
Decision Procedures in Hardware Design

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University

Linz, Austria

Dagstuhl Seminar 10161

Decision Procedures in
Software, Hardware and Bioware

Schloss Dagstuhl, Germany

April 2010

Overview 1

• Decision Procedures for Hardware Design and Verification

– constrained random simulation1

– semi-formal2 and bounded model checking3

– equivalence checking4 and model checking5

– inductive techniques6 and theorem proving7

– combinational8 and sequential9 synthesis

• New Results in SAT Preprocessing

– BCE = blocked clause elimination

– witnesses for mixing BCE with equivalence reasoning

Armin Biere – FMV – JKU Linz

Constrained Random Simulation1
Hardware 2

design under test

stimulus

input

generation

output

checker

procedural declarative

(non-synthesizable) Verilog constraints

e.g. compute checksum of input packet e.g. assert checksum field to be correct

use random number generators specify distribution of input values

Armin Biere – FMV – JKU Linz

Semi-Formal Techniques2
Hardware 3

Lighthouse TargetInitial

hit functional coverage target, specify light house as intermediate step

focus on coverage not on formal property verification

Armin Biere – FMV – JKU Linz

Bounded Model Checking3
Hardware 4

st
at

es

inputs

outputs

environment

transition
function

checker

st
at

es

inputs

outputs

environment

transition
function

checker

st
at

es

inputs

outputs

environment

transition
function

checker

st
at

es
inputs

outputs

environment

st
at

estransition
function

checker

check temporal properties, focus on falsification, use SAT solvers

used in many companies effectively

Armin Biere – FMV – JKU Linz

Equivalence Checking4
Hardware 5

high−level model

implementation

SynthesisVerification

high-level model implementation

RTL: Verilog, VHDL gate- or switch-level

C models Verilog

RTL vs gate in widespread use

Armin Biere – FMV – JKU Linz

Model Checking5
Hardware 6

• check temporal properties of RTL models

– verification instead of falsification as focus

– needs quantifier elimination, BDDs, k-induction or interpolation

– which in turn scales not as good⇒ capacity issues

• commercially far less successful than equivalence checking

– specifications in temporal logic are hard to obtain

– modeling the environment is even harder

• capacity is increasing, but not much research in academia

– 3rd Hardware Model Checking Competition this year at FLOC

• explicit model checking for protocols is working

Armin Biere – FMV – JKU Linz

Inductive Techniques6: Burch & Dill’s Commutative Diagram Hardware 7

how to prove pipelined processor to implement the architecture

hypothetical non−pipelined processor

pipelined state

pipelined state architecture state

real pipelined, out−of−order processor

one pipeline cycle

execution
of one
machine
instruction

flush

flush

architecture state

needs additional state invariants, completion-function as inductive invariant for flush

Armin Biere – FMV – JKU Linz

Inductive Techniques6: Engineering Inductive Invariants Hardware 8

• reachable states as strongest inductive invariant

– hard to compute; symbolic reachability is PSPACE complete ⇒ QBF

– shows that inductive invariants can always be used (in theory)

• k-inductive invariants do not have to be inductive (= 1-inductive)

let Gkp≡
k−1̂

i=0
Xip, p is k-inductive iff M |= Gkp→ XGkp iff M |= Gkp→ Xkp

– strengthening of properties (with other invariants) still useful

• symbolic trajectory evaluation (STE) and also OneSpin’s approach

– user specifies property automaton: assume / guarantees on transitions

– over design variables, inductively show guarantees in parallel product

Armin Biere – FMV – JKU Linz

Theorem Proving7
Hardware 9

• (academic) examples of full blown processor verification

– using ACL2, PVS, Isabelle for some processors

– incorporation of SMT solvers is ongoing research

• special purpose applications

– mostly for ALU but also more recently for instruction decoding

– theorem prover connects lemmas which are proven with decision procedures

– large theorems could involve reals (IEEE floating point standard conformance)

• specialized activity without many users

Armin Biere – FMV – JKU Linz

Synthesis8,9
Hardware 10

Combinational Synthesis8

• generic problem: ∃p[∀i[g(p, i) = s(i)]] inputs i, parameter p

• for instance fitting / merging logic to a small part (rectification) . . .

• . . . or synthesizing clock gating control

• . . . or functional substitution (can actually be done with interpolants)

• . . . or fixing circuits automatically

Sequential Synthesis9

• game theory: the spec s is a temporal property

• not only in theory much more complex, needs application specific restrictions

Armin Biere – FMV – JKU Linz

Summary Hardware 11

• decision procedures applied in HW vary on the amount of “formal”

– constrained random simulation1

– semi-formal2 and bounded model checking3

– equivalence checking4 and model checking5

– inductive techniques6 and theorem proving7

• combinational8 and sequential9 synthesis interesting topics

• if your problem is hard and does not scale ⇒ change the problem

Armin Biere – FMV – JKU Linz

Blocked Clauses SAT 12

Definition

A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause C′ ∈ F with l̄ ∈C′, the
resolvent (C \{l})∪ (C′ \{l̄}) obtained from resolving C and C′ on l is a tautology.

