
Preprocessing and Inprocessing Techniques in SAT

Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

joint work with

Marijn Heule and Matti Järvisalo on SAT preprocessing
Florian Lonsing and Martina Seidl on QBF preprocessing

Haifa Verification Conference
Thursday, December 8, 2011

Haifa, Israel

RiSE

Dress Code as Satisfiability Problem search 1/46

• propositional logic:

– variables tie shirt

– negation ¬ (not)

– disjunction ∨ disjunction (or)

– conjunction ∧ conjunction (and)

• three conditions / clauses:

– clearly one should not wear a tie without a shirt ¬tie∨shirt

– not wearing a tie nor a shirt is impolite tie∨shirt

– wearing a tie and a shirt is overkill ¬(tie∧shirt) ≡ ¬tie∨¬shirt

• is the formula (¬tie∨shirt)∧ (tie∨shirt)∧ (¬tie∨¬shirt) satisfiable?

RiSE

 0

 200

 400

 600

 800

 1000

 1200

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 T

im
e

(in
 s

ec
on

ds
)

Number of problems solved

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Limmat (2002)
Zchaff (2002)
Berkmin (2002)
Forklift (2003)
Siege (2003)
Zchaff (2004)
SatELite (2005)
Minisat 2 (2006)
Picosat (2007)
Rsat (2007)
Minisat 2.1 (2008)
Precosat (2009)
Glucose (2009)
Clasp (2009)
Cryptominisat (2010)
Lingeling (2010)
Minisat 2.2 (2010)
Glucose 2 (2011)
Glueminisat (2011)
Contrasat (2011)
Lingeling 587f (2011)

[Le Berre ' 11]

What is Practical SAT Solving? search 3/46

simplifying

encoding

search

inprocessing

1st part

2nd part

reencoding?

RiSE

DPLL Procedure search
[DavisLogemannLoveland’62]

4/46

DPLL(F)

F := BCP(F) boolean constraint propagation

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l}

RiSE

DPLL Example search 5/46

a

clauses

v b v ca

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

a v b v c

b

c

c

c b b

a

b c

b =

a =

c =

1

0

1 BCP

decision

decision

RiSE

Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]

6/46

c

a v b

a v blearn

a

b

b =

a =

c =

1

0

1 BCP

decision

decision

clauses

v b v ca

a v b v c

a v b v c

v c

a v b v c

a v b v c

a v b v c

a v b v c

RiSE

Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]

7/46

a v b

b
c

b

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

a v b v c

v b

0

BCP

BCP

decision a

learn

RiSE

Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]

8/46

a v b

b

a

a

c

b

a

a v b v c

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

BCP

decision

BCP

clearn

RiSE

Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]

9/46

a v b

b

a

a

a

b =

a =

c =

1

0

clauses

v b v ca

a v b v c

a v b v c

v c

a v v c

a v b v c

a v b v c

v b

0

a BCP

BCP

c

c BCP

b

a v b v c

learn

empty clause

RiSE

Preprocessing/Inprocessing Overview simplifying 10/46

• failed literal probing

• variable elimination (VE)

• inprocessing

• lazy hyper binary resolution

• blocked clause elimination (BCE)

– for SAT

– for QBF

• hidden tautologies elimination (HTE)

• unhiding

RiSE

Failed Literal Probing simplifying 11/46
we are still working on tracking down the origin before [Freeman’95] [LeBerre’01]

• key technique in look-ahead solvers such as Satz, OKSolver, March

– failed literal probing at all search nodes

– used to find the best decision variable and phase

• simple algorithm

1. assume literal l, propagate (BCP), if this results in conflict, add unit clause ¬l

2. continue with all literals l until saturation (nothing changes)

• quadratic to cubic complexity

– BCP linear in the size of the formula 1st linear factor

– each variable needs to be tried 2nd linear factor

– and tried again if some unit has been derived 3rd linear factor

RiSE

Extensions simplifying 12/46

• lifting

– complete case split: literals implied in all cases become units

– similar to Stålmark’s method and Recursive Learning [PradhamKunz’94]

