x} \lor \bar{c} \lor t) \land (\bar{x} \lor c \lor e) \land (x \lor \bar{c} \lor \bar{t}) \land (x \lor c \lor \bar{e})
\]

minimal but not arc consistent:

- if t and e have the same value then x needs to have that too
- possible additional clauses

\[
(\bar{t} \land \bar{e} \rightarrow \bar{x}) \equiv (t \lor e \lor \bar{x}) \quad (t \land e \rightarrow x) \equiv (\bar{t} \lor \bar{e} \lor x)
\]

- but can be learned or derived through preprocessing (ternary resolution)
 keeping those clauses redundant is better in practice
DIMACS Format

$ cat example.cnf

```
c comments start with 'c' and extend until the end of the line
c
variables are encoded as integers:
c
tie becomes 1
shirt becomes 2

c header 'p cnf <variables> <clauses>'
c
p cnf 2 3
-1 2 0  c !tie or shirt
1 2 0   c tie or shirt
-1 -2 0  c !tie or !shirt
```

$ picosat example.cnf

```
s SATISFIABLE
v -1 2 0
```
SAT Application Programmatic Interface (API)

- incremental usage of SAT solvers
 - add facts such as clauses incrementally
 - call SAT solver and get satisfying assignments
 - optionally retract facts

- retracting facts
 - remove clauses explicitly: complex to implement
 - push / pop: stack like activation, no sharing of learned facts
 - MiniSAT assumptions [EénSörensson’03]

- assumptions
 - unit assumptions: assumed for the next SAT call
 - easy to implement: force SAT solver to decide on assumptions first
 - shares learned clauses across SAT calls

- IPASIR: Reentrant Incremental SAT API
 - used in the SAT competition / race since 2015 [BalyoBiereIserSinz’16]
IPASIR Model

- **UNKNOWN**
 - Add assume
 - Solve
 - Intermittent
 - Failed

- **SOLVING**
 - Solve
 - Failed

- **UNSAT**
 - Add assume

- **SAT**
#include "ipasir.h"
#include <assert.h>
#include <stdio.h>

#define ADD(LIT) ipasir_add (solver, LIT)
#define PRINT(LIT) printf (ipasir_val (solver, LIT) < 0 ? " -" #LIT : " " #LIT)

int main () {
 void * solver = ipasir_init ();
 enum { tie = 1, shirt = 2 };
 ADD (-tie); ADD (shirt); ADD (0);
 ADD (tie); ADD (shirt); ADD (0);
 ADD (-tie); ADD (-shirt); ADD (0);
 int res = ipasir_solve (solver);
 assert (res == 10);
 printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");
 printf ("assuming now: tie shirt\n");
 ipasir_assume (solver, tie); ipasir_assume (solver, shirt);
 res = ipasir_solve (solver);
 assert (res == 20);
 printf ("unsatisfiable, failed:");
 if (ipasir_failed (solver, tie)) printf (" tie");
 if (ipasir_failed (solver, shirt)) printf (" shirt");
 printf ("\n");
 ipasir_release (solver);
 return res;
}
```cpp
#include "cadical.hpp"
#include <cassert>
#include <iostream>
using namespace std;

#define ADD(LIT) solver.add (LIT)
#define PRINT(LIT) \
  (solver.val (LIT) < 0 ? " -" #LIT : " " #LIT)

int main () {
  CaDiCaL::Solver solver; solver.set ("quiet", 1);
  enum { tie = 1, shirt = 2 }
  ADD (-tie), ADD ( shirt), ADD (0);
  ADD ( tie), ADD ( shirt), ADD (0);
  ADD (-tie), ADD (-shirt), ADD (0);
  int res = solver.solve ();
  assert (res == 10);
  cout << "satisfiable: " << PRINT (shirt) << PRINT (tie) << endl;
  cout << "assuming now: tie shirt" << endl;
  solver.assume (tie), solver.assume (shirt);
  res = solver.solve ();
  assert (res == 20);
  cout << "unsatisfiable, failed: ";
  if (solver.failed (tie)) cout << " tie";
  if (solver.failed (shirt)) cout << " shirt";
  cout << endl;
  return res;
}
```

