Searching, Simplifying, Proving
A Tutorial on Modern SAT Solving

Armin Biere

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

ETAPS'18

Thessaloniki, Greece
April 18, 2018

Dress Code Tutorial Speaker as SAT Problem

® propositional logic:

= variables tie shirt

= negation - (not)
= disjunction V (or)
= conjunction A (and)

® clauses (conditions / constraints)

1. clearly one should not wear a tie without a shirt —tie v shirt
2. not wearing a tie nor a shirt is impolite tie v shirt
3. wearing a tie and a shirt is overkill —(tie Ashirt) = —tieV —shirt

® |s this formula in conjunctive normal form (CNF) satisfiable?

(-tie vshirt) A (tie v shirt) A (-tie v -shirt)

__ —_— -Jvum'lwlmb'q{p’] 5 o
LX) XI5 ;
SN0)

- 2010 Award
lingelin o &
g | SAT-Race 2010 Award

b : :
Y Armin Biere 7

r:ﬁ»ﬁb‘izv?bﬁilﬂﬁhﬁbﬂﬁlwﬁt G

Firainalrel

OO BAIL

i

0K

GO

Tenth lt\\.ert\at\onn\ Conference

On Theory and App\'\eat\ons ol atistiability Testing is awar d d h
ed t /
e title
of

‘ Best Pa
‘*‘ | rEl Solver

“Lingeling’
by Armin Biere

[5G

3
)

is awarded the title of

G

A
CABALI0

5:1

I

Tw
elfth International Confere
\rice

Second PI'iZC \'Vin] On Theory and Applicatio, £S
EHR ons of Satisfis

ability Testing

I

,..,._ﬁ
S

L)

o

B - T o

31

IPnIting Commiree
OmMitmee

O RIS

Awardod 10—
written by ——
a agoTY, 2%
for best pffi-vn’“u\\l‘l‘» by & solver i the 4 category
o
\nfn:\sms.rku specialty
The \i\Tl‘""J compatition jodges and oTERW
a
o
/¢ %
L

(Er <-)’r)'.l
 §
“n',' : h(';‘clhl
n <

&

ey

P

=
-

e e —————— RNy

))
el |E e $s /38 ®®[5o%- o (] JFind .

PREFACE v

Special thanks are due to Armin Biere. Randy Bryvant. Sam Buss. Niklas Eén.
lan Gent, Marijn Heule, Holger Hoos., Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz. Niklas Sorensson, Udo Wermuth, Ryvan Williams, and . .. for their detailed
comments on my early attempts at exposition. as well as to numerons other cor
respondents who have contributed crucial corrections. Thanks also to Stanford’s
Information Systems Laboratory for providing extra computer power when my
laptop machine was inadequate.

Wow Section 7.2.2.2 has turned out to be the longest section, by far. in
The Art of Computer Programming. The SAT problem is evidently a “killer
app. because it is kev to the solution of so manyv other problems. Consequently
I can only hope that my lengthy treatment does not also kill off my faithful
readers! As | wrote this material, one topic alwavs seemed to flow naturally
into another. so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn't allow for a Section
7.2.2.2.1.)

Biere
Bryvant
Huss

Fen

Caenft
Heule
Hoos
Janson
Jeavons
kKroening
Kullmann
Lauria
Pegden
Shortz
Sing
SOrensson
Wermuth
Williams
PR

Internet

L1

What is Practical SAT Solving?

reencoding

encoding -

Inprocessing

= simplifying |

= search
CDCL

Equivalence Checking If-Then-Else Chains

original C code optimized C code
if(la && !'b) h(); if(a) £0);
else if('a) g(); else if(b) g();
else f£(); else h{();

$ i

if(la) { if(a) £();

if(!b) h(); = else {

else gl(); if(!'b) h();
} else £(); else g(); }

How to check that these two versions are equivalent?

