Decision Procedures in Hardware Design

Armin Biere

Dagstuhl Seminar 10161

Decision Procedures In
Software, Hardware and Bioware

Overview

e Decision Procedures for Hardware Design and Verification
— constrained random simulation’
— semi-formal® and bounded model checking’
— equivalence checking* and model checking’
— inductive techniques® and theorem proving’

— combinational® and sequential® synthesis

e New Results in SAT Preprocessing
— BCE = blocked clause elimination

— witnesses for mixing BCE with equivalence reasoning

Constrained Random Simulation! Hardware 2

stimulus
design under test
input output
generation checker
procedural declarative
(non-synthesizable) Verilog constraints
e.g. compute checksum of input packet e.g. assert checksum field to be correct

use random number generators specify distribution of input values

Semi-Formal Techniques? Hardware 3

Initial Target

>
% -

hit functional coverage target, specify light house as intermediate step

focus on coverage not on formal property verification

Bounded Model Checking? Hardware 4

environment |environment |environment |environment
Inputs Inputs Inputs Inputs

$ [transition | & |transition | $ |transition | [transition | &

® | function | 8| function | 8| function | 8| function | ©

v 7))} 7))} 7))} 7))}
outputs outputs outputs outputs
checker checker checker checker

check temporal properties, focus on falsification, use SAT solvers

o

used in many companies effectively

Equivalence Checking® Hardware 5

high—-level model
Verification C) Synthesis
implementation

high-level model Implementation

RTL: Verilog, VHDL gate- or switch-level

C models Verilog

RTL vs gate in widespread use

Model Checking?

e check temporal properties of RTL models
— verification instead of falsification as focus
— needs quantifier elimination, BDDs, k-induction or interpolation

— which in turn scales not as good = capacity issues

e commercially far less successful than equivalence checking
— specifications in temporal logic are hard to obtain

— modeling the environment is even harder

e capacity is increasing, but not much research in academia

— 3rd Hardware Model Checking Competition this year at FLOC

e explicit model checking for protocols is working

Hardware g

Inductive Techniques®: Burch & Dill's Commutative Diagram Haraware 7

how to prove pipelined processor to implement the architecture

real pipelined, out—of-order processor hypothetical non—pipelined processor

|
|
|
|
|
|
|

flush |
|

pipelined state > > > : > ™ | architecture state
|
|
| execution
one pipeline cycle : of ong
| machine
| instruction
|
|
Y flush | Y
pipelined state > > - - » | architecture state

|
|
|

needs additional state invariants, completion-function as inductive invariant for flush

Inductive Techniques®: Engineering Inductive Invariants Hardware g

e reachable states as strongest inductive invariant
— hard to compute; symbolic reachability is PSPACE complete = QBF

— shows that inductive invariants can always be used (in theory)

e k-inductive invariants do not have to be inductive (= 1-inductive)

k—1
et G*p= A\ X'p, pis k-iinductive iff M = G*p — XG*p iff M EGkp— Xkp
i=0

— strengthening of properties (with other invariants) still useful

e symbolic trajectory evaluation (STE) and also OneSpin’s approach
— user specifies property automaton: assume / guarantees on transitions

— over design variables, inductively show guarantees in parallel product

Theorem Proving’ Hardware g

e (academic) examples of full blown processor verification
— using ACL2, PVS, Isabelle for some processors

— incorporation of SMT solvers is ongoing research

e special purpose applications
— mostly for ALU but also more recently for instruction decoding
— theorem prover connects lemmas which are proven with decision procedures

— large theorems could involve reals (IEEE floating point standard conformance)

e specialized activity without many users

SyntheSiS&9 Hardware 19

Combinational Synthesis®
e generic problem: dp|Vilg(p,i) = s(i)]] Inputs i, parameter p
e for instance fitting / merging logic to a small part (rectification) ...
e ... or synthesizing clock gating control
e ... or functional substitution (can actually be done with interpolants)

e ... or fixing circuits automatically

Sequential Synthesis’
e game theory: the spec s is a temporal property

e not only in theory much more complex, needs application specific restrictions

Summary Hardware | 11

e decision procedures applied in HW vary on the amount of “formal”
— constrained random simulation’
— semi-formal® and bounded model checking’
— equivalence checking* and model checking’

— inductive techniques® and theorem proving’

e combinational® and sequential® synthesis interesting topics

e if your problem is hard and does not scale = change the problem

Blocked Clauses SAT 12

Definition

A literal [in a clause C of a CNF F blocks C w.r.t. F if for every clause C' € F with [€ C’, the
resolvent (C\ {I/})U(C"\ {I}) obtained from resolving C and C’ on [is a tautology.