$./example
satisfiable: shirt -tie
assuming now: tie shirt
unsatisfiable, failed: tie
IPASIR Functions

const char * ipasir_signature ();

void * ipasir_init ();

void ipasir_release (void * solver);

void ipasir_add (void * solver, int lit_or_zero);

void ipasir_assume (void * solver, int lit);

int ipasir_solve (void * solver);

int ipasir_val (void * solver, int lit);

int ipasir_failed (void * solver, int lit);

void ipasir_set_terminate (void * solver, void * state, int (*terminate)(void * state));
DP / DPLL

- dates back to the 50’ies:
 - 1st version DP is resolution based \rightarrow \text{preprocessing}
 - 2nd version D(P)LL splits space for time \rightarrow \text{CDCL}

- **ideas:**
 - 1st version: eliminate the two cases of assigning a variable in space or
 - 2nd version: case analysis in time, e.g. try $x = 0, 1$ in turn and recurse

- most successful SAT solvers are based on variant (CDCL) of the second version
 - works for very large instances

- recent (≤ 25 years) optimizations:
 - backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures
 - (we will have a look at each of them)
DP Procedure

forever

if $F = \top$ return satisfiable

if $\bot \in F$ return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and $\neg x$

\Rightarrow Bounded Variable Elimination
DPLL Procedure

\[DPLL(F) \]

\[F := BCP(F) \]

if \(F = \top \) return satisfiable

if \(\bot \in F \) return unsatisfiable

pick remaining variable \(x \) and literal \(l \in \{ x, \neg x \} \)

if \(DPLL(F \land \{ l \}) \) returns satisfiable return satisfiable

return \(DPLL(F \land \{ \neg l \}) \)

⇒ CDCL
DPLL Example

\[a \lor b \lor c \]

\[\neg a \lor b \lor c \]

\[\neg a \lor b \lor \neg c \]

\[\neg a \lor \neg b \lor c \]

\[\neg a \lor b \lor \neg c \]

\[a \lor b \lor \neg c \]

\[a \lor b \lor c \]

\[a \lor \neg b \lor c \]

\[a \lor \neg b \lor \neg c \]

\[a \lor b \lor \neg c \]

\[a \lor b \lor c \]

\[\neg a \lor b \lor \neg c \]

\[\neg a \lor b \lor c \]

\[\neg a \lor b \lor \neg c \]

\[\neg a \lor b \lor c \]

BCP decision

Decision tree with variables and clauses.
Conflict Driven Clause Learning (CDCL)
[MarqueSilvaSakallah’96]

- first implemented in the context of GRASP SAT solver
 - name given later to distinguish it from DPLL
 - not recursive anymore
- essential for SMT
- learning clauses as no-goods
- notion of implication graph
- (first) unique implication points
Conflict Driven Clause Learning (CDCL)

- $a = 1$
- $b = 1$
- $c = 0$

Decision:
- a
- b

BCP:
- $\neg c$

Learn:
- $\neg a \lor \neg b$

Clauses:
- $\neg a \lor \neg b \lor \neg c$
- $\neg a \lor \neg b \lor c$
- $\neg a \lor b \lor \neg c$
- $a \lor b \lor \neg c$
- $a \lor b \lor c$
- $a \lor b \lor \neg c$
- $a \lor \neg b \lor \neg c$
- $a \lor \neg b \lor c$
- $a \lor b \lor \neg c$
- $a \lor b \lor c$
Conflict Driven Clause Learning (CDCL)

\[a = 1 \]
\[b = 0 \]
\[c = 0 \]

Decision: \(a \)

Clauses:

- \(\neg a \lor \neg b \lor \neg c \)
- \(\neg a \lor \neg b \lor \neg c \)

BCP

Learn:

- \(\neg a \)
Conflict Driven Clause Learning (CDCL)

\[
\begin{align*}
a &= 1 \\
b &= 0 \\
c &= 0
\end{align*}
\]