Compilation

original = if —a A\ —b then h else if —a then g else f
= (maA—-b)ANh NV —(—aA-b)A if —a then g else f
= (maAN-b)NhV —(maAN-D)\N(—aNg V al f)
optimized = if athen f else if b then g else &

alf VvV —aNif b then g else K
aNf NV —aN(bAg NV —bAh)

(maAN=b)ANh N =(maN=Db)N(—aNg N aNf) < aANfN —-aAN(bANgV —bAh)

satisfying assignment gives counter-example to equivalence

Tseitin Transformation: Circuit to CNF

7o

Bre

oN(x—=>a)N(x—=>c)N(xalc)N ...

oN(XVa)N(XVc)A(xVave)A ...

o N

Tseitin Transformation: Gate Constraints

Negation: Xy (x—=y)AH—x)

<~

& (XVY)A(Vx)
Disjunction: x <« (yVz) y—=x)Az—=x)A(x— (yV2))
FVX)AEZVX)A(XVyVz)

(0

Conjunction: x <+ (yAz)

T ¢ ¢
o
S

Equivalence: x<+ (y<+ 2)

S S | | M}
SO
oo
+ 1 2

TaEmEesal

T > > >

Bit-Blasting of Bit-Vector Addition

addition of 4-bit numbers x,y with result s also 4-bit: s=Xx+Yy

[S37S27S1750]4 — [x37x27x17x0]4+ [y37y27y17y0]4

53, -]2 = FullAdder(x3,y3,¢2)

:51761:2 = FullAdder xlaylac())

(

57,c2]2 = FullAdder(xp,y2,c1)
(
(

50,c0l2 = FullAdder(xq,yo,false)
where

[s,0]p = FullAdder(x,y,i) with
§ = X XOry Xxor i

o = (xAY)VAD)V(AD) = (x+y+i)>2)

Intermediate Representations

® encoding directly into CNF is hard, so we use intermediate levels:
1. application level
2. bit-precise semantics world-level operations (bit-vectors)
3. bit-level representations such as And-Inverter Graphs (AIGs)
4. conjunctive normal form (CNF)

® encoding “logical” constraints is another story

XOR as AlG

X Y

negation/sign are edge attributes
not part of node

xxory = (XAY)V(xAY) = (XAY)A(xAY)

L0 L00

fA -'/a- = e e — S
DD IGIDIOCIOIOIDIO) ege‘o o) oy o) (o0 GO Ta0) GO TaD) Gy (o) o
e —

D,
T S ey
° ®' o =
OIOIGIOIDIDE @@@o G

~—
e S =
D e ————— __, ®

F—
OO B B OGN C) ()
s ‘ &L&@@@
—_———— §A—G' — -

\ N

= —
G
Q)

AN AN AN AR Al

bit-vector of length 16 shifted by bit-vector of length 4

04

A,

T i»‘?! lm

\m%«

Encoding Logical Constraints

® Tseitin construction suitable for most kinds of “model constraints”
= assuming simple operational semantics: encode an interpreter

= gsmall domains: one-hot encoding large domains: binary encoding

®= harder to encode properties or additional constraints

= temporal logic / fix-points

= environment constraints

m example for fix-points / recursive equations: x=(aVy), y=(bVx)
= has unique least fix-point x=y=(aVb)
= and unique largest fix-point x=y=rtrue but unfortunately ...

= ... only largest fix-point can be (directly) encoded in SAT
otherwise need stable models / logical programming / ASP

Example of Logical Constraints: Cardinality Constraints

® given a set of literals {/y,...1,}
= constraint the number of literals assigned to true

" W+t >2k or Lh+--+ L <k or L+---+Il=k

= combined make up exactly all fully symmetric boolean functions

= multiple encodings of cardinality constraints
= paive encoding exponential: at-most-one quadratic, at-most-two cubic, etc.