• asymmetric branching

– assume all but one literal of a clause to be false

– if BCP leads to conflict remove originally remaining unassigned literal

– implemented for a long time in MiniSAT but switched off by default

• generalizations:

– vivification [PietteHamadiSais ECAI’08]

– distillation [JinSomenzi’05][HanSomenzi DAC’07] probably most general (+ tries)

RiSE

Bounded Variable Elimination (VE) simplifying 13/46

[Biere’04][SubbarayanPradhan’04][EénBiere SAT’05]

• goes back to original Davis & Putnam algorithm [DP’60]

– eliminate variable x by adding all resolvents with x as pivot . . .

– . . . and removing all clauses in which x or ¬x occurs

– eliminating one variable is in the worst case quadratic

• bounded = apply only if increment in size is small

– Quantor [Biere’03,Biere’04] bound increase in terms of literals (priority queue)

– NiVER [SubbarayanPradhan’04] do non increase number of clauses (round-robin)

– SatELite [EénBiere’05] do not increase number of clauses (priority queue)

RiSE

Additional Techniques Related to VE simplifying 14/46

• fast subsumption and strengthening [Biere’04][EénBiere’05]

– backward subsumption: traverse clauses of least occurring literal

– forward subsumption: one-watched literal scheme [Zhang’05]

– 1st and 2nd level signatures = Bloom-filters for faster checking

– strengthen clauses through self-subsuming resolution

• functional substitution

– if x has a functional dependency, e.g. Tseitin translation of a gate

– then only resolvents using exactly one “gate clause” need to be added

x=a∧b︷ ︸︸ ︷
(x̄∨a)(x̄∨b)(x∨ ā∨ b̄)(x∨ c)(x∨d)(x̄∨ e)(x̄∨ f) 7 clauses

(a∨ c)(a∨d)(b∨ c)(b∨d)(ā∨ b̄∨ e)(ā∨ b̄∨ f)(c∨ e)(c∨ f)(d∨ e)(d∨ f) 6 + 4 clauses

RiSE

Inprocessing: Interleaving Preprocessing and Search simplifying 15/46

• preprocessing can be extremely beneficial

– most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

– equivalence & XOR reasoning beneficial

– probing / failed literal preprocessing / hyper binary resolution useful

– however, even though polynomial, can not be run until completion

• inprocessing: simple idea to benefit from full preprocessing without penalty

– “preempt” preprocessors after some time

– resume preprocessing between restarts

– limit preprocessing time in relation to search time

RiSE

Benefits of Interleaving Preprocessing and Search simplifying 16/46

• allows to use costly preprocessors

– without increasing run-time “much” in the worst-case

– still useful for benchmarks where these costly techniques help

– good examples: probing and distillation even VE can be costly

• additional benefit:

– makes learned units / equivalences / implications available to preprocessing

– particularly interesting if preprocessing simulates encoding optimizations

• danger of hiding “bad” implementation though . . .

• . . . and hard(er) to debug

RiSE

Background on Hyper Binary Resolution (HBR) simplifying 17/46

• one Hyper Binary Resolution step [Bacchus-AAAI02]

(l∨ l1∨·· ·∨ ln) (l1∨ l′) · · · (ln∨ l′)
(l∨ l′)

– combines multiple resolution steps into one

– special case “hyper unary resolution” where l = l′

– HBR stronger than unit propagation if it is repeated until (confluent) closure

– equality reduction: if (a∨b),(a∨b) ∈ f replace a by b in f substitution

• can be simulated by unit propagation [BacchusWinter-SAT03]

if (l∨ l′) ∈ HypBinRes(f) then l′ ∈ UnitProp(f ∧ l) or vice versa

• repeated probing, c.f. HypBinResFast [GershmanStrichman-SAT05]