- \(\neg a \) BCP
- \(\neg b \) BCP
- \(\neg c \) decision

clauses

\[
\begin{align*}
\neg a \lor \neg b \lor \neg c \\
\neg a \lor \neg b \lor c \\
\neg a \lor b \lor \neg c \\
\neg a \lor b \lor c \\
a \lor \neg b \lor \neg c \\
a \lor b \lor \neg c \\
a \lor b \lor c \\
\neg a \lor \neg b \\
\neg a \\
c
\end{align*}
\]
Conflict Driven Clause Learning (CDCL)

\begin{align*}
a &= 1 \\
\neg a \vee b &\quad \neg a \vee b \vee c \\
\neg a \vee b &\quad \neg a \vee b \vee c \\
\neg a \vee b &\quad \neg a \vee b \vee c \\
\neg a \vee b \vee \neg c &\quad \neg a \vee b \vee c \\
\neg a \vee b \vee \neg c &\quad \neg a \vee b \vee c \\
\neg a \vee b \vee \neg c &\quad \neg a \vee b \vee c \\
\neg a \vee b \vee \neg c &\quad \neg a \vee b \vee c \\
\neg a \vee b \vee \neg c &\quad \neg a \vee b \vee c \\
\neg a \vee b \vee \neg c &\quad \neg a \vee b \vee c \\
\neg a \vee b &\quad \neg a \vee b \vee c \\
\neg a &\quad \neg a \vee b \vee c \\
c &\quad \neg a \vee b \vee c \\
\bot &\quad empty \ clause
\end{align*}
Implication Graph

top–level

c = 1 @ 1

d = 1 @ 1

e = 1 @ 1

unit a = 1 @ 0

unit b = 1 @ 0

decision f = 1 @ 2

g = 1 @ 2

h = 1 @ 2

i = 1 @ 2

decision k = 1 @ 3

l = 1 @ 3

decision r = 1 @ 4

s = 1 @ 4

t = 1 @ 4

ty = 1 @ 4

decision x = 1 @ 4

z = 1 @ 4

κ conflict
\[
d \land g \land s \to t \equiv (\overline{d} \lor \overline{g} \lor \overline{s} \lor t)
\]
Conflicting Clauses

\[\neg(y \land z) \equiv (\neg y \lor \neg z) \]
Resolving Antecedents 1st Time

\begin{align*}
top\text{-}level & \quad unit & a &= 1 \@ 0 & \quad unit & b &= 1 \@ 0 \\
decision & c &= 1 \@ 1 & \quad d &= 1 \@ 1 & \quad e &= 1 \@ 1 \\
decision & f &= 1 \@ 2 & \quad g &= 1 \@ 2 & \quad h &= 1 \@ 2 & \quad i &= 1 \@ 2 \\
decision & k &= 1 \@ 3 & \quad l &= 1 \@ 3 \\
decision & r &= 1 \@ 4 & \quad s &= 1 \@ 4 & \quad t &= 1 \@ 4 & \quad y &= 1 \@ 4 \\
x &= 1 \@ 4 & \quad z &= 1 \@ 4 & \quad k & & \quad \text{conflict}
\end{align*}

\[
(\bar{h} \lor \bar{i} \lor \bar{t} \lor y) \quad (\bar{y} \lor \bar{z})
\]
Resolving Antecedents 1st Time

\[
\begin{align*}
\text{top-level} & \quad \text{unit} & a = 1 \land 0 & \quad \text{unit} & b = 1 \land 0 \\
\text{decision} & \quad c = 1 \land 1 & d = 1 \land 1 & e = 1 \land 1 \\
\text{decision} & \quad f = 1 \land 2 & g = 1 \land 2 & h = 1 \land 2 & i = 1 \land 2 \\
\text{decision} & \quad k = 1 \land 3 & l = 1 \land 3 \\
\text{decision} & \quad r = 1 \land 4 & s = 1 \land 4 & t = 1 \land 4 & y = 1 \land 4 \\
\quad x = 1 \land 4 & \quad z = 1 \land 4 & k & \text{conflict}
\end{align*}
\]

\[
\begin{align*}
(h \lor t \lor i \lor y) & \quad (y \lor z) \\
\hline
(\overline{h} \lor t \lor i \lor y) & (y \lor z)
\end{align*}
\]
Resolvents = \textbf{Cuts} = \text{Potential Learned Clauses}