= quadratic O(k-n) encoding goes back to Shannon

= linear O(n) parallel counter encoding [Sinz’05]

® many variants even for at-most-one constraints

= for an O(n-logn) encoding see Prestwich’s chapter in Handbook of SAT

= Pseudo-Boolean constraints (PB) or 0/1 ILP constraints have many encodings too

2-d+b+c+d+2-e >3

actually used to handle MaxSAT in SAT4J for configuration in Eclipse

BDD-Based Encoding of Cardinality Constraints

2<li+--19 <3

/Y SRy A U R AN S R —

A A Y A A

/Y Ny S A A A A R —

/Y R [S B S N

l---l-— -l ——~L~—ly- — —lj— - -1

0 0 0 0 0 0

If-Then-Else gates (MUX) with “then” edge downward, dashed “else” edge to the right

Tseitin Encoding of If-Then-Else Gate

x> (c?tie) & (x=(c=)ANx=>C—oe) NF—=(c—=D) N F—(C—e))

& (EVEVE) A (EVeVe) A (xVEVI) A (xVeVe)

minimal but not arc consistent:
® if r and e have the same value then x needs to have that too
® possible additional clauses
(fAe—X%x) = (tVeVX) (tAhe—x) = (fVeVx)

® put can be learned or derived through preprocessing (ternary resolution)
keeping those clauses redundant is better in practice

DIMACS Format

$ cat example.cnf

c comments start with "¢’ and extend until the end of the line

C
c variables are encoded as integers:
C
C "tie’ becomes 1’
C "shirt’ becomes ’2'
C
¢ header 'p cnf <variables> <clauses>'’
C
p cnf 2 3
-1 20 c !tie or shirt
1 2 0 C tie or shirt
-1 -2 0 c !tie or !shirt

S picosat example.cnf
s SATISFIABLE
v -1 2 0

SAT Application Programmatic Interface (API)

® incremental usage of SAT solvers
= add facts such as clauses incrementally

= call SAT solver and get satisfying assignments

= optionally retract facts

® retracting facts
= remove clauses explicitly: complex to implement

= push / pop: stack like activation, no sharing of learned facts

= MiniSAT assumptions [EénSorensson’03]

® assumptions
= unit assumptions: assumed for the next SAT call

= easy to implement: force SAT solver to decide on assumptions first

= shares learned clauses across SAT calls

®m |PASIR: Reentrant Incremental SAT API
= used in the SAT competition / race since 2015 [BalyoBierelserSinz’16]

IPASIR Model
val

add
assume

add
assume

#include "ipasir.h"
#include <assert.h>
#include <stdio.h>

#define ADD (LIT) ipasir _add (solver, LIT)
#define PRINT (LIT) \
printf (ipasir_wval (solver, LIT) < 0 2 " =" #LIT " OHLIT)
int main () {
void * solver = ipasir_init ();
enum { tie = 1, shirt = 2 };
ADD (-tie); ADD (shirt); ADD (0); S ./example
ADD (tie); ADD (shirt); ADD (0); satisfiable: shirt -tie
ADD (-tie); ADD (—shirt); ADD (0); assuming now: tie shirt
int res = ipasir_solve (solver); unsatisfiable, failed: tie
assert (res == 10);
printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");
printf ("assuming now: tie shirt\n");
ipasir_assume (solver, tie); ipasir_assume (solver, shirt);
res = ipasir_solve (solver);
assert (res == 20);
printf ("unsatisfiable, failed:");
if (ipasir_failed (solver, tie)) printf (" tie");
if (ipasir_failed (solver, shirt)) printf (" shirt");

("\n");

ipasir_ release

printf
(solver) ;
return res;

IPASIR Functions

const char * ipasir_ signature ();

void * ipasir_init ();

void ipasir_ release (void * solver);

void ipasir_add (void * solver, int lit_or_ zero);
void ipasir_assume (void * solver, int 1lit);

int ipasir_solve (void * solver);

int ipasir val (void * solver, int 1it);

int ipasir_failed (void * solver, int 1lit);

void ipasir_ set_terminate (void * solver, wvoid * state,
int (*terminate) (void * state));

DP / DPLL

m dates back to the 50’ies:

15t version DP is resolution based = preprocessing
2nd version D(P)LL splits space for time = |CDCL
® jdeas:

