SAT

Armin Biere

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

5th Indian SAT + SMT Winter School 2020

Online

December 11, 2020

Dress Code of a Speaker at a Master Class as SAT Problem

® propositional logic:

= variables tie shirt

= negation - (not)
= disjunction V (or)
= conjunction A (and)

® clauses (conditions / constraints)

1. clearly one should not wear a tie without a shirt —tie v shirt
2. not wearing a tie nor a shirt is impolite tie v shirt
3. wearing a tie and a shirt is overkill ~ —(tie Ashirt) = —tieV —shirt

® |s this formula in conjunctive normal form (CNF) satisfiable?

(-tie vshirt) A (tie v shirt) A (-tie v -shirt)

SAT- —
T Racem@w@?
ar

48 ?
bPlIngeling“
y Armin Biére 2

i“ L[ngeling“

; Tenth Intern® sonel Conference
Wm&l’@g\?\m\:ﬁm‘ﬁ Satisfiabihity Testing is av
: a
- v ovat rded the il &
Fy san- T est P L g
aR : aralle] 2 by Armin Biere
i " 3 e el Sol
& & : = Ver :
Ty el \ is awarded the title of
5 ., N ; : -
i 2 V / \'&k&_\ Second Pnze WIn, o nww"‘:;nffph;zwaﬁﬂnal Confere
S : --ofw,;_“ ! e P "BnansofSatisﬂab;f;T .
Compeiion 2007 e 5. ey 100 . esting
— 2. - vpRTraend
o
x
A¥s

Gold medal

Avarded 10 — e B3 e
wrigten bY

for best performancs y sakver i the 3
penshmarks spechalvy:

Resin
4 (al categury B8ELY gaable

nduat

goa a4 oTERR
o

o =

The SAT200T compatition jd

SAT Competition Winners on the SC2020 Benchmark Suite

250

200

150

100

solved Instances

50 I

%
O
4
OO
OO

%
7
L%

|

——o— kissat-2020

—=&— maple-lem-disc-cb-dl-v3-2019

—=A— maple-lem-dist-cb-2018

—&— maple-lem-dist-2017

—4— maple-comsps-drup-2016

—&6— lingeling-2014

—=4—— abcedsat-2015
lingeling-2013

—+—— glucose-2012
glucose-2011
cryptominisat-2010

—l— precosat-2009

—H— minisat-2008
berkmin-2003

A— minisat-2006

——+——1rsat-2007
—6— satelite-gti-2005
—@— zchaff-2004
—@— limmat-2002

| | | | i
1,000 2,000 3,000 4,000 5,000

CPU time

data produced by Armin Biere and Marijn Heule

Lame Ar!'nin B_iere

“:?, BArminBiere

Eventually | will need to support 64-bit variable indices
(Lingeling has 2727, CaDiCaL indeed 2”31 and Kissat
2728 as compromise though it could easily do half a

billion)
r Armin Biere @ArminBiere - Jul 28 : v 0 . 2112
L e SAT solvers get faster and faster: all-time winners of the SAT Competition
= on 2020 instances, Featuring our new solver Kissat (f ku.at/k I8
which won in 2020. The web page also has runtime CDFs for 2011 and , — —
2015. {f‘ L) i |
some recent |IWeels
200 = e Hi, -
g - We are trying to verify Deep Neural Networks with our
2 10 verification machine ESBMC, that uses Boolector. Qur
2 ; : experiments are geting the following error:
ERRY | 1 orem)
? e « internal error in 'Iglib.c": more than 134217724
500 S tmariv | variables.
{ Armin Biere Lc_}uld we_ |?cregse this _\.fan?t}le_nurnlber II Since
1 -h @ArminBiere “u 1000 2000 3000 4000 5000 we are performing our experlmentb In a huge
- CPU time RAM memory.

SAT solvers get faster and faster: all-time winners of . 1l 64 2 1 |
the SAT Competition on 2020 instances, featuring our e joao @_joaoguit - Jul2

How big are the instances?

new solver Kissat (fmv.jku.at/kissat), which won in : - v ,
2020. The web page also has runtime CDFs for 2011 o
(e Armin Biere
and 2019. -L.? DArminBiere
SAT Competition Winners on the SC2020 Benchmark Suite e o o e
. The largest ones have millions of variables and an Boolector/boolectt
250 | _ clauses. The planning track had even larger ones. See
— the variable and clause distribution plot for the main
200 track: Can you try compiling Boolector with a different SAT

solver? | believe that CaDiCaL has a much higher limit

Gnuplot {windnw e 0} -~ (maybe INT_MAX vars).

