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Dress Code Tutorial Speaker as SAT Problem

propositional logic:

variables tie shirt

negation ¬ (not)

disjunction ∨ (or)

conjunction ∧ (and)

clauses (conditions / constraints)

1. clearly one should not wear a tie without a shirt ¬tie∨shirt

2. not wearing a tie nor a shirt is impolite tie∨shirt

3. wearing a tie and a shirt is overkill ¬(tie∧shirt) ≡ ¬tie∨¬shirt

Is this formula in conjunctive normal form (CNF) satisfiable?

(¬tie∨shirt) ∧ (tie∨shirt) ∧ (¬tie∨¬shirt)













What is Practical SAT Solving?

simplifying

encoding

inprocessing

CDCL

search

reencoding



Equivalence Checking If-Then-Else Chains

original C code optimized C code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?



Compilation

original ≡ if ¬a∧¬b then h else if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f )

optimized ≡ if a then f else if b then g else h

≡ a∧ f ∨ ¬a∧ if b then g else h

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f ) 6⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

satisfying assignment gives counter-example to equivalence



Tseitin Transformation: Circuit to CNF
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o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .



Tseitin Transformation: Gate Constraints

Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (((y∧ z)∨ (y∧ z))→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y∧ z)→ x)∧ ((y∧ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (y∨ z∨ x)∧ (y∨ z∨ x)



Bit-Blasting of Bit-Vector Addition

addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, · ]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0, false)

where

[ s , o ]2 = FullAdder(x,y, i) with

s = x xor y xor i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)



Intermediate Representations

encoding directly into CNF is hard, so we use intermediate levels:

1. application level

2. bit-precise semantics world-level operations (bit-vectors)

3. bit-level representations such as And-Inverter Graphs (AIGs)

4. conjunctive normal form (CNF)

encoding “logical” constraints is another story



XOR as AIG

yx

negation/sign are edge attributes
not part of node

x xor y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)
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Encoding Logical Constraints

Tseitin construction suitable for most kinds of “model constraints”

assuming simple operational semantics: encode an interpreter

small domains: one-hot encoding large domains: binary encoding

harder to encode properties or additional constraints

temporal logic / fix-points

environment constraints

example for fix-points / recursive equations: x = (a∨ y), y = (b∨ x)

has unique least fix-point x = y = (a∨b)

and unique largest fix-point x = y = true but unfortunately . . .

. . . only largest fix-point can be (directly) encoded in SAT
otherwise need stable models / logical programming / ASP



Example of Logical Constraints: Cardinality Constraints

given a set of literals {l1, . . . ln}
constraint the number of literals assigned to true

l1+ · · ·+ ln ≥ k or l1+ · · ·+ ln ≤ k or l1+ · · ·+ ln = k

combined make up exactly all fully symmetric boolean functions

multiple encodings of cardinality constraints

naı̈ve encoding exponential: at-most-one quadratic, at-most-two cubic, etc.

quadratic O(k ·n) encoding goes back to Shannon

linear O(n) parallel counter encoding [Sinz’05]

many variants even for at-most-one constraints

for an O(n · logn) encoding see Prestwich’s chapter in Handbook of SAT

Pseudo-Boolean constraints (PB) or 0/1 ILP constraints have many encodings too

2 ·a+b+ c+d +2 · e ≥ 3

actually used to handle MaxSAT in SAT4J for configuration in Eclipse



BDD-Based Encoding of Cardinality Constraints
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Tseitin Encoding of If-Then-Else Gate

t

x

1

0e

c

x↔ (c ? t : e) ⇔ (x→ (c→ t)) ∧ (x→ (c̄→ e)) ∧ (x̄→ (c→ t̄)) ∧ (x̄→ (c̄→ ē))

⇔ (x̄∨ c̄∨ t) ∧ (x̄∨ c∨ e) ∧ (x∨ c̄∨ t̄) ∧ (x∨ c∨ ē)

minimal but not arc consistent:

if t and e have the same value then x needs to have that too

possible additional clauses

(t̄ ∧ ē→ x̄) ≡ (t ∨ e∨ x̄) (t ∧ e→ x) ≡ (t̄ ∨ ē∨ x)

but can be learned or derived through preprocessing (ternary resolution)
keeping those clauses redundant is better in practice