= 15t version: eliminate the two cases of assigning a variable in space or

= 2" yersion: case analysis in time, e.g. try x =0, 1 in turn and recurse

= most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

® recent (< 20 years) optimizations:
backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at each of them)

DP Procedure

forever

if ¥ = T return satisfiable

if | € F return unsatisfiable

pick remaining variable x
add all resolvents on x

remove all clauses with x and —x

= Bounded Variable Elimination

Bounded Variable Elimination
[EénBiere-SAT 05]

(*Va); (¥Ve)s
Replace (XVb)y (xVd)s
(xVavbh)s

® number of clauses not increasing

= strengthen and remove subsumbed clauses too

® most important and most effective preproessing we have

Bounded Variable Addition
[MantheyHeuleBiere-HVC'12]

(aVd)
Replace (bVvd)
(cVd)

® number of clauses has to decrease strictly

by

(cVavhb)ay

(aVe)
(bVe) by
(cVe)

® reencodes for instance naive at-most-one constraint encodings

(aVd)is

@by (bVd)ys

(cVd)ss

D(P)LL Procedure

DPLL(F)
F := BCP(F)

if ' = T return satisfiable

if | € F return unsatisfiable

pick remaining variable x and literal [€ {x, —~x}

if DPLL(F N{l}) returns satisfiable return satisfiable

return DPLL(F AN {—l})

CDCL

DPLL Example

clauses
decision a

-|Clv-|bv-|C

C ~av bv-ac
~av bv ¢
Clv-ll?V'lC
av-bv ¢
av bv-c
av bv c

decision b

1 C

Conflict Driven Clause Learning (CDCL)
[MarqueSilvaSakallah’96]

= first implemented in the context of GRASP SAT solver
= name given later to distinguish it from DPLL

" not recursive anymore
® essential for SMT
® |earning clauses as no-goods
® notion of implication graph

® (first) unique implication points

Conflict Driven Clause Learning (CDCL)

clauses
decision a dv-buac

_ navabv ¢
a=1 decision b ~av bvac
b_l 1dv bv C

B av-bv-c

-0 nC Clv-lbv C
€= av bv-c

av bv c

learn -av-ab

Conflict Driven Clause Learning (CDCL)

decision a

- b

O
¢ BCP

clauses

-|Clv-|bV'|C
-|Clv-|bv C

av-ll?V'lC
av-bv ¢
av bv-c
av bv ¢

-|Clv-|b

learn 1 d

Conflict Driven Clause Learning (CDCL)

o
-a BCP

®
- ¢ decision

>
-b BCP

learn

clauses

~avabvac
~av-bv c
~av bvac
~av bv c
avabv-c

av bv-lc

-|Clv-|b

QI

Conflict Driven Clause Learning (CDCL)

-a BCP

b BCP

learn

clauses

~avabvac
~avabv c
~av bvac
~av bv c

Q
<
_|
<
o

av bv C
‘IaV‘Ib

I—"I

Implication Graph

top-level unit a=1@O unit b=1@O

____________________________ R A

decision c=1@1 — d=1@1 —e=1@1

decision

decision

decision

K conflict

Conflict

top-level unit a=1@O0 unit b=1@O0O

decision

decision

decision

=1l@4 ———z=1@4 — K conflict

Antecedents / Reasons

top-level unit a=1@O0 unit b=1@O0O

decision

decision

decision

=1l@4 ———z=1@4 —— K conflict

dNgNs — t =

(dVgVsVit)

Conflicting Clauses

top—level unit a=1@O0 unit b=1@O

____________________________ R A

decision ¢c=1@1 —= d=1@1 —=e=1@ 1

decision

decision

decision

=l@4 ——z=1@4 —— K conflict

~(yAz) = (yVz)

Resolving Antecedents 15t Time

top—level unit a=1@O0 unit b=1@O

____________________________ R A

decision ¢c=1@1 —= d=1@1 —=e=1@ 1

decision

decision

decision

=l@4 ——z=1@4 —— K conflict

(hViIVEVy) (yVZ)