RiSE

Previous Optimizations simplifying 18/46

[BacchusWinter-SAT03][GershmanStrichman-SAT05]

• maintain acyclic and transitively-reduced binary implication graph

– acyclic: decomposition in strongly connected components (SCCs)

(a∨b)(b∨ c)(c∨a)∧R equisatisfiable to R[a/b,a/c]

– transitively-reduced: remove resp. do not add transitive edges

• not all literals have to be probed

– if l ∈ UnitProp(r) and UnitProp(r) does not produce anything

⇒ no need to probe l until next unit or implication is found

– at least with respect to units it is possible to focus on roots

– tree based probing in March

• current algorithms too expensive to run until completion we are working on this

RiSE

Observations simplifying 19/46

• time complexity: seems to be at least quadratic, unfortunately also in practice

• space complexity: unclear, at most quadratic, linear?

• hyper binary resolution simulates structural hashing for AND gates a and b

F ≡ (a∨ x)(a∨ y)(a∨ x∨ y) (b∨ x)(b∨ y)(b∨ x∨ y) · · ·

(a∨ x)(a∨ y)(b∨ x∨ y)
(a∨b)

(b∨ x)(b∨ y)(a∨ x∨ y)
(b∨a)

a

b

x
y

x

y

can also be seen by b ∈ UnitProp(F ∧a) and a ∈ UnitProp(F ∧b)

• can not simulate structural hashing of ITE or (binary) XOR gates

– need equivalence reasoning and/or double look ahead

RiSE

Lazy Hyper Binary Resolution (LHBR) simplifying 20/46

• learn binary clauses lazily or on-the-fly

– in the innermost (!) BCP loop

– actually only necessary during failed literal probing

• whenever a large clause (a1∨·· ·∨am∨ c) with m≥ 2 becomes a reason for c

– partial assignment σ with σ(ai) = 0 and σ(c) = 1

– check whether exists literal d dominating all ai

– in implication graph restricted to binary clauses

– which is a tree !

• learn (d∨ c) if such a dominator exists better (ē∨ c)
a b c

d

e

a b

RiSE

Status of (L)HBR simplifying 21/46

• theory

– at least as strong as structual hashing with AIGs

– might derive additional important implication

• practice

– empirically proven that simulation of structural hashing really works

– but current algorithms are far slower (100x)

– example: combinational miter for intel048 from HWMCC (> 200k gates) with itself

can not be solved by Lingeling in a day, with structural hashing in half a second

• even in combination with advanced probing techniques

– such as tree based lookahead as implemented by Marijn Heule in March

– probably need eager/online substitution current hypothesis

RiSE

Blocked Clause Elimination (BCE) simplifying 22/46

fix a CNF F

one clause C ∈ F with l all clauses in F with l̄

l̄∨ ā∨ c

a∨b∨ l

l̄∨ b̄∨d

all resolvents of C on l are tautological ⇒ C can be removed

Proof assume assignment σ satisfies F\C but not C

can be extended to a satisfying assignment of F by flipping value of l

RiSE

Blocked Clauses Eliminationn vs Encoding vs Preprocessing simplifying 23/46

[JärvisaloBiereHeule-TACAS10] [JärvisaloBiereHeule-JAR1X]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination

RiSE

Plaisted−Greenbaum encoding

C
ir
c
u
it
−

le
v
e
l
s
im

p
lif

ic
a
ti
o
n

Tseitin encoding

C
N

F
−

le
v
e
l
s
im

p
lif

ic
a
ti
o
n [BCE+VE](PG)

VE(PG) BCE(PG)

PL(PG)

PG(MIR)PG(COI)