DIMACS Format

$ cat example.cnf

c comments start with ’c’ and extend until the end of the line

c

c variables are encoded as integers:

c

c ’tie’ becomes ’1’

c ’shirt’ becomes ’2’

c

c header ’p cnf <variables> <clauses>’

c

p cnf 2 3

-1 2 0 c !tie or shirt

1 2 0 c tie or shirt

-1 -2 0 c !tie or !shirt

$ picosat example.cnf

s SATISFIABLE

v -1 2 0



SAT Application Programmatic Interface (API)

incremental usage of SAT solvers

add facts such as clauses incrementally

call SAT solver and get satisfying assignments

optionally retract facts

retracting facts

remove clauses explicitly: complex to implement

push / pop: stack like activation, no sharing of learned facts

MiniSAT assumptions [EénSörensson’03]

assumptions

unit assumptions: assumed for the next SAT call

easy to implement: force SAT solver to decide on assumptions first

shares learned clauses across SAT calls

IPASIR: Reentrant Incremental SAT API

used in the SAT competition / race since 2015 [BalyoBiereIserSinz’16]



IPASIR Model



#include "ipasir.h"

#include <assert.h>

#include <stdio.h>

#define ADD(LIT) ipasir_add (solver, LIT)

#define PRINT(LIT) \

  printf (ipasir_val (solver, LIT) < 0 ?  " -" #LIT : " " #LIT)

int main () {

  void * solver = ipasir_init ();

  enum { tie = 1, shirt = 2 };

  ADD (-tie); ADD ( shirt); ADD (0);

  ADD ( tie); ADD ( shirt); ADD (0);

  ADD (-tie); ADD (-shirt); ADD (0);

  int res = ipasir_solve (solver);

  assert (res == 10);

  printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");

  printf ("assuming now: tie shirt\n");

  ipasir_assume (solver, tie); ipasir_assume (solver, shirt);

  res = ipasir_solve (solver);

  assert (res == 20);

  printf ("unsatisfiable, failed:");

  if (ipasir_failed (solver, tie)) printf (" tie");

  if (ipasir_failed (solver, shirt)) printf (" shirt");

  printf ("\n");

  ipasir_release (solver);

  return res;

}

$ ./example

satisfiable: shirt -tie

assuming now: tie shirt

unsatisfiable, failed: tie



IPASIR Functions

const char * ipasir_signature ();

void * ipasir_init ();

void ipasir_release (void * solver);

void ipasir_add (void * solver, int lit_or_zero);

void ipasir_assume (void * solver, int lit);

int ipasir_solve (void * solver);

int ipasir_val (void * solver, int lit);

int ipasir_failed (void * solver, int lit);

void ipasir_set_terminate (void * solver, void * state,

                           int (*terminate)(void * state));



DP / DPLL

dates back to the 50’ies:

1st version DP is resolution based ⇒ preprocessing

2nd version D(P)LL splits space for time ⇒ CDCL

ideas:

1st version: eliminate the two cases of assigning a variable in space or

2nd version: case analysis in time, e.g. try x = 0,1 in turn and recurse

most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

recent (≤ 20 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at each of them)



DP Procedure

forever

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and ¬x

⇒ Bounded Variable Elimination



Bounded Variable Elimination
[EénBiere-SAT’05]

Replace
(x̄∨a)1 (x̄∨ c)4
(x̄∨b)2 (x∨d)5

(x∨ ā∨ b̄)3

by
(a∨ ā∨ b̄)13 (a∨d)15 (c∨d)45
(b∨ ā∨ b̄)23 (b∨d)25
(c∨ ā∨ b̄)34

number of clauses not increasing

strengthen and remove subsumbed clauses too

most important and most effective preproessing we have

Bounded Variable Addition
[MantheyHeuleBiere-HVC’12]

Replace
(a∨d) (a∨ e)
(b∨d) (b∨ e)
(c∨d) (c∨ e)

by (x̄∨a) (x̄∨b) (x̄∨ c)
(x∨d) (x∨ e)

number of clauses has to decrease strictly

reencodes for instance naive at-most-one constraint encodings



D(P)LL Procedure

DPLL(F)

