
Where does SAT not work?
Armin Biere

Johannes Kepler University
Linz, Austria

Theoretical Foundations of Applied SAT Solving

BIRS
Banff International Research Station
for Mathematical Innovation and Discovery

Banff, Canada

Monday, 20 January, 2014

Overview 1/13

Even though SAT solving is quite successful in many application there are still open issues,
where SAT does not work or at least we do not know how or why it works.

learning definitions through extended resolution

speeding up CDCL by local search effectively

arithmetic reasoning on the CNF level

data-flow based algorithms for SAT

parallel SAT solving

reencoding CNF: extensions and theoretical questions

data structures for next generation SAT solvers

how and why does VSIDS work?

Where does SAT not work? @ BIRS’14

Learning Definitions Through Extended Resolution 2/13

extended resolution (ER) more powerful than resolution

“ER allows to simulate execution of any algorithm / circuit”

how to find good definitions?

simplest version just defines AND gate over two existing variables n = l∧ k

other definitions are conceivable too (l̄∨ k̄∨n)(l∨ n̄)(k∨ n̄)

not much practical work on extended resolution

[SinzBiere’06] use extended resolution to simulate BDD operations
original motivation was to simulate Gaussian elimination

[AudemardKatsirelosSimon’10] [Huang’10]
introduce abbreviations for common parts in learned clauses

[MantheyHeuleBiere’12] reencode CNF through bounded variable addition (BVA)

challenges for making ER work

learn more than abbreviations for learned clauses

more powerful reencodings for in/pre-processing

garbage collection of definitions

Where does SAT not work? @ BIRS’14

Speeding up CDCL by Local Search Effectively 3/13

Balint showed (empirically) that CDCL can help local search

idea is to use CDCL solver as oracle inside local search

CDCL checks environment around current point

some improvements using this idea on random instances

challenges in combining CDCL with local search

more synergies using CDCL for local search

effectively using local search in CDCL

is it possible to connect the two in a proof theoretic sense

BTW, new generation of local search solver with substantial progress

Sparrow, CCASat, ProbSAT, . . .

ProbSAT is elegant and simple and quite competitive

they solve some hard (satisfiable) “combinatorial” instances

Where does SAT not work? @ BIRS’14

Arithmetic Reasoning on the CNF Level 4/13

bit-blasting a ·b = b ·a with a, b 32-bit bit-vectors

assume bit-blasting without any word level rewriting (simplification)

produces and inverter graph (AIG) with 7277 nodes and 64 inputs

results in CNF with 7341 variables and 21654 clauses

after CNF level preprocessing 3355 variables and 15493 clauses

extremely hard for current state-of-the-art SAT solvers (working on CNF)

related important practical problem

equivalence checking of arithmetic circuits

no intermediate equivalent literals

SAT sweeping even on AIG level does not help

see our recent LPAR-19 paper for SAT sweeping on the CNF level

some structural bit level techniques exists

still incomparable in speed to pattern based word level simplification

nothing on the CNF level

Where does SAT not work? @ BIRS’14

Data Flow Algorithms for SAT 5/13

most paradigms for SAT solving are control-dominated:

such as variants of CDCL, WalkSAT, or Look-Ahead based algorithms

hard to port to highly parallel computing architectures like:

bit-parallel operations on streaming units (SSE, AVX ops with 128 bit - 256 bit)

multi-core systems with say 96 or even more cores

clusters / grid / clouds with 128 - 100000 cores

GPUs with more than 2000 cores

control flow dominated algorithms have a hard to time to achieve memory locality

conjecture is that data-flow orientation allows memory locality

challenge is to come up with SAT algorithms organized around data-flow

find other ways to change algorithms / machines to become more “local”

our (unpublished) experiences with bit-parallel SAT and GPU’s are rather negative

only focused on preprocessing sofar

positive effect for few crafted instances

usually way slower

Where does SAT not work? @ BIRS’14

Parallel SAT Solving 6/13

dominating approach: portfolio with clause sharing
ManySAT, Plingeling, Penelope, . . .