PG

PG(NSI) COI MIR NSI

VE

BCE+VE

BCE

PL

TST

encoding b be beb bebe e

T V C T V C T V C T V C T V C T V C

SU 0 46 256 2303 29 178 1042 11 145 1188 11 145 569 11 144 2064 11 153

A T 12 9 27 116 7 18 1735 1 8 1835 1 6 34 1 6 244 1 9

A P 10 9 20 94 7 18 1900 1 6 36 1 6 34 1 6 1912 1 6

AM 190 1 8 42 1 7 178 1 7 675 1 7 68 1 7 48 1 8

AN 9 3 10 50 3 10 1855 1 6 36 1 6 34 1 6 1859 1 6

H T 147 121 347 1648 117 277 2641 18 118 567 18 118 594 18 116 3240 23 140

HP 130 121 286 1398 117 277 2630 18 118 567 18 118 595 18 116 2835 19 119

HM 6961 16 91 473 16 84 621 12 78 374 12 77 403 12 76 553 15 90
HN 134 34 124 573 34 122 1185 17 102 504 17 101 525 17 100 1246 17 103

B T 577 442 1253 5799 420 1119 7023 57 321 1410 56 310 1505 52 294 8076 64 363

B P 542 442 1153 5461 420 1119 7041 57 321 1413 56 310 1506 52 294 7642 57 322
BM 10024 59 311 1252 58 303 1351 53 287 1135 53 286 1211 52 280 1435 55 303

BN 13148 196 643 2902 193 635 4845 108 508 2444 107 504 2250 105 500 5076 114 518

S = Sat competition T = plain Tseitin encoding
A = AIG competition P = Plaisted Greenbaum
H = HW model checking competition M = MiniCirc encoding
B = bit-vector SMT competition N = NiceDAGs

RiSE

Further Clause Elimination Procedures simplifying
[HeuleJärvisaloBiere LPAR’10]

26/46

H = hidden, A = asymmetric,
SE = subsumption elimination, T = tautology elimination

BC = blocked clause elimination, CC = covered clause elimination

ATE

HTE

TE

ASE

HSE

SE

ABCE

HBCE

ACCE

CCE

HCCE

BCE

satisfiability equivalentlogically equivalent

RiSE

QBCE simplifying
[BiereLonsingSeidl-CADE11]

27/46

Quantified Blocking Literal Given PCNF ψ := Q1S1 . . .QnSn. φ, a literal l in a clause
C ∈ ψ is a quantified blocking literal if for every clause C′ with ¬l ∈C′, C⊗C′ is tautologous
wrt. some variable k such that k ≤ l in prefix ordering.

Quantified Blocked Clause Given PCNF Q1S1 . . .QnSn. (φ∧C). Clause C is quantified
blocked if it contains a quantified blocking literal. Removing C preserves satisfiability.

Q1S1 . . .QnSn. (φ∧C)
sat≡ Q1S1 . . .QnSn. φ.

All clauses blocked: ∀x∃y((x∨¬y)∧ (¬x∨ y)).

No clause blocked: ∃x∀y((x∨¬y)∧ (¬x∨ y)).

Implemented in our QBF preprocessor Bloqqer

RiSE

Experimental Results for QBCE simplifying
[BiereLonsingSeidl-CADE11]

28/46

formulas (total 568) run time (sec)

preprocessing solved sat unsat avg med

DepQBF

sQueeze/Bloqqer 482 (+29%) 234 248 180 5
Bloqqer 467 (+25%) 224 243 198 5
Bloqqer/sQueeze 452 (+21%) 213 239 258 19
sQueeze 435 (+16%) 201 234 231 6
none 373 167 206 332 26

Qube

sQueeze/Bloqqer 454 (+36%) 207 247 227 7
Bloqqer 444 (+33%) 200 244 246 5
Bloqqer/sQueeze 421 (+26%) 183 238 307 27
sQueeze 406 (+22%) 181 225 313 31
none 332 135 197 426 258

Quantor

Bloqqer 288 (+39%) 145 143 468 34
sQueeze/Bloqqer 285 (+38%) 147 138 472 39
Bloqqer/sQueeze 270 (+31%) 131 139 486 34
sQueeze 222 (+7%) 106 116 561 49
none 206 100 106 587 38

QBFEVAL 2010 benchmark set, 568 formulae, 7 GB / 900 sec. limits
RiSE

Current Status of BCE and Friends simplifying 29/46

• there are instances which can be solved (only) cheaply with BCE

• most of the time only modest additional size reduction after VE

• BCE implementation very similar to implementation of VE

• as VE needs freeze/melt (freeze/thaw) interface

• we have an unpublished theory to treat redundant clauses as learned clauses . . .