Definition [Blocked Clause] A clause is blocked if has a literal that blocks it.

Definition [Blocked Literal] A literal is blocked if it blocks a clause.

Example (a∨b)∧ (a∨ b̄∨ c̄)∧ (ā∨ c)

Only first clause is not blocked.

Second clause contains two blocked literals: a and c̄.

Literal c in the last clause is blocked.

After removing either (a∨ b̄∨ c̄) or (ā∨ c), the clause (a∨b) becomes blocked.

All clauses can be removed.
Armin Biere – FMV – JKU Linz

Relating Blocked Clauses and Encoding / Preprocessing Techniques SAT 13

[JärvisaloBiereHeule-TACAS10]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination

Armin Biere – FMV – JKU Linz

Plaisted−Greenbaum encoding

C
irc

ui
t−

le
ve

l s
im

pl
ifi

ca
tio

n

Tseitin encoding

C
N

F
−

le
ve

l s
im

pl
ifi

ca
tio

n [BCE+VE](PG)

VE(PG) BCE(PG)

PL(PG)

PG(MIR)PG(COI)

PG

PG(NSI) COI MIR NSI

VE

BCE+VE

BCE

PL

TST

encoding b be beb bebe e

T V C T V C T V C T V C T V C T V C

SU 0 46 256 2303 29 178 1042 11 145 1188 11 145 569 11 144 2064 11 153

A T 12 9 27 116 7 18 1735 1 8 1835 1 6 34 1 6 244 1 9

A P 10 9 20 94 7 18 1900 1 6 36 1 6 34 1 6 1912 1 6

AM 190 1 8 42 1 7 178 1 7 675 1 7 68 1 7 48 1 8

AN 9 3 10 50 3 10 1855 1 6 36 1 6 34 1 6 1859 1 6

H T 147 121 347 1648 117 277 2641 18 118 567 18 118 594 18 116 3240 23 140

HP 130 121 286 1398 117 277 2630 18 118 567 18 118 595 18 116 2835 19 119

HM 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 90

HN 134 34 124 573 34 122 1185 17 102 504 17 101 525 17 100 1246 17 103

B T 577 442 1253 5799 420 1119 7023 57 321 1410 56 310 1505 52 294 8076 64 363

B P 542 442 1153 5461 420 1119 7041 57 321 1413 56 310 1506 52 294 7642 57 322

BM 10024 59 311 1252 58 303 1351 53 287 1135 53 286 1211 52 280 1435 55 303

BN 13148 196 643 2902 193 635 4845 108 508 2444 107 504 2250 105 500 5076 114 518

S = Sat competition T = plain Tseitin encoding
A = AIG competition P = Plaisted Greenbaum
H = HW model checking competition M = MiniCirc encoding
B = bit-vector SMT competition N = NiceDAGs

Armin Biere – FMV – JKU Linz

Preprocessing and Witnesses SAT 16

• equivalence reasoning

– if l = k is derived, actually clauses (l̄∨ k)(l∨ k̄), then replace l by k

– in practice use Tarjan’s union-find algorithm, where

– each literal has a pointer to the representative of its equivalence class

– for substituted variables get their value from the representative

• blocked clause elimination

– save the removed blocked clauses on a stack

– traverse stack in reverse order, values of blocked literals may need to be flipped

• how to obtain a witness if both techniques are used?

Armin Biere – FMV – JKU Linz

No Need to Flip Values of Substituted Literals SAT 17
[JärvisaloBiere-SAT10]

Theorem

Let C = (l∨ l1∨ . . .∨ ln) be a clause blocked on l wrt. F and

further assume F\C |= l = k then

for any assignment σ with σ(F\C) =>

we also have σ(C) = σ(F) =>

Proof Sketch

σ(l) =⊥ σ(k) =>

given resolution deriviation of l̄∨ k from clauses F\C, w.l.o.g. tree like

definition: l forcing for a clause l∨k1∨ . . .∨km iff σ(k1) = . . . = σ(km) =⊥ (and σ(l) =>)

show per induction: there is a path in the tree on which all clauses are l forcing

leaf on path is an input clause B∈ F\C, with l ∈ B but also k̄ j ∈ B for one j since C is blocked

since B is l forcing σ(k̄ j) =⊥ and thus σ(k j) = σ(C) => q.e.d.
Armin Biere – FMV – JKU Linz