successful in the application track of the competition

portfolio already gives substantial speed-up

clause sharing of “good” clauses gives another boost

search space splitting
originally used on clusters / grids

guiding path principle [ZhangBonacinaHsiang’96]

revisited and extended recently [HyvärinenJunttilaNiemelä’10]

can be combined with look-ahead
Cube & Conquer approach [HeuleKullmannWieringaBiere’11]

works well on multi-core as well

Treengeling won parallel combinatorial track in SAT Competition 2013

how to merge these two approaches?

scalability for many cores and larger clusters / grids / cloud

Where does SAT not work? @ BIRS’14

Reencoding 7/13

reencode CNF through bounded variable addition [MantheyHeuleBiere’12] (BVA)

Replace
(a∨d) (a∨ e)
(b∨d) (b∨ e)
(c∨d) (c∨ e)

by (x̄∨a) (x̄∨b) (x̄∨ c)
(x∨d) (x∨ e)

“reverse” of bounded variable elimination (BVE) [DP/Satelite]

BVE eliminates variable if number of clauses does not increase

BVA adds variable to decrease number of clauses

surprisingly simulates using better encodings for cardinality

particularly works well for at-most-one constraints constraints

we only know how to implement restricted variant simple BVA

practical questions: inprocessing? other re-encodings? multiple variables?

theoretical side: properties of this class(es) of re-encodings?

Where does SAT not work? @ BIRS’14

Data Structures for Next Generation SAT Solvers 8/13

one of Lingeling’s main design goals: compactness of data structures

results in smaller memory foot print

smaller working set thus less pressure on the memory system

implicitly increases speed

particularly useful if multiple instances of the SAT solver run on the same machine

allows more solver instances within the same amount of memory

cube & conquer (Treengeling)

incremental approaches with push & pop semantics

portfolio style SAT solvers (which copy clauses e.g. Plingeling)

still in all these scenarios many copies of identical clauses exists

redundant copies = wasted memory

new management scheme to physically share these redundant copies

avoid congestion and too much synchronization overhead

Where does SAT not work? @ BIRS’14

VSIDS Decision Heuristic 9/13

original idea in Chaff [Moskewicz. . .’01] was to “bump” literals in learned clauses
Variable State Independent Decaying Sum (VSIDS)

originally simply incremented a counter/score (one per variable)
same effect as DLIS in Grasp

every 256th conflict the counter divided by 2
“filtering” is the novel part in Chaff, it adds state and focus

state-of-the-art is the Exponential VSIDS (EVSIDS) scheme of MiniSAT
use a global increment g which is added to the score

increase this increment exponentially at every conflict (increase by say 5%)

implementation uses a priority queue with lazy removal of assignment variables

better bump all variables used in deriving the conflict

alternative variants (in my experience less efficient)
BerkMin uses variables in most recent still unsatisfied learned clause

Siege used Variable Move To Front (VMTF) strategy

HaifaSAT combines both by a Clause Move To Front (VMTF) strategy
same as in PrecoSAT but with separate queues for each glucose level (LBD)

Where does SAT not work? @ BIRS’14

How to Compute the Score? 10/13

SAT solver picks unassigned variable with largest score as next decision

consider only change of the score si of one variable v during i-th conflict

let βi = 1 if v is bumped in the i-th conflict otherwise 0

some possible variable score update functions:

static si+1 = si initialize score statically and do not change it

inc si+1 = si+βi this is in essence DLIS from Grasp

vmtf si+1 = i

sum si+1 = si+ i ·βi emphasis on recent conflicts unpublished

vsids si+1 = d · si+βi decay d ∈ [0,1) e.g. d = 0.95

evsids si+1 = si+gi ·βi, gi+1 = e ·gi factor e ∈ [1,2) e.g. e = 1.05

avg si+1 = si+βi · (i− si)/2 another filter function unpublished

last four share the idea of “low-pass filtering” of the involvement of variables

for this interpretation see our SAT’08 paper and the video

important practical issue: number of bumped variables is usually small

Where does SAT not work? @ BIRS’14

Why does Bumping & Smoothing work? 11/13

CDCL SAT solving is actually a very focused “local search”

focus on recently learned clauses

increases chance to learn clauses relevant to already learned clauses

this “relevance” increases the chance of “overlap” and small LBD

which in turn allows to find short proofs

more speculation about “smoothing” or “low-pass filtering”

VMTF / BerkMin seems to be too aggressive more like a jumpy kid

filtering through the “decaying” part actually leads to intensification

not aware of any work on really explaining either of them

except maybe for the insight behind glucose levels (LBD)

is there a way to formalize these intuitions?

do we need more empirical experiments?

maybe later this seminar . . .