Resolving Antecedents 15t Time

top—level unit a=1@O0 unit b=1@O

____________________________ R A

decision ¢c=1@1 —= d=1@1 —=e=1@ 1

decision

decision

decision

Resolvents = Cuts = Potential Learned Clauses

top-level unit a=1@O0 unit b=1@O

____________________________ R N

decision c=1@1 — d=1@1 —e=1@1

decision f=1@ 2

decision k=1@ 3

decision r=1@4

=1@4 ——z=1@4 — K conflict

(hViIVEVy) (YVZ)
(hViVIVZ)

Potential Learned Clause After 1 Resolution

top-level unit a=1@O unit b=1@O0

____________________________ R A

decision c=1@1 — d=1@1 —e=1@1

decision

decision

decision

=1l@4 ———z=1@4 — K conflict

(hViIVIVZ)

Resolving Antecedents 2" Time

top—level unit a=1@O unit b=1@O

____________________________ R A

decision c=1@1 —d=1@]1 ——e=1@ 1

decision

decision

decision

Resolving Antecedents 3" Time

top—level unit a=1@O unit b=1@O

____________________________ R N

decision c=1@1 — d=1@1 —e=1@1

decision

decision

decision r=1@4 ——

-1@4 — ~t=1@4 —~y=1@4

1 |

=1 @4 —{221@4 K conflict

Resolving Antecedents 4th Time

top—level unit a=1@O unit b=1@O

____________________________ R N

decision c=1@1 — d=1@1 —e=1@1

decision

decision

decision

15t UIP Clause after 4 Resolutions

top-level unit a=1@O0 unit b=1@O0O

decision f=1@2 — g=1@ 2 h=1@2 —i=1@?2
backjump level

decision k=1@3 — [=1@3

--------------------------------- 1st UIP
decision r=1@ 4 @4 — ~t=1@4 —=y=1@4

S

X

1 @4 z=1@4 — K conflict
(dVgVsVhVi)

UIP = unique implication point dominates conflict on the last level

Backjumping

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case — assuming x was used.

Resolving Antecedents 5t Time

top—level unit a=1@O0 unit b=1@O

____________________________ R N

decision ¢c=1@1 —= d=1@1 —=e=1@ 1

decision f=1@?2

Decision Learned Clause

top-level unit a=1@O0 unit b=1@O0O

decision f=1@?2

decision k=1@ 3

backtrack
level

decision [r=1 @4 |—

1 @4 —~t=1@4 —=y=1@4

S
last UIP l
X

l@4 ———z=1@4 — K conflict

15t UIP Clause after 4 Resolutions

top-level unit a=1@O0 unit b=1@O0O

decision

decision

1

1@4 — ~t=1@4 —=y=1@4

decision r=1@4 ——

l@4 ———z=1@4 — K conflict

(dVgVsVhVi)

Locally Minimizing 15t UIP Clause

top—level unit a=1@O0 unit b=1@O

____________________________ R N

decision ¢c=1@1 —= d=1@1 —=e=1@ 1

decision f=1@2 —— g=

decision k=1@3 — [

decision r=1@4 —

-1@4 — ~t=1@4 —~y=1@4

=l@4 —z=1@4 — K conflict

(h Vi) (3 VEVsSVhVi)
VSVh)

self subsuming resolution

E\J
Ool

Locally Minimized Learned Clause

top-level unit a=1@O0 unit b=1@O0O

____________________________ R A

decision ¢c=1@1 —= d=1@1 —=e=1@ 1

decision

decision

1

1@4 —~t=1@4 —=y=1@4

decision r=1@4 —

l@4 ——z=1@4 — K conflict

(dVgVsVh)

Minimizing Locally Minimized Learned Clause Further?

top—level unit a=1@O0 unit b=1@O

____________________________ R N

decision ¢c=1@1 —= d=1@1 —=e=1@ 1

L Remove ?