0
£ 150
= rE 2saeaaa a7
__:2 100 110° ¢ T T T T
o E "variables”
¥ 108 : "clauses” i
50 i it
1wl §
" bl § Aina Niemetz
0 1,000 2,000 3,000 4,000 5,000 100000 | S R et e Thr
CPU time ata produced by Annin Biere and Marijs Heule 3 "
10000 ¢ " 1
¥ v
5:20 PM - Jul 28, 2020 - Twitter Web App 1000 ;-/"""’
it 28, ItterWeb Apt b As points out, this is a limitation in
100 § 1 the SAT solver that we can not control. Let me add
I view Tweet activity ol that CaDiCal typically outperforms Lingeling in
0 50 100 10 200 250 300 350 400 combination with Boolector, so it might be a good

idea to switch to CaDiCal anyways.

57 Retweets 7 Quote Tweets 327 Likes 403.000, 127.990

185

Satisfiability (SAT) related veplcs have atcracred researchers from varieus disciplines. Leglc, FErontiers in Artificial Intelligence and Applications

appled areas such as planning, scheduling, operations research and combinatonal cpomization,

bt also theoredcal Bsues en the theme of complexicg, and much mere, they all are connecoed
HANDBOOK

My personal interest in 5AT sterms from acoual selving: The increase in power of modern SAT
salvers aver the past | 5 years has been phenomenal |t hes became the key erabling technology
in auremaced verification of beth compurer bardware and sofoware, Bounded Model Checking - -
(BMC) of computer hardware is now probably the mest widely used model checking technigue. f = f‘ b‘ I' f t f' b I t
The counterexarnples that it finds are just satisfying instances of a Boolean formula obtained by D Sa.tls Ia I Ity . . . Sa I S I a. I I y
unwinding to some fixed depth a sequential circuit and its specification in Enear temporal logic.

Extending model checking to software verification is 2 much more difficult problem on the frontier .
of current research. One promising approach for Binguages like © with finite word-length integers

is to use the same idea as in BMC but with a decision procedurs for the theory of bit-vectors .
instead of SAT. All decision procedures for bit-vectors that | am famillar with uitimately make uses

of a fast SAT solver to handle complex formalas. . .
Diecision procedures for more complicated theories, like linear real and moeger arichmetic, are Edimrs:
also used in program werification, Most of them use powerful 54T solvers in an essential way

Armin Biere

Clearly, efficient SAT sobving & a key technology for 215t century computer science. | expect -
this callection of papers on #ll theorenical and pracrical aspects of SAT soldng will be exrernaly Marijn Heule
useful ta bach studancs and researchars and will lead o many furthar advances i the fleld Hans van Maaren

Edmund Clarke Toby Walsh

Edmund M. Clovke, FORE Systems University Professor of Computer Science and Professor of Electrical
ond Computer Engireering at Cornegie Mellon University, 2 one af the initiators and main contributors
to the fhedd of Model Checking, for wivich e afse recelved the 2007 ACH Turing Awovd,

n the late $0% Professor Clarke was one of the first researchers to reolize thar SAT solving fas the
potential to become one of the most important technologies in mode checking.

® ® ® Editors:
@® Armin Biere
@

Marijn Heule

1506 S9T8-1-5E408-FF

ISBM 76 1-58603-97%-5
IS5M 09226385

Hans van Maaren
® @ Toby Walsh

|OS I0S

Press Press

Part I. Theory and Algorithms

Part Il. Applications and Extensions

L,

=

[=

=

=

[=

=

[=

=

=

[=

=

=

®

®

k2 R R B K R K /B K K &K

John Franco, John Martin:
A History of Satisfiability. 3-74

Steven David Prestwich:
CNF Encodings. 75-97

Adnan Darwiche, Knot Pipatsrisawat:
Complete Algorithms. 99-130

Jodo P. Margues Silva, Inés Lynce, Sharad Malik:
Conflict-Driven Clause Learning SAT Solvers. 131-153

Marijn Heule, Hans van Maaren:
Look-Ahead Based SAT Solvers. 155-184

Henry A. Kautz, Ashish Sabharwal, Bart Selman:
Incomplete Algorithms. 185-203

Oliver Kullmann:
Fundaments of Branching Heuristics. 205-244

Dimitris Achlioptas:
Random Satisfiability. 245-270

Carla P. Gomes, Ashish sabharwal:
Exploiting Runtime Variation in Complete Solvers. 271-288

Karem A. Sakallah:
Symmetry and Satisfiability. 289-338

Hans Kleine Baning, Oliver Kullmann:
Minimal Unsatisfiability and Autarkies. 339-401