F := BCP(F) boolean constraint propagation

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l})

⇒ CDCL



DPLL Example
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Conflict Driven Clause Learning (CDCL)
[MarqueSilvaSakallah’96]

first implemented in the context of GRASP SAT solver

name given later to distinguish it from DPLL

not recursive anymore

essential for SMT

learning clauses as no-goods

notion of implication graph

(first) unique implication points



Conflict Driven Clause Learning (CDCL)
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Conflict Driven Clause Learning (CDCL)
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Conflict Driven Clause Learning (CDCL)
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Conflict Driven Clause Learning (CDCL)
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Implication Graph

d = 1 @ 1 e = 1 @ 1
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Conflict

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision



Antecedents / Reasons

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f h = 1 @ 2 i = 1 @ 2
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d∧g∧ s → t ≡ (d∨g∨ s∨ t)



Conflicting Clauses

d = 1 @ 1 e = 1 @ 1
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Resolving Antecedents 1st Time
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Resolving Antecedents 1st Time

d = 1 @ 1 e = 1 @ 1
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Resolvents = Cuts = Potential Learned Clauses
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Potential Learned Clause After 1 Resolution
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Resolving Antecedents 2nd Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

ys

g

d = 1 @ 1

= 1 @ 2

= 1 @ 4

(d∨g∨ s∨ t) (h∨ i∨ t ∨ z)

(d∨g∨ s∨h∨ i∨ z)



Resolving Antecedents 3rd Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

z

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

= 1 @ 4 κ conflict

y= 1 @ 4t= 1 @ 4

= 1 @ 2

= 1 @ 1d

g

s

= 1 @ 4x

(x∨ z) (d∨g∨ s∨h∨ i∨ z)

(x∨d∨g∨ s∨h∨ i)



Resolving Antecedents 4th Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

x = 1 @ 4

= 1 @ 4

= 1 @ 4

t

z

(s∨ x) (x∨d∨g∨ s∨h∨ i)

(d∨g∨ s∨h∨ i)
self subsuming resolution



1st UIP Clause after 4 Resolutions

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

1st UIP

backjump level

(d∨g∨ s∨h∨ i)

UIP = unique implication point dominates conflict on the last level



Backjumping

x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.



Resolving Antecedents 5th Time

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

k = 1 @ 3

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

l = 1 @ 3

= 1 @ 4r

(l∨ r∨ s) (d∨g∨ s∨h∨ i)

(l∨ r∨d∨g∨h∨ i)



Decision Learned Clause

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

y

g

d

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

r = 1 @ 4 = 1 @ 4s

l = 1 @ 3= 1 @ 3k
backtrack

level

last UIP

(d∨g∨ l∨ r∨h∨ i)



1st UIP Clause after 4 Resolutions

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

(d∨g∨ s∨h∨ i)



Locally Minimizing 1st UIP Clause

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

i = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

h = 1 @ 2

(h∨ i) (d∨g∨ s∨h∨ i)

(d∨g∨ s∨h)
self subsuming resolution



Locally Minimized Learned Clause

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

(d∨g∨ s∨h)



Minimizing Locally Minimized Learned Clause Further?

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

Remove ?

h = 1 @ 2

(d∨g∨ s∨6 h)



Recursively Minimizing Learned Clause

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
(e∨d∨g∨ s)

(b∨d∨g∨ s)

(d∨g∨ s)



Recursively Minimized Learned Clause

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

unit

= 1 @ 2

= 1 @ 1

= 1 @ 0

h

e

b

(d∨g∨ s)



Decision Heuristics

number of variable occurrences in (remaining unsatisfied) clauses (LIS)

eagerly satisfy many clauses

many variations were studied in the 90ies

actually expensive to compute

dynamic heuristics

focus on variables which were usefull recently in deriving learned clauses

can be interpreted as reinforcement learning

started with the VSIDS heuristic [MoskewiczMadiganZhaoZhangMalik’01]

most solvers rely on the exponential variant in MiniSAT (EVSIDS)

recently showed VMTF as effective as VSIDS [BiereFröhlich-SAT’15] survey

look-ahead

spent more time in selecting good variables (and simplification)

related to our Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC’11]

