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Background on Hyper Binary Resolution (HBR) 1

• one Hyper Binary Resolution step [Bacchus-AAAI02]

(l∨ l1∨·· ·∨ ln) (l1∨ l′) · · · (ln∨ l′)
(l∨ l′)

– combines multiple resolution steps into one

– special case “hyper unary resolution” where l = l′

– HBR is stronger than unit propagation if it is repeated until (confluent) closure

– equality reduction: if (a∨b),(a∨b) ∈ f then replace a by b in f

• can be simulated by unit propagation [BacchusWinter-SAT03]

if (l∨ l′) ∈ HypBinRes( f ) then l′ ∈ UnitProp( f ∧ l) or vice versa

• implemented by repeated probing, c.f. HypBinResFast [GershmanStrichman-SAT05]
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Previous Optimizations 2

[BacchusWinter-SAT03][GershmanStrichman-SAT05]

• maintain acyclic and transitively-reduced binary implication graph

– acyclic: (incremental) decomposition in strongly connected components (SCCs)

(a∨b)(b∨ c)(c∨a)∧R equisatisfiable to R[a/b,a/c]

– transitively-reduced: remove resp. do not add transitive edges

• not all literals have to be probed

– if l ∈ UnitProp(r) and UnitProp(r) does not produce anything⇒ no need to probe l

– at least with respect to units it is possible to focus on roots

• still as with failed literal probing, too expensive to run until completion
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Observations 3

• time complexity: seems to be at least quadratic, unfortunately also in practice

• space complexity: unclear, at most quadratic, linear?

– Are there CNFs where one transitively reduced hyper binary resolution closure is
quadratic in size with respect to the size of the original CNF?

– where size = #clauses or size = #literals

• hyber binary resolution simulates structural hashing for AND gates a and b

F ≡ (a∨ x)(a∨ y)(a∨ x∨ y) (b∨ x)(b∨ y)(b∨ x∨ y) · · ·

(a∨ x)(a∨ y)(b∨ x∨ y)
(a∨b)

(b∨ x)(b∨ y)(a∨ x∨ y)
(b∨a)

can also be seen by b ∈ UnitProp(F ∧a) and a ∈ UnitProp(F ∧b)

• can not simulate structural hashing of XOR or ITE gates
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Lazy Hyper Binary Resolution (LHBR) 4

• learn binary clauses lazily or on-the-fly

– in BCP

– during preprocessing with failed literal probing

– or during search

• whenever a large clause (a1∨·· ·∨am∨ c) with m≥ 2 becomes a reason for c

– for the partial assignment σ we have σ(ai) = 0 and σ(c) = 1

– check whether there is a literal d which dominates all ai

– in the implication graph restricted to binary clauses

• learn (d∨ c) if such a dominator exists
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Avoid Transitive Edges by Prioritizing Binary Clauses Propagation 5

1. trail contains assigned literals

2. set n2 and n3 to the trail level of those literals that still need to be propagated

3. while 0≤ n3 ≤ n2 < |trail| and there is no conflict

(a) if n2 < |trail|

i. pick literal l at position n2, increment n2 and visit binary clauses with l

ii. assign literals forced through these binary clauses first

(b) otherwise (necessarily n3 < |trail|)

i. pick literal l at position n3, increment n3 and visit large clauses with l

ii. assign literals forced through these large clauses

Armin Biere – FMV – JKU Linz



How-To Check Existence of Dominators 6

• for each assigned literal l calculate one dominator bindom(l)

• in the implication graph restricted to binary clauses

• for decisions l set bindom(l) = l

• for binary implications (a1∨c) with σ(a1)= 0, σ(c)= 1 set bindom(c)= bindom(a1)

• necessary / sufficient for the ai in large (m≥ 2) reasons to have a common dominator:

(a1∨·· ·∨am∨ c) bindom(a1) = · · ·= bindom(am)

• if this condition triggers, actually use least common ancestor (closest dominator)

• use (d∨ c) as new reason instead of (a1∨·· ·∨am∨ c)
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PrecoSAT Integration 7

• interleave search and preprocessing

– bound time spent in search to roughly 80%

– measured in number of propagations / resolutions

• BCP during search learns binary clauses through LHBR (search LHBR)

• during preprocessing / simplification on the top level

– unit propagation on the top-level does LHBR (top-level LHBR)

– failed literal probing learns most binary clauses through LHBR (probing LHBR)

• effectiveness of LHBR reduced due to “lifting” in failed literal probing (also in PicoSAT)
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Experiments 8

• rerunning SAT’09 competition with competition version 236 of PrecoSAT

– 900 seconds time out

– roughly twice as fast machines

• PrecoSAT without LHBR solves 6 less instances

– 171 instead of 177 out of 292

• statistics

– LHBR learned 48 million binary clause

– on 292 instances that is 181 thousand learned binary clauses on average

– additionally 202 million learned clauses through conflict analysis

– 19% learned (binary) clauses due to LHBR
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Summary 9

• no measurable overhead doing LHBR during BCP

– so at least not harmful (in contrast to many other “optimizations”)

– except for rare cases where it produces too many clauses

– most recent version limits number of learned binary clauses to 5 million

• unpublished but implemented in PrecoSAT

– source code of PrecoSAT available under MIT license

• it actually performs a limited version of on-the-fly strengthening / subsumption

[HanSomenzi-SAT09] [HamadiJabbourSais’09]
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Future Work 10

• how to run LHBR and / or failed literal probing until completion

• transitive reduction (initially and after equality reduction)

• incremental SCC decomposition and equality reduction

• determine time / space complexity for the problem

• how to simulate structural hashing of XOR / ITE gates

• get more experimental data on

– how often this actually happens and for which benchmarks

– the empirical relation to on-the-fly subsumption
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