\[
\begin{align*}
\text{top-level} & \quad \text{unit} \quad a = 1 \oplus 0 \quad \text{unit} \quad b = 1 \oplus 0 \\
\text{decision} & \quad c = 1 \oplus 1 \\
\text{decision} & \quad f = 1 \oplus 2 \\
\text{decision} & \quad k = 1 \oplus 3 \\
\text{decision} & \quad r = 1 \oplus 4 \\
\text{decision} & \quad x = 1 \oplus 4 \\
\text{top-level} & \quad \text{unit} \quad d = 1 \oplus 1 \quad \text{unit} \quad e = 1 \oplus 1 \\
\text{decision} & \quad d \quad e \\
\text{decision} & \quad g = 1 \oplus 2 \\
\text{decision} & \quad l = 1 \oplus 3 \\
\text{decision} & \quad s = 1 \oplus 4 \\
\text{decision} & \quad t = 1 \oplus 4 \\
\text{decision} & \quad z = 1 \oplus 4 \\
\end{align*}
\]

\[
\begin{align*}
(\bar{h} \lor \bar{i} \lor \bar{t} \lor y) & \quad (\bar{y} \lor \bar{z}) \\
(\bar{h} \lor \bar{i} \lor \bar{t} \lor z) & \\
\end{align*}
\]

\(\kappa \) conflict
Potential Learned Clause After 1 Resolution

\[(\overline{h} \lor \overline{i} \lor \overline{t} \lor \overline{z})\]
Resolving Antecedents 2nd Time

\[
(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{t}) \land (\overline{h} \lor \overline{i} \lor \overline{t} \lor \overline{z})
\]
Resolving Antecedents 3rd Time

\[(\overline{x} \lor z) \land (d \lor \overline{g} \lor \overline{\overline{s}} \lor \overline{h} \lor \overline{i} \lor \overline{z}) \]

\[(\overline{x} \lor d \lor \overline{g} \lor \overline{\overline{s}} \lor \overline{h} \lor \overline{i} \lor \overline{d}) \]
Resolving Antecedents 4th Time

\[\begin{align*}
\text{top-level} & \quad \text{unit} \quad a = 1 @ 0 \quad \text{unit} \quad b = 1 @ 0 \\
\text{decision} & \quad c = 1 @ 1 \quad d = 1 @ 1 \quad e = 1 @ 1 \\
\text{decision} & \quad f = 1 @ 2 \quad g = 1 @ 2 \quad h = 1 @ 2 \quad i = 1 @ 2 \\
\text{decision} & \quad k = 1 @ 3 \quad l = 1 @ 3 \\
\text{decision} & \quad r = 1 @ 4 \quad s = 1 @ 4 \quad t = 1 @ 4 \quad y = 1 @ 4 \\
\text{decision} & \quad x = 1 @ 4 \quad z = 1 @ 4 \quad \kappa \quad \text{conflict}
\end{align*} \]

\[
(\bar{s} \lor x) \quad (x \lor \bar{d} \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor \bar{i}) \\
(\bar{d} \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor \bar{i})
\]

self subsuming resolution
1st UIP Clause after 4 Resolutions

$\bar{d} \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor \bar{i}$

UIP = unique implication point dominates conflict on the last level
If y has never been used to derive a conflict, then skip \overline{y} case.

Immediately jump back to the \overline{x} case – assuming x was used.
Resolving Antecedents 5th Time

\[a = 1 @ 0 \]
\[b = 1 @ 0 \]
\[c = 1 @ 1 \]
\[d = 1 @ 1 \]
\[e = 1 @ 1 \]
\[f = 1 @ 2 \]
\[g = 1 @ 2 \]
\[h = 1 @ 2 \]
\[i = 1 @ 2 \]
\[k = 1 @ 3 \]
\[l = 1 @ 3 \]
\[m = 1 @ 4 \]
\[n = 1 @ 4 \]
\[o = 1 @ 4 \]
\[p = 1 @ 4 \]
\[q = 1 @ 4 \]
\[r = 1 @ 4 \]
\[s = 1 @ 4 \]
\[t = 1 @ 4 \]
\[y = 1 @ 4 \]
\[x = 1 @ 4 \]
\[z = 1 @ 4 \]

\[(l \lor r \lor s) (\bar{d} \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor \bar{i}) \]

\[(l \lor r \lor \bar{d} \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor \bar{i}) \]
Decision Learned Clause

(top-level)

(unit) \(a = 1 @ 0 \)