• . . . and an unpublished solution reconstruction for CCE as well

• extended to QBF [BiereLonsingSeidl-CADE11]

RiSE

Motivation for Unhiding simplifying 30/46

• SAT solvers applied to huge formulas

– fastests solvers use preprocessing/inprocessing

– need cheap and effective inprocessing techniques for millions of variables

• this talk:

– unhiding redundancy in large formulas

– almost linear randomized algorithm O(|F |log|C|)

– using the binary implication graph

– fast enough to be applied to learned clauses

• see our SAT’11 paper for more details

RiSE

Binary Implication Graph (BIG) simplifying 31/46

a

c

b

ed

f g

h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f)∧ (d̄∨ f)∧ (ḡ∨ f)∧ (f̄ ∨h)∧
(ḡ∨h)∧ (ā∨ ē∨h)∧ (b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)︸ ︷︷ ︸

non binary clauses

RiSE

Transitive Reduction (TRD) simplifying 32/46

a

c

b

ed

f g

h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f)∧ (d̄∨ f)∧ (ḡ∨ f)∧ (f̄ ∨h)∧

TRD
g→ f → h

(ḡ∨h)∧ (ā∨ ē∨h)∧ (b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)

RiSE

Hidden Tautology Elimination (HTE) simplifying
[HeuleJärvisaloBiere LPAR’2010]

33/46

c

b

ed

f g

g

e

b

d

f

c

a

h

h

a

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f)∧ (d̄∨ f)∧ (ḡ∨ f)∧ (f̄ ∨h)∧

HTE
a→ d→ f → h

(ā∨ ē∨h)∧ (b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)

RiSE

Hidden Tautology Elimination (HTE) simplifying
[HeuleJärvisaloBiere LPAR’2010]

34/46

ed

f g

g

ed

f

h

ah

a b

c

c

b

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f)∧ (d̄∨ f)∧ (ḡ∨ f)∧ (f̄ ∨h)∧

HTE
c→ f → h

(b̄∨ c̄∨h)∧ (a∨b∨ c∨d∨ e∨ f ∨g∨h)

RiSE

Hidden Literal Elimination (HLE) simplifying
[HeuleJärvisaloBiere LPAR’2010]

35/46

e

e

h

ha b

dc

f g c

ba

d

f g

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f)∧ (d̄∨ f)∧ (ḡ∨ f)∧ (f̄ ∨h)∧

HLE
all but e imply h

also b implies e

(a∨b∨ c∨d∨ e∨ f ∨g∨h)

RiSE

Hidden Literal Elimination (HLE) simplifying
[HeuleJärvisaloBiere LPAR’2010]

36/46

a

c

b

ed

f g

h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f)∧ (d̄∨ f)∧ (ḡ∨ f)∧ (f̄ ∨h)∧

(e∨ h)

RiSE

TRD + HTE + HLE simplifying
[HeuleJärvisaloBiere LPAR’2010]

37/46

a

c

b

ed

f g

h

g

h

e

b

d

f

a

c

(ā∨ c)∧ (ā∨d)∧ (b̄∨d)∧ (b̄∨ e)∧
(c̄∨ f)∧ (d̄∨ f)∧ (ḡ∨ f)∧ (f̄ ∨h)∧
(e∨h)

RiSE

Time Stamping simplifying
[HeuleJärvisaloBiere SAT’11]