hzl@zj—» i=1@?2

decision

decision

1

decision r=1@4 —=s=1@4 — ~t=1@4 —=y=1@4

l@4d ———z=1@4 —— K conflict

(dVgVsVh)

Recursively Minimizing Learned Clause

top—level unit a=1@O0 it Wb =1 @ 0
____________________________ e

decision

____________________________ =

decision

desson k=1@3 = 1=1@3 N\ O\

decision

Recursively Minimized Learned Clause

top-level unit a=1@O0 unit b=1@0

____________________________ R A

decision ¢c=1@1 —=d=1@1 —=e=1@ 1

decision

decision

1

1@4 —~t=1@4 —=y=1@4

decision r=1@4 —

l@4 ——z=1@4 — K conflict

(dVgV5)

Decision Heuristics

® number of variable occurrences in (remaining unsatisfied) clauses (LIS)
= eagerly satisfy many clauses

= many variations were studied in the 90ies

= actually expensive to compute

® dynamic heuristics
= focus on variables which were usefull recently in deriving learned clauses
= can be interpreted as reinforcement learning
= started with the VSIDS heuristic [MoskewiczMadiganZhaoZhangMalik’01]
= most solvers rely on the exponential variant in MiniSAT (EVSIDS)

= recently showed VMTF as effective as VSIDS [BiereFrohlich-SAT’15] survey

= |ook-ahead
= gpent more time in selecting good variables (and simplification)
= related to our Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC’11]
= “The Science of Brute Force” [Heule & Kullman CACM August 2017]

Variable Scoring Schemes

[BiereFrohlich-SAT’15]

s old score s’ new score
variable score s’ after i conflicts
bumped not-bumped
STATIC s s static decision order
INC s+1 s increment scores
SUM s+i s sum of conflict-indices
VSIDS W05+ 1 h?36.s | original implementation in Chaff
NVSIDS f-s+(1—=f) f-s normalized variant of VSIDS
EVSIDS s+ g s exponential MiniSAT dual of NVSIDS
ACIDS (s+1i)/2 s average conflict-index decision scheme
VMTF I s variable move-to-front
VMTF’ b s variable move-to-front variant
0<f<l g=1/f h'"=0.5 |Ifm dividesi k" =1 otherwise

i conflict index

b bumped counter

Basic CDCL Loop

int basic_cdcl_loop () {
int res = 0;

while (!res)
if (unsat) res = 20;

else if (!propagate ()) analyze (); // analyze propagated conflict
else if (satisfied ()) res = 10; // all variables satisfied
else decide (); // otherwise pick next decision

return res;

Reducing Learned Clauses

® keeping all learned clauses slows down BCP
= 50 SATO and RelSAT just kept only “short” clauses

® petter periodically delete “useless” learned clauses
= keep a certain number of learned clauses

= if this number is reached MiniSAT reduces (deletes) half of the clauses

= then maximum number kept learned clauses is increased

= [BD (glucose level / glue) prediction for usefulness
= LBD = number of decision-levels in the learned clause

geometrically

= allows |arithmetic | increase of number of kept learned clauses

= keep clauses with small LBD forever (<2...5)

= large fixed cache usesful for hard satisfiable instances (crypto)

kind of quadratically

“search cache”

[AudemardSimon-lJCAI'09]

[Chanseok Oh]

Restarts

m often it is a good strategy to abandon what you do and restart
= for satisfiable instances the solver may get stuck in the unsatisfiable part

= for unsatisfiable instances focusing on one part might miss short proofs

= restart after the number of conflicts reached a restart limit

® avoid to run into the same dead end
= by randomization (either on the decision variable or its phase)

= and/or just keep all the learned clauses during restart
® for completeness dynamically increase restart limit
= arithmetically, geometrically, Luby, Inner/Outer

® Glucose restarts [AudemardSimon-CP’12]
= short vs. large window exponential moving average (EMA) over LBD