(unit) \(b = 1 @ 0 \)

decision \(c = 1 @ 1 \) \(d = 1 @ 1 \) \(e = 1 @ 1 \)

decision \(f = 1 @ 2 \) \(g = 1 @ 2 \) \(h = 1 @ 2 \) \(i = 1 @ 2 \)

decision \(k = 1 @ 3 \) \(l = 1 @ 3 \)

decision \(r = 1 @ 4 \)

(last UIP)

\(x = 1 @ 4 \) \(t = 1 @ 4 \) \(y = 1 @ 4 \)

\(x = 1 @ 4 \) \(z = 1 @ 4 \)

\(\bar{d} \lor \bar{g} \lor \bar{l} \lor \bar{r} \lor \bar{h} \lor \bar{i} \)

\(\kappa \text{ conflict} \)
1st UIP Clause after 4 Resolutions

\[\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i} \]
Locally Minimizing 1st UIP Clause

\[
\begin{align*}
\text{top-level} & \quad \text{unit} \quad a = 1 @ 0 \quad \text{unit} \quad b = 1 @ 0 \\
\text{decision} & \quad c = 1 @ 1 \quad d = 1 @ 1 \quad e = 1 @ 1 \\
\text{decision} & \quad f = 1 @ 2 \quad g = 1 @ 2 \quad h = 1 @ 2 \quad i = 1 @ 2 \\
\text{decision} & \quad k = 1 @ 3 \quad l = 1 @ 3 \\
\text{decision} & \quad r = 1 @ 4 \quad s = 1 @ 4 \quad t = 1 @ 4 \quad y = 1 @ 4 \\
& \quad x = 1 @ 4 \quad z = 1 @ 4 \quad \kappa \quad \text{conflict}
\end{align*}
\]

\[
\frac{(h \lor i)}{(d \lor g \lor s \lor h \lor i)} \quad \frac{(d \lor g \lor s \lor h)}{(d \lor g \lor s \lor h)} \quad \text{self subsuming resolution}
\]
Locally Minimized Learned Clause

\[(d \lor g \lor s \lor \overline{h})\]
Minimizing Locally Minimized Learned Clause Further?

\[(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h})\]
Recursively Minimizing Learned Clause

\[
\begin{align*}
(b) & \quad \frac{(d \lor \overline{g} \lor \overline{s})}{\overline{d} \lor \overline{g} \lor \overline{s}} \\
& \quad \frac{(b \lor d \lor \overline{g} \lor \overline{s})}{(b \lor d \lor g \lor \overline{s})} \\
\end{align*}
\]

\[
\begin{align*}
top-level & \quad (b) \lor (d) \lor (g) \lor (h) \\
unit & \quad a = 1 @ 0 \\
decision & \quad c = 1 @ 1 \\
unit & \quad d = 1 @ 1 \\
decision & \quad f = 1 @ 2 \\
unit & \quad g = 1 @ 2 \\
decision & \quad k = 1 @ 3 \\
unit & \quad l = 1 @ 3 \\
decision & \quad r = 1 @ 4 \\
unit & \quad s = 1 @ 4 \\
unit & \quad t = 1 @ 4 \\
unit & \quad y = 1 @ 4 \\
x = 1 @ 4 \\
z = 1 @ 4 \\
unit & \quad b = 1 @ 0 \\
unit & \quad e = 1 @ 1 \\
unit & \quad h = 1 @ 2 \\
unit & \quad i = 1 @ 2 \\
unit & \quad k = 1 @ 3 \\
unit & \quad l = 1 @ 4 \\
unit & \quad t = 1 @ 4 \\
unit & \quad y = 1 @ 4 \\
unit & \quad k = 1 @ 4 \\
unit & \quad conflict
\end{align*}
\]
Recursively Minimized Learned Clause

\((d \lor g \lor s)\)
Decision Heuristics

- number of variable occurrences in (remaining unsatisfied) clauses (LIS)
 - eagerly satisfy many clauses with many variations studied in the 90ies
 - actually expensive to compute

- dynamic heuristics
 - **focus on variables which were useful recently in deriving learned clauses**
 - can be interpreted as reinforcement learning
 - started with the VSIDS heuristic
 - most solvers rely on the exponential variant in MiniSAT (EVSIDS)
 - recently showed VMTF as effective as VSIDS