Definition [Blocked Clause] A clause is blocked if has a literal that blocks it.
Definition [Blocked Literal] A literal is blocked if it blocks a clause.

Example (aVb)A(aVbVéE)A(aVe)
Only first clause is not blocked.

Second clause contains two blocked literals: a and ¢.

Literal ¢ in the last clause is blocked.

After removing either (a\VV bV ¢) or (aV c), the clause (aV b) becomes blocked.

All clauses can be removed.

Relating Blocked Clauses and Encoding / Preprocessing Techniques sar 13

COl Cone-of-Influence reduction
MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATelLite

BCE Blocked-Clause-Elimination

CNF-level simplification

Circuit—level simplification

[BCE+VE](PG) |< = BCE+VE

VE(PG) BCE(PG) |< = BCE

VE

PG(COI) PG(MIR) PG(NSI)| —L= col MIR

PG TST

Plaisted—Greenbaum encoding Tseitin encoding

encoding b be beb bebe e
T V C T V C T v Cc| T VvV C| T VvV C T V C
SuU 0| 46| 256|2303| 29| 178|[1042| 11{145||1188| 11|145|| 569| 11| 144|2064| 11| 153
AT 12| 9| 27| 116] 7| 18||1735 1| 8|1835 1| 6| 34| 1 6| 244 1 9
AP 10| 9| 20| 94| 7| 18||1900 1| 6| 36| 1| 6| 34 1 61912 1 6
AM | 190 1 8| 42/ 1 7| 178, 1| 7| 675 1| 7| 68 1 7| 48 1 8
AN 9 3| 10| 50 3 10/1855 1| 6| 36| 1 6| 34 1 6/1859 1 6
HT 147(121| 347||1648(117| 277||2641| 18/118| 567| 18{118| 594| 18| 116|3240| 23| 140
HP 130{121| 286||1398(117| 277||2630| 18/118| 567| 18{118| 595 18| 116|2835 19| 119
HM | 6961| 16| 91| 473| 16| 84| 621| 12| 78| 374| 12| 77| 403/ 12| 76| 553 15| 90
HN 134| 34| 124| 573| 34| 122||1185| 17/102|| 504| 17|101| 525/ 17| 100|1246] 17| 103
BT | 577/442|1253|5799(420{1119|7023| 57/321(|1410| 56|310|[1505|| 52 || 294 {8076/ 64| 363
BP | 542/442|1153|5461(420{1119||7041| 57/321||1413| 56|310||1506| 52| 294|7642 57| 322
BM [10024| 59| 311||1252| 58| 303|1351| 53|287|1135| 53|286|1211| 52| 280|1435| |55 || 303
BN 13148196 643|2902|193| 635|4845/108|508|2444/107|504|2250(105| 500|5076| 114 || 518
S = Sat competition T = plain Tseitin encoding
A = AlG competition P = Plaisted Greenbaum
H = HW model checking competition M = MiniCirc encoding
B = Dbit-vector SMT competition N = NiceDAGs

Preprocessing and Witnesses SAT 16

e equivalence reasoning
— if | = k is derived, actually clauses (I k)(IV k), then replace I by k
— in practice use Tarjan’s union-find algorithm, where
— each literal has a pointer to the representative of its equivalence class

— for substituted variables get their value from the representative

e blocked clause elimination
— save the removed blocked clauses on a stack

— traverse stack in reverse order, values of blocked literals may need to be flipped

e how to obtain a witness if both techniques are used?

No Need to Flip Values of Substituted Literals SAT 17

Theorem

LetC=(IVIV...VI,) be aclause blocked on [wrt. F and
furtherassume F\CE=Il=k then
for any assignment o with 6(F\C) =T

we also have o(C)=oc(F)=T

Proof Sketch

given resolution deriviation of / vV k from clauses F\C, w.l.o.g. tree like

definition: [forcing foraclause [Vk;V...Vky,iffo(k;)=...=0c(ky) =1 (andoc(l)=T)
show per induction: there is a path in the tree on which all clauses are [forcing

leaf on path is an input clause B € F\C, with [€ B but also k; € B for one j since C is blocked

since B is [forcing o(k;) = L and thus 6(k;) =o(C) =T g.e.d.