38/46

DFS tree with discovered and finished times: [dsc(l),fin(l)]

g

a

ed

f

h

c

b

g [1,6]f [2,5]

d

a b [11,16]

e[12,13]c [14,15]

[29,32]

[30,31]

h [3,4]

[7,10]

[17,28]

[18,19][20,27]

[25,26] [21,24]

[22,23] [8,9]

tree edges

well known
parenthesis theorem: l ancestor in DFS tree of k iff [dsc(k),fin(k)]⊆ [dsc(l),fin(l)]

ancestor relationship gives necessary conditions for transitive implication:

if [dsc(k),fin(k)]⊆ [dsc(l),fin(l)] then l→ k

if [dsc(l̄),fin(l̄)]⊆ [dsc(k̄),fin(k̄)] then l→ k

RiSE

Unhiding: Applying Time Stamping to TRD/HTE/HLE/FL2/. . . simplifying
[HeuleJärvisaloBiere SAT’11]

39/46

• time stamping in previous example does not cover b→ h

[11,16] = [dsc(b),fin(b)] 6⊆ [dsc(h),fin(h)] = [3,4]
[17,28] = [dsc(h̄),fin(h̄)] 6⊆ [dsc(b̄),fin(b̄)] = [8,9]

in example still both HTE “unhidden”, HLE works too (since b→ e)

• “coverage” heavily depends on DFS order

– as solution we propose multiple randomized DFS rounds/phases

– approximate quadratic problem (BIG reachability) randomly by a linear algorithm

• if BIG is a tree one time stamping covers everything

RiSE

Unhiding through Time Stamping simplifying
[HeuleJärvisaloBiere SAT’11]

40/46

Unhiding (formula F)
1 stamp := 0
2 foreach literal l in BIG(F) do
3 dsc(l) := 0; fin(l) := 0
4 prt(l) := l; root(l) := l
5 foreach r ∈ RTS(F) do
6 stamp := Stamp(r,stamp)
7 foreach literal l in BIG(F) do
8 if dsc(l) = 0 then
9 stamp := Stamp(l,stamp)
10 return Simplify(F)

Stamp (literal l, integer stamp)
1 stamp := stamp+1
2 dsc(l) := stamp
3 foreach (l̄∨ l′) ∈ F2 do
4 if dsc(l′) = 0 then
5 prt(l′) := l
6 root(l′) := root(l)
7 stamp := Stamp(l′,stamp)
8 stamp := stamp+1
9 fin(l) := stamp
10 return stamp

Simplify (formula F)
1 foreach C ∈ F
2 F := F \{C}
3 if UHTE(C) then continue
4 F := F ∪{UHLE(C)}
5 return F

RiSE

Unhiding HTE simplifying
[HeuleJärvisaloBiere SAT’11]

41/46

UHTE (clause C)
1 lpos := first element in S+(C)
2 lneg := first element in S−(C)
3 while true
4 if dsc(lneg)> dsc(lpos) then
5 if lpos is last element in S+(C) then return false
6 lpos := next element in S+(C)
7 else if fin(lneg)< fin(lpos) or (|C|= 2 and (lpos = l̄neg or prt(lpos) = lneg)) then
8 if lneg is last element in S−(C) then return false
9 lneg := next element in S−(C)
10 else return true

S+(C) sequence of literals in C ordered by dsc()
S−(C) sequence of negations of literals in C ordered by dsc()

O(|C|log|C|)

RiSE

Unhiding HLE simplifying
[HeuleJärvisaloBiere SAT’11]

42/46

UHLE (clause C)
1 finished := finish time of first element in S+rev(C)
2 foreach l ∈ S+rev(C) starting at second element
3 if fin(l)> finished then C :=C \{l}
4 else finished := fin(l)
5 finished := finish time of first element in S−(C)
6 foreach l̄ ∈ S−(C) starting at second element
7 if fin(l̄)< finished then C :=C \{l}
8 else finished := fin(l̄)
9 return C