- look-ahead
 - spent more time in selecting good variables (and simplification)
 - related to our Cube & Conquer paper
 - “The Science of Brute Force”

- EVSIDS during stabilization VMTF otherwise
Fast VMTF Implementation

- Siege SAT solver [Ryan Thesis 2004] used variable move to front (VMTF)
 - bumped variables moved to head of doubly linked list
 - search for unassigned variable starts at head
 - variable selection is an online sorting algorithm of scores
 - classic “move-to-front” strategy achieves good amortized complexity

- fast simple implementation for caching searches in VMTF [BiereFröhlich’SAT15]
 - doubly linked list does not have positions as an ordered array
 - bump = move-to-front = dequeue then insertion at the head

- time-stamp list entries with “insertion-time”
 - maintained invariant: all variables right of next-search are assigned
 - requires (constant time) update to next-search while unassigning variables
 - occasionally (32-bit) time-stamps will overflow: update all time stamps
Variable Scoring Schemes

[BiereFröhlich-SAT’15]

<table>
<thead>
<tr>
<th>variable score s' after i conflicts</th>
<th>bumped</th>
<th>not-bumped</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>INC</td>
<td>$s + 1$</td>
<td>s</td>
</tr>
<tr>
<td>SUM</td>
<td>$s + i$</td>
<td>s</td>
</tr>
<tr>
<td>VSIDS</td>
<td>$h_i^{256} \cdot s + 1$</td>
<td>$h_i^{256} \cdot s$</td>
</tr>
<tr>
<td>NVSIDS</td>
<td>$f \cdot s + (1 - f)$</td>
<td>$f \cdot s$</td>
</tr>
<tr>
<td>EVSIDS</td>
<td>$s + g^i$</td>
<td>s</td>
</tr>
<tr>
<td>ACIDS</td>
<td>$(s + i)/2$</td>
<td>s</td>
</tr>
<tr>
<td>VMTF$_1$</td>
<td>i</td>
<td>s</td>
</tr>
<tr>
<td>VMTF$_2$</td>
<td>b</td>
<td>s</td>
</tr>
</tbody>
</table>

- **STATIC** static decision order
- **INC** increment scores
- **SUM** sum of conflict-indices
- **VSIDS** original implementation in Chaff
- **NVSIDS** normalized variant of VSIDS
- **EVSIDS** exponential MiniSAT dual of NVSIDS
- **ACIDS** average conflict-index decision scheme
- **VMTF$_1$** variable move-to-front
- **VMTF$_2$** variable move-to-front variant

\[
0 < f < 1 \quad g = 1/f \quad h_i^m = 0.5 \quad \text{if } m \text{ divides } i \quad h_i^m = 1 \quad \text{otherwise}
\]

i conflict index b bumped counter
int basic_cdcl_loop () {
 int res = 0;

 while (!res)
 if (unsat) res = 20;
 else if (!propagate ()) analyze (); // analyze propagated conflict
 else if (satisfied ()) res = 10; // all variables satisfied
 else decide (); // otherwise pick next decision

 return res;
}
Reducing Learned Clauses

- keeping all learned clauses slows down BCP
 - so SATO and RelSAT just kept only “short” clauses

- better periodically delete “useless” learned clauses
 - keep a certain number of learned clauses
 - if this number is reached MiniSAT reduces (deletes) half of the clauses
 - then maximum number kept learned clauses is increased geometrically

- LBD (glucose level / glue) prediction for usefulness
 - LBD = number of decision-levels in the learned clause
 - allows arithmetic increase of number of kept learned clauses
 - keep clauses with small LBD forever (≤ 2…5)
 - three Tier system by [Chanseok Oh]

LBD = number of decision-levels in the learned clause
allows arithmetic increase of number of kept learned clauses
keep clauses with small LBD forever (≤ 2…5)
three Tier system by [Chanseok Oh]
Restarts

- often it is a good strategy to abandon what you do and restart
 - for satisfiable instances the solver may get stuck in the unsatisfiable part
 - for unsatisfiable instances focusing on one part might miss short proofs
 - restart after the number of conflicts reached a restart limit

- avoid to run into the same dead end
 - by randomization (either on the decision variable or its phase)
 - and/or just keep all the learned clauses during restart

- for completeness dynamically increase restart limit
 - arithmetically, geometrically, Luby, Inner/Outer