Where does SAT not work? @ BIRS’14

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 20 40 60 80 100 120 140 160

R
u
n
-T

im
e
 D

is
tr

ib
u
ti
o
n
 (

T
im

e
 L

im
it
 1

0
0
0
 s

e
c
o
n
d
s
)

SAT Competition 2013 Application Track Benchmarks Solved by Lingeling

static
inc

sum
vmtf

vsids256
evsids

avg
sc13

Arithmetic Reasoning on the CNF Level 4/13

bit-blasting a ·b = b ·a with a, b 32-bit bit-vectors

assume bit-blasting without any word level rewriting (simplification)

produces and inverter graph (AIG) with 7277 nodes and 64 inputs

results in CNF with 7341 variables and 21654 clauses

after CNF level preprocessing 3355 variables and 15493 clauses

extremely hard for current state-of-the-art SAT solvers (working on CNF)

related important practical problem

equivalence checking of arithmetic circuits

no intermediate equivalent literals

SAT sweeping even on AIG level does not help

see our recent LPAR-19 paper for SAT sweeping on the CNF level

some structural bit level techniques exists

still incomparable in speed to pattern based word level simplification

nothing on the CNF level

Where does SAT not work? @ BIRS’14

Data Flow Algorithms for SAT 5/13

most paradigms for SAT solving are control-dominated:

such as variants of CDCL, WalkSAT, or Look-Ahead based algorithms

hard to port to highly parallel computing architectures like:

bit-parallel operations on streaming units (SSE, AVX ops with 128 bit - 256 bit)

multi-core systems with say 96 or even more cores

clusters / grid / clouds with 128 - 100000 cores

GPUs with more than 2000 cores

control flow dominated algorithms have a hard to time to achieve memory locality

conjecture is that data-flow orientation allows memory locality

challenge is to come up with SAT algorithms organized around data-flow

find other ways to change algorithms / machines to become more “local”

our (unpublished) experiences with bit-parallel SAT and GPU’s are rather negative

only focused on preprocessing sofar

positive effect for few crafted instances

usually way slower

Where does SAT not work? @ BIRS’14

Reencoding 7/13

reencode CNF through bounded variable addition [MantheyHeuleBiere’12] (BVA)

Replace
(a∨d) (a∨ e)
(b∨d) (b∨ e)
(c∨d) (c∨ e)

by (x̄∨a) (x̄∨b) (x̄∨ c)
(x∨d) (x∨ e)

“reverse” of bounded variable elimination (BVE) [DP/Satelite]

BVE eliminates variable if number of clauses does not increase

BVA adds variable to decrease number of clauses

surprisingly simulates using better encodings for cardinality

particularly works well for at-most-one constraints constraints

we only know how to implement restricted variant simple BVA

practical questions: inprocessing? other re-encodings? multiple variables?

theoretical side: properties of this class(es) of re-encodings?

Where does SAT not work? @ BIRS’14

How to Compute the Score? 10/13

SAT solver picks unassigned variable with largest score as next decision

consider only change of the score si of one variable v during i-th conflict

let βi = 1 if v is bumped in the i-th conflict otherwise 0

some possible variable score update functions:

static si+1 = si initialize score statically and do not change it

inc si+1 = si+βi this is in essence DLIS from Grasp

vmtf si+1 = i

sum si+1 = si+ i ·βi emphasis on recent conflicts unpublished

vsids si+1 = d · si+βi decay d ∈ [0,1) e.g. d = 0.95

evsids si+1 = si+gi ·βi, gi+1 = e ·gi factor e ∈ [1,2) e.g. e = 1.05

avg si+1 = si+βi · (i− si)/2 another filter function unpublished

last four share the idea of “low-pass filtering” of the involvement of variables

for this interpretation see our SAT’08 paper and the video

important practical issue: number of bumped variables is usually small

Where does SAT not work? @ BIRS’14