= if recent LBD values are larger than long time average then restart

Luby’s Restart Intervals

35 I T T T T T

30

20

15

10 |

++ ++ ++ ++ ++ ++ A+ ++ ++ ++ A+ ++ ++ ++ ++ ++ ++ ++

0]]]]]]

0 10 20 30 40 50 60

Luby Restart Scheduling

unsigned

luby (unsigned 1)
{

unsigned k;

for (k = 1; k < 32; k++)
if (1 == (1 << k) - 1)
return 1 << (k - 1);

for (k = 1;; k++)

1f ((1 << (k = 1)) <=1 && 1 < (1 << k) - 1)
return luby (i - (1 << (k-=1)) + 1);

limit = 512 x luby (++restarts);

// run SAT core loop for ’'limit’ conflicts

Reluctant Doubling Sequence
[Knuth’12]

(ur,v1) = (1,1)

(Uni1,Vn41) = ((un & —up==vp) ? (un+1,1) : (un,2vy))

(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), ...

Restart Scheduling with Exponential Moving Averages
[BiereFrohlich-POS’15]

o LBD — fast EMA of LBD with ot =273
| restart slow EMA of LBD with oo =2~ (ema-14)
| inprocessing — CMA of LBD (average)

120
|

100
|

80
|

60
|

40

conflicts

Phase Saving and Rapid Restarts

® phase assignment:
= assign decision variable to 0 or 1?

= only thing that matters in satisfiable instances

® “phase saving” as in RSat [PipatsrisawatDarwiche’07]
= pick phase of last assignment (if not forced to, do not toggle assignment)

= jnitially use statically computed phase (typically LIS)
" s0 can be seen to maintain a global full assignment

= and thus makes CDCL actually a rather “local” search procedure

® rapid restarts
= varying restart interval with bursts of restarts

= not only theoretically avoids local minima

= works nicely together with phase saving

® reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT 11]

CDCL Loop with Reduce and Restart

int basic_cdcl_loop _with_reduce_and_restart () {
int res = 0;
while (!res)
if (unsat) res = 20;

else if (!propagate ()) analyze (); // analyze propagated conflict
else if (satisfied ()) res = 10; // all variables satisfied

else if (restarting ()) restart (); // restart by backtracking

else if (reducing ()) reduce (); // collect useless learned clauses
else decide (); // otherwise pick next decision

return res;

Code from our SAT Solver CaDiCalL

int Internal::search () {
int res = 0;
START (search);
while (!res)
if (unsat) res = 20;

else if (!propagate ()) analyze ();
else if (iterating) iterate ();

else if (satisfied ()) res = 10;

else if (terminating ()) break;

else if (restarting ()) restart ();
else if (reducing ()) reduce ();

else if (probing ()) probe ();

else if (subsuming ()) subsume ();
else if (eliminating ()) elim ();

else if (compactifying ()) compact ();

else decide ();
STOP (search);
return res;

//
//
//
//
//
//
//
//
//
//
//

analyze propagated conflict
report learned unit

all variables satisfied

limit hit or asynchronous abort
restart by backtracking

collect useless learned clauses
failed literal probing
subsumption algorithm

bounded variable elimination
collect internal variables

otherwise pick next decision

https://github.com/arminbiere/cadical

https://fmv.jku.at/cadical

https://github.com/arminbiere/cadical
https://fmv.jku.at/cadical

Two-Watched Literal Schemes

= original idea from SATO [ZhangStickel'00]
= jnvariant: |always watch two non-false literals

= if a watched literal becomes false replace it
= if no replacement can be found clause is either unit or empty
= original version used head and tail pointers on Tries

= improved variant from Chaff [MoskewiczMadiganZhaoZhangMalik'01]
= watch pointers can move arbitrarily SATO: head forward, tail backward

= no update needed during backtracking

® one watch is enough to ensure correctness but looses arc consistency

® reduces visiting clauses by 10x
= particularly useful for large and many learned clauses

® blocking literals [ChuHarwoodStuckey’09]
m gpecial treatment of short clauses (binary [PilarskiHu’02] or ternary [Ryan’04])