- Glucose restarts [AudemardSimon-CP’12]
 - short vs. large window exponential moving average (EMA) over LBD
 - if recent LBD values are larger than long time average then restart

- interleave “stabilizing” (no restarts) and “non-stabilizing” phases [Chanseok Oh]
Luby's Restart Intervals
70 restarts in 104448 conflicts
unsigned
luby (unsigned i)
{
 unsigned k;

 for (k = 1; k < 32; k++)
 if (i == (1 << k) - 1)
 return 1 << (k - 1);

 for (k = 1;; k++)
 if ((1 << (k - 1)) <= i && i < (1 << k) - 1)
 return luby (i - (1 << (k-1)) + 1);
}

limit = 512 * luby (++restarts);
... // run SAT core loop for 'limit' conflicts
Reluctant Doubling Sequence

[Knuth’12]

\[(u_1, v_1) = (1, 1)\]

\[(u_{n+1}, v_{n+1}) = ((u_n & -u_n == v_n) ? (u_n + 1, 1) : (u_n, 2v_n))\]

\[(1, 1), (2, 1), (2, 2), (3, 1), (4, 1), (4, 2), (4, 4), (5, 1), \ldots\]
Restart Scheduling with Exponential Moving Averages

LBD — fast EMA of LBD with $\alpha = 2^{-5}$
restart — slow EMA of LBD with $\alpha = 2^{-14}$ (ema-14)
inprocessing — CMA of LBD (average)
Phase Saving and Rapid Restarts

- **Phase assignment:**
 - assign decision variable to 0 or 1?
 - "Only thing that matters in satisfiable instances" [Hans van Maaren]

- "phase saving" as in RSat [PipatsrisawatDarwiche’07]
 - pick phase of last assignment (if not forced to, do not toggle assignment)
 - initially use statically computed phase (typically LIS)
 - so can be seen to maintain a **global full assignment**

- **Rapid restarts**
 - varying restart interval with bursts of restarts
 - not only theoretically avoids local minima
 - works nicely together with phase saving

- reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT’11]

- target phases of largest conflict free trail / assignment [Biere-SAT-Race-2019]
int basic_cdcl_loop_with_reduce_and_restart () {

 int res = 0;

 while (!res)
 if (unsat) res = 20; // analyze propagated conflict
 else if (!propagate ()) analyze (); // analyze propagated conflict
 else if (satisfied ()) res = 10; // all variables satisfied
 else if (restarting ()) restart (); // restart by backtracking
 else if (reducing ()) reduce (); // collect useless learned clauses
 else decide (); // otherwise pick next decision

 return res;
}
```c
int Internal::cdcl_loop_with_inprocessing () {

    int res = 0;

    while (!res) {
            if (unsat) res = 20;
        else if (!propagate ()) analyze ();    // propagate and analyze
        else if (iterating) iterate ();        // report learned unit
        else if (satisfied ()) res = 10;       // found model
        else if (terminating ()) break;        // limit hit or async abort
        else if (restarting ()) restart ();     // restart by backtracking
        else if (rephasing ()) rephase ();      // reset variable phases
        else if (reducing ()) reduce ();        // collect useless clauses
        else if (probing ()) probe ();          // failed literal probing
        else if (subsuming ()) subsume ();      // subsumption algorithm
        else if (eliminating ()) elim ();       // variable elimination
        else if (compacting ()) compact ();     // collect variables
        else if (conditioning ()) condition (); // globally blocked clauses
        else res = decide ();                    // next decision
    }

    return res;
}
```
Two-Watched Literal Schemes

- original idea from SATO \cite{ZhangStickel00}
 - invariant: always watch two non-false literals
 - if a watched literal becomes false, replace it
 - if no replacement can be found, the clause is either unit or empty
 - original version used head and tail pointers on Tries

- improved variant from Chaff \cite{MoskewiczMadiganZhaoZhangMalik01}
 - watch pointers can move arbitrarily
 - no update needed during backtracking
 - one watch is enough to ensure correctness
 - SATO: head forward, tail backward, but loses arc consistency

- reduces visiting clauses by 10x
 - particularly useful for large and many learned clauses

- blocking literals \cite{ChuHarwoodStuckey09}

- special treatment of short clauses (binary \cite{PilarskiHu02} or ternary \cite{Ryan04})