“The Science of Brute Force” [Heule & Kullman CACM August 2017]



Variable Scoring Schemes
[BiereFröhlich-SAT’15]

s old score s′ new score

variable score s′ after i conflicts

bumped not-bumped

STATIC s s static decision order
INC s+1 s increment scores
SUM s+ i s sum of conflict-indices

VSIDS h256
i · s+1 h256

i · s original implementation in Chaff

NVSIDS f · s+(1− f ) f · s normalized variant of VSIDS
EVSIDS s+gi s exponential MiniSAT dual of NVSIDS

ACIDS (s+ i)/2 s average conflict-index decision scheme
VMTF i s variable move-to-front
VMTF’ b s variable move-to-front variant

0 < f < 1 g = 1/ f hm
i = 0.5 if m divides i hm

i = 1 otherwise

i conflict index b bumped counter



Basic CDCL Loop

int basic_cdcl_loop () {

  int res = 0;

  while (!res)

         if (unsat) res = 20;

    else if (!propagate ()) analyze ();    // analyze propagated conflict

    else if (satisfied ()) res = 10;       // all variables satisfied

    else decide ();                        // otherwise pick next decision

  return res;

}



Reducing Learned Clauses

keeping all learned clauses slows down BCP kind of quadratically

so SATO and RelSAT just kept only “short” clauses

better periodically delete “useless” learned clauses

keep a certain number of learned clauses “search cache”

if this number is reached MiniSAT reduces (deletes) half of the clauses

then maximum number kept learned clauses is increased geometrically

LBD (glucose level / glue) prediction for usefulness [AudemardSimon-IJCAI’09]

LBD = number of decision-levels in the learned clause

allows arithmetic increase of number of kept learned clauses

keep clauses with small LBD forever (≤ 2 . . .5)

large fixed cache usesful for hard satisfiable instances (crypto) [Chanseok Oh]



Restarts

often it is a good strategy to abandon what you do and restart

for satisfiable instances the solver may get stuck in the unsatisfiable part

for unsatisfiable instances focusing on one part might miss short proofs

restart after the number of conflicts reached a restart limit

avoid to run into the same dead end

by randomization (either on the decision variable or its phase)

and/or just keep all the learned clauses during restart

for completeness dynamically increase restart limit

arithmetically, geometrically, Luby, Inner/Outer

Glucose restarts [AudemardSimon-CP’12]

short vs. large window exponential moving average (EMA) over LBD

if recent LBD values are larger than long time average then restart



Luby’s Restart Intervals
70 restarts in 104448 conflicts

 0
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 25

 30

 35

 0  10  20  30  40  50  60  70



Luby Restart Scheduling

unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts



Reluctant Doubling Sequence
[Knuth’12]

(u1,v1) = (1,1)

(un+1,vn+1) = ((un &−un == vn) ? (un+1,1) : (un,2vn))

(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), . . .



Restart Scheduling with Exponential Moving Averages
[BiereFröhlich-POS’15]

◦ LBD — fast EMA of LBD with α = 2−5

| restart — slow EMA of LBD with α = 2−14 (ema-14)

| inprocessing — CMA of LBD (average)



Phase Saving and Rapid Restarts

phase assignment:

assign decision variable to 0 or 1?

only thing that matters in satisfiable instances

“phase saving” as in RSat [PipatsrisawatDarwiche’07]

pick phase of last assignment (if not forced to, do not toggle assignment)

initially use statically computed phase (typically LIS)

so can be seen to maintain a global full assignment

and thus makes CDCL actually a rather “local” search procedure

rapid restarts

varying restart interval with bursts of restarts

not only theoretically avoids local minima

works nicely together with phase saving

reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT’11]



CDCL Loop with Reduce and Restart

int basic_cdcl_loop_with_reduce_and_restart () {

  int res = 0;

  while (!res)

         if (unsat) res = 20;

    else if (!propagate ()) analyze ();    // analyze propagated conflict

    else if (satisfied ()) res = 10;       // all variables satisfied

    else if (restarting ()) restart ();    // restart by backtracking

    else if (reducing ()) reduce ();       // collect useless learned clauses

    else decide ();                        // otherwise pick next decision

  return res;