® cache start of search for replacement [Gent-JAIR'13]

Proofs / RUP / DRUP

® original idea for proofs: proof traces / sequence consisting of “learned clauses”
® can be checked clause by clause through unit propagation

® reverse unit implied clauses (RUP) [GoldbergNovikov’03] [VanGelder'12]

® deletion information (DRUP): proof trace of added and deleted clauses

= RUP in SAT competition 2007, 2009, 2011, DRUP since 2013 to certify UNSAT

Blocked Clauses
[Kullman-DAM'99] [JarvisaloHeuleBiere-JAR’12]

/_/(j\ 7 f; ™~
m clause (aVl) “blocked”on [w.rt.CNF (aVb)A(IVc)A(IVa)
D

= all resolvents of C on [with clauses D in F are tautological

® blocked clauses are “redundant” too
= adding or removing blocked clauses does not change satisfiability status

= however it might change the set of models

Resolution Asymmetric Tautologies (RAT)

“Inprocessing Rules” [JarvisaloHeuleBiere-lJCAR12]

® justify complex preprocessing algorithms in Lingeling
= examples are adding blocked clauses or variable elimination

= interleaved with research (forgetting learned clauses = reduce)

® need more general notion of redundancy criteria
= simply replace “resolvents are tautological”’ by “resolvents on [are RUP”

V1 RAT on / 1. AIVDYN(INVE)AN(VD
(aVl) onl w.r (a)(c)(D)

= deletion information is again essential (DRAT)
= now mandatory in the main track of the last two SAT competitions

= pretty powerful: can for instance also cover symmetry breaking

Propagation Redundant (PR)
“Short Proofs Without New Variables” [HeuleKiesIBiere-CADE’17] best paper

= more general than RAT: short proofs for pigeon hole formulas without new variables
= C propagation redundant if 3 (partial) assignment satisfying C with F |C 1 F|®
m Satisfaction Driven Clause Learning (SDCL) [HeuleKiesISeidlBiere-HVC’'17]

= first automatically generated PR proofs

= prune paths for which we have other at least as satisfiable paths

® translate PR to DRAT [HeuleBiere-TACAS’18]
= only one additional variable needed

= shortest proofs for pigeon hole formulas

= in general quadratic

Parallel SAT

® application level parallelism
® guiding path principle
® portfolio (with sharing)

® (concurrent) cube & conquer

= Handbook of Parallel Constraint Reasoning

= still many low-level programming issues left

Personal SAT Solver History

Handbook of SAT
Inprocessing
Tseitin BMC , |SMT Cube & Conquer
DPL. Encoding SAT Chapter
NP SAT et CDCL VSIDS Donald Knuth
complete
- P WalkSAT LBD Proofs
GSAT — _ SAT
‘ — |- ‘ ‘ everywhere
| T | | L
1960 1970 1980 1990 2000 2010
competition Saving w%ﬁgi:ng
Look Ahead Bounded |ProbSAT Macsivel
Variable Avatar dassively
SAT for Elimination | Parallel
Planing Arithmetic

Solvers

SAT/SMT/AR Summer School 2018

International Summer School on Satisfiability, Satisfiability Modulo Theories, and Automated Reasoning

HOME APPLICATION SPEAKERS LOCAL INFORMATION PREVIOUS SCHOOLS

Home

Satisfiability (SAT), Satisfiability Modulo Theories (SMT), and Automated Reasoning (AR) continue to make rapid
advances and find novel uses in a wide variety of applications, both in computer science and beyond. The
SAT/SMT/AR Summer School aims to bring a select group of students up to speed quickly in this exciting research
area. The school continues the successful line of Summer Schools that ran from 2011 to 2015 as SAT/SMT
Summer Schools and added AR in 2016.

The summer school will be taking place in the School of Computer Science at the University of Manchester. The

school will take place on EECH[FI\APANE N (o] g=la(=Ts []-4 2 Ko &)