- cache start of search for replacement \cite{GentJAIR13}
Incremental Inprocessing in SAT Solving

Katalin Fazekas, Armin Biere, Christoph Scholl

1 Johannes Kepler University, Linz, Austria
2 Albert-Ludwigs-University, Freiburg, Germany

Abstract. Incremental SAT is about solving a sequence of related SAT problems efficiently. It makes use of already learned information to avoid repeating redundant work. Also preprocessing and inprocessing are considered to be crucial. Our calculus uses the most general redundancy property and extends existing inprocessing rules to incremental SAT solving. It allows to automatically reverse earlier simplification steps, which are inconsistent with literals in new incrementally added clauses. Our approach to incremental SAT solving not only simplifies the use of inprocessing but also substantially improves solving time.

1 Introduction

Solving a sequence of related SAT problems incrementally [1–4] is crucial for the efficiency of SAT based model checking [5–8], and important in many domains [9–12]. Utilizing the effort already spent on a SAT problem by keeping learned information (such as variable scores and learned clauses) can significantly speed-up solving similar problems. Equally important are formula simplification techniques such as variable elimination, subsumption, self-subsuming resolution, and equivalence reasoning [13–16].

These simplifications are not only applied before the problem solving starts (preprocessing), but also periodically during the actual search (inprocessing) [17]. In this paper we focus on how to efficiently combine simplification techniques with incremental SAT solving.

Consider the SAT problem $F^0 = (a \lor b) \land (\neg a \lor \neg b)$. Both clauses are redundant and can be eliminated by for example variable or blocked clause elimination [14, 16]. The resulting empty set of clauses is of course satisfiable and the SAT solver could for example simply assign false to both variable as a solution. That is of course not a satisfying assignment of F^0, but can be transformed into one by solution reconstruction [17, 18], taking eliminated clauses into account. As we will see later, this would set the truth value of either a or b to true.

Now consider the SAT problem $F^1 = (a \lor b) \land (\neg a \lor \neg b) \land (a) \land (\neg b)$ which is actually an extension of F^0 with the clauses $\neg a$ and $\neg b$. Simply adding them to our simplified F^0 (i.e. to the empty set of clauses) would result in a formula that again is satisfied by assigning false to each variable. However, using solution reconstruction on that assignment leads to the same solution as before, one that

Backers Backtracking

Sibylle Mühle and Armin Biere

Johannes Kepler University Linz, Austria

Abstract. Non-chronological backtracking was considered an important and necessary feature of conflict-driven clause learning (CDCL). However, a SAT solver combining CDCL with chronological backtracking succeeded in the main track of the SAT Competition 2018. In that solver, multiple invariants considered crucial for CDCL were violated. In particular, decision levels of literals on the trail were not necessarily increasing anymore. The corresponding paper presented at SAT 2018 described the algorithm and provided empirical evidence of its correctness, but a formalization and proofs were missing. Our contribution is to fill this gap. We further generalize the approach, discuss implementation details, and empirically confirm its effectiveness in an independent implementation.

1 Introduction

Most state-of-the-art SAT solvers are based on the CDCL framework [8,9]. The performance gain of SAT solvers achieved in the last two decades is to some extent attributed to combining conflict-driven backjumping and learning. It enables the solver to escape regions of the search space with no solution.

Non-chronological backtracking during learning enforces the lowest decision level at which the learned clause becomes unit and then is used as a reason. While backtracking to a higher level still enables propagation of a literal in the learned clause, the resulting propagations might conflict with previous assignments. Resolving these conflicts introduces additional work which is prevented by backtracking non-chronologically to the lowest level [15].

However, in some cases a significant amount of the assignments undone is repeated later in the search [10,16], and a need for methods to save redundant work has been identified. Chronological backtracking avoids redundant work by keeping assignments which otherwise would be repeated at a later stage of the search. As our experiments show, satisfiable instances benefit most from chronological backtracking. Thus this technique should probably also be seen as a method to optimize SAT solving for satisfiable instances similar to [2,14].

The combination of chronological backtracking with CDCL is challenging since invariants classically considered crucial to CDCL cease to hold. Nonetheless, taking appropriate measures preserves the solver’s correctness, and the