S+rev(C) reverse of S+(C)

O(|C|log|C|)

RiSE

Advanced Time Stamping simplifying
[HeuleJärvisaloBiere SAT’11]

43/46

Stamp (literal l, integer stamp)
1 BSC stamp := stamp+1
2 BSC dsc(l) := stamp; obs(l) := stamp
3 ELS flag := true // l represents a SCC
4 ELS S.push(l) // push l on SCC stack
5 BSC for each (l̄∨ l′) ∈ F2
6 TRD if dsc(l)< obs(l′) then F := F \{(l̄∨ l′)}; continue
7 FLE if dsc(root(l))≤ obs(l̄′) then
8 FLE lfailed := l
9 FLE while dsc(lfailed)> obs(l̄′) do lfailed := prt(lfailed)
10 FLE F := F ∪{(l̄failed)}
11 FLE if dsc(l̄′) 6= 0 and fin(l̄′) = 0 then continue
12 BSC if dsc(l′) = 0 then
13 BSC prt(l′) := l
14 BSC root(l′) := root(l)
15 BSC stamp := Stamp(l′,stamp)
16 ELS if fin(l′) = 0 and dsc(l′)< dsc(l) then
17 ELS dsc(l) := dsc(l′); flag := false // l is equivalent to l′
18 OBS obs(l′) := stamp // set last observed time attribute
19 ELS if flag = true then // if l represents a SCC
20 BSC stamp := stamp+1
21 ELS do
22 ELS l′ := S.pop() // get equivalent literal
23 ELS dsc(l′) := dsc(l) // assign equal discovered time
24 BSC fin(l′) := stamp // assign equal finished time
25 ELS while l′ 6= l
26 BSC return stamp

RiSE

Implementation simplifying
[HeuleJärvisaloBiere SAT’11]

44/46

• implemented as one inprocessing phase in our SAT solver Lingeling
beside variable elimination, distillation, blocked clause elimination, probing, . . .

• bursts of randomized DFS rounds and sweeping over the whole formula

• fast enough to be applicable to large learned clauses as well
unhiding is particullary effective for learned clauses

• beside UHTE and UHLE we also have added hyper binary resolution UHBR
not useful in practice

RiSE

Lingeling 571 on SAT’09 Competition Application Benchmarks simplifying
[HeuleJärvisaloBiere SAT’11]

45/46

configuration solved sat uns unhd simp elim
adv.stamp (no uhbr) 188 78 110 7.1% 33.0% 16.1%
adv.stamp (w/uhbr) 184 75 109 7.6% 32.8% 15.8%
basic stamp (no uhbr) 183 73 110 6.8% 32.3% 15.8%
basic stamp (w/uhbr) 183 73 110 7.4% 32.8% 15.8%
no unhiding 180 74 106 0.0% 28.6% 17.6%

configuration hte stamp redundant hle redundant units stamp
adv.stamp (no uhbr) 22 64% 59% 291 77.6% 935 57%
adv.stamp (w/uhbr) 26 67% 70% 278 77.9% 941 58%
basic stamp (no uhbr) 6 0% 52% 296 78.0% 273 0%
basic stamp (w/uhbr) 7 0% 66% 288 76.7% 308 0%
no unhiding 0 0% 0% 0 0.0% 0 0%

similar results for crafted and SAT’10 Race instances

RiSE

Practical SAT Solving Conclusions and Future Work 46/46

• search: conflict driven clause learning (CDCL)

– steady progress in capacity

– how and when to restart is active research area

• preprocessing / inprocessing gives considerable reduction

– new preprocessing algorithms

– even quadratic algorithms are typically too expensive

• parallel SAT solving

– port-folio versus splitting see our ”cube & conquer” paper at HVC’11

– SIMD algorithms for many cores incl. GPUs

– parallel preprocessing / inprocessing

RiSE