}



Code from our SAT Solver CaDiCaL

int Internal::search () {

  int res = 0;

  START (search);

  while (!res)

         if (unsat) res = 20;

    else if (!propagate ()) analyze ();    // analyze propagated conflict

    else if (iterating) iterate ();        // report learned unit

    else if (satisfied ()) res = 10;       // all variables satisfied

    else if (terminating ()) break;        // limit hit or asynchronous abort

    else if (restarting ()) restart ();    // restart by backtracking

    else if (reducing ()) reduce ();       // collect useless learned clauses

    else if (probing ()) probe ();         // failed literal probing

    else if (subsuming ()) subsume ();     // subsumption algorithm

    else if (eliminating ()) elim ();      // bounded variable elimination

    else if (compactifying ()) compact (); // collect internal variables

    else decide ();                        // otherwise pick next decision

  STOP (search);

  return res;

}
https://github.com/arminbiere/cadical

https://fmv.jku.at/cadical

https://github.com/arminbiere/cadical
https://fmv.jku.at/cadical


Two-Watched Literal Schemes

original idea from SATO [ZhangStickel’00]

invariant: always watch two non-false literals

if a watched literal becomes false replace it

if no replacement can be found clause is either unit or empty

original version used head and tail pointers on Tries

improved variant from Chaff [MoskewiczMadiganZhaoZhangMalik’01]

watch pointers can move arbitrarily SATO: head forward, tail backward

no update needed during backtracking

one watch is enough to ensure correctness but looses arc consistency

reduces visiting clauses by 10x

particularly useful for large and many learned clauses

blocking literals [ChuHarwoodStuckey’09]

special treatment of short clauses (binary [PilarskiHu’02] or ternary [Ryan’04])

cache start of search for replacement [Gent-JAIR’13]



Proofs / RUP / DRUP

original idea for proofs: proof traces / sequence consisting of “learned clauses”

can be checked clause by clause through unit propagation

reverse unit implied clauses (RUP) [GoldbergNovikov’03] [VanGelder’12]

deletion information (DRUP): proof trace of added and deleted clauses

RUP in SAT competition 2007, 2009, 2011, DRUP since 2013 to certify UNSAT

Blocked Clauses
[Kullman-DAM’99] [JärvisaloHeuleBiere-JAR’12]

clause

C︷ ︸︸ ︷
(a∨ l) “blocked” on l w.r.t. CNF

F︷ ︸︸ ︷
(ā∨b)∧ (l∨ c)∧ (l̄∨ ā)︸ ︷︷ ︸

D
all resolvents of C on l with clauses D in F are tautological

blocked clauses are “redundant” too

adding or removing blocked clauses does not change satisfiability status

however it might change the set of models



Resolution Asymmetric Tautologies (RAT)

“Inprocessing Rules” [JärvisaloHeuleBiere-IJCAR’12]

justify complex preprocessing algorithms in Lingeling

examples are adding blocked clauses or variable elimination

interleaved with research (forgetting learned clauses = reduce)

need more general notion of redundancy criteria

simply replace “resolvents are tautological” by “resolvents on l are RUP”

(a∨ l) RAT on l w.r.t. (ā∨b)∧ (l∨ c)∧ (l̄∨b)︸ ︷︷ ︸
D

deletion information is again essential (DRAT)

now mandatory in the main track of the last two SAT competitions

pretty powerful: can for instance also cover symmetry breaking



Propagation Redundant (PR)

“Short Proofs Without New Variables” [HeuleKieslBiere-CADE’17] best paper

more general than RAT: short proofs for pigeon hole formulas without new variables

C propagation redundant if ∃ (partial) assignment ω satisfying C with F |C `1 F |ω
Satisfaction Driven Clause Learning (SDCL) [HeuleKieslSeidlBiere-HVC’17]

first automatically generated PR proofs

prune paths for which we have other at least as satisfiable paths

translate PR to DRAT [HeuleBiere-TACAS’18]

only one additional variable needed

shortest proofs for pigeon hole formulas

in general quadratic



Parallel SAT

application level parallelism

guiding path principle

portfolio (with sharing)

(concurrent) cube & conquer

⇒ Handbook of Parallel Constraint Reasoning

⇒ still many low-level programming issues left
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