Evgeny Dantsin, Edward A. Hirsch:
Worst-Case Upper Bounds. 403-424

Marko Samer, Stefan Szeider:
Fixed-Parameter Tractability. 425-454

4,

=

[

=

=

[=

=

[=

=

[=

=

=

[=

=

R

k2 R R R R /B KB K K B K R K

Armin Biere:
Bounded Model Checking. 457-481

Jussi Rintanen:
Planning and SAT. 483-504

Daniel Kroening:
Software Verification. 505-532

Hantao Zhang:
Combinatorial Designs by SAT Solvers. 533-568

Fabrizio Altarelli, Rémi Monasson, Guilhem Semerjian, Francesco Zamponi:
Connections to Statistical Physics. 569-611

Chu Min Li, Felip Manya:
MaxSAT, Hard and Soft Constraints. 613-631

Carla P. Gomes, Ashish Sabharwal, Bart Selman:
Model Counting. 633-654

Rolf Drechsler, Tommi A. Junttila, llkka Niemela:
MNon-Clausal SAT and ATPG. 655-693

Olivier Roussel, Vasco M. Manguinho:
Pseudo-Boolean and Cardinality Constraints. 695-733

Hans Kleine Baning, Uwe Bubeck:
Theory of Quantified Boolean Formulas. 735-760

Enrico Giunchiglia, Paclo Marin, Massimo Narizzano:
Reasoning with Quantified Boolean Formulas. 761-780

Roberto Sebastiani, Armando Tacchella:
SAT Techniques for Modal and Description Logics. 731-824

Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, Cesare Tinelli:
Satisfiability Modulo Theories. 825-885

Stephen M. Majercik:
Stochastic Boolean Satisfiability. 887-925

NEWLY AVAILABLE SECTION OF
THE CLASSIC WORK

The Art of
Computer

Programming

VOLUME 4

Satisfiability

File Edit View Document Tools Window Help

= &6 4S5 /318 © ® [150%-

8.26 x 11.69in

PREFACE

Special thanks are due to Armin Biere. Randy Bryvant, Sam Buss, Niklas Eén,
lan Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz, Niklas Sorensson. Udo Wermuth, Ryvan Williams. and . .. for their detailed
comments on my early attempts at exposition, as well as to numerous other cor
respondents who have contributed crucial corrections. Thanks also to Stanford’s
Information Systems Laboratory for providing extra computer power when my
laptop machine was inadequate.

Wow Section 7.2.2.2 has turned out to be the longest section, by far, in
The Art of Computer Programming. The SAT problem is evidently a “killer
app.” because it is key to the solution of so many other problems. Consequently
I can only hope that my lengthy treatment does not also kill off my faithful
readers! As | wrote this material. one topic alwayvs seemed to flow naturally
into another, so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn’t allow for a Section
7.2.2.2.1.)

I've tried to ameliorate the reader’s navigation problem by adding subhead
ings at the top of each right-hand page. Furthermore, as in other sections,
the exercises appear in an order that roughly parallels the order in which corre

sponding topics are taken up in the text. Numerous cross-references are provided
4

Biere
Bryant
BEuss

Een

Crend
Heule
Hivos
Janson
Jeavons
Kroening
Kullmanmn
Lauria
Pegden
shortz
=inz
SOrensson
Wermuath
Williams
MPR

Internet

SAT Handbook upcoming 2" Edition

with many updated chapters and the following 7 new chapters:

Proof Complexity Jakob Nordstrom and Sam Buss

Preprocessing Armin Biere, Matti Jarvisalo and Benjamin Kiesl|

Tuning and Configuration

Holger Hoos, Frank Hutter and Kevin Leyton-Brown

Proofs of Unsatisfiability = Marijn Heule

Core-Based MaxSAT
Fahiem Bacchus, Matti Jarvisalo and Ruben Martins

Proof Systems for Quantified Boolean Formulas
Olaf Beyersdorff, Mikolas Janota, Florian Lonsing and Martina Seidl

The SAT problem is evidently a killer
app, because it is key to the solution
of so many other problems. SAT-
solving techniques are among com-
puter science’s best success stories
so far, and these volumes tell that
fascinating tale in the words of the
leading SAT experts.

Donald Knuth

Clearly, efficient SAT solving is
a key technology for 21st century
computer science. | expect this col-
lection of papers on all theoretical
and practical aspects of SAT solv-
ing will be extremely useful to both
students and researchers and will
lead to many further advances in
the field.

Edmund Clarke

Approximate Model Counting Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi

What is Practical SAT Solving?

1st part .
reencoding

encoding s

Inprocessing

= simplifying |

other talks

= search
2nd part

Equivalence Checking If-Then-Else Chains

original C code

if(la && !'Db)
else 1if(!'a)
else f£();

4

if(lta) {
if(!'b) h(); —
else g();

} else f();

optimized C code

1if(a) £();
else 1f(b) g();
else h{();

i

if(a) £0);
else {
1f (o) h();

else g(); }

How to check that these two versions are equivalent?

Compilation

original = if —a N\ —b then h else if —a then g else f
= (—aA-b)NhV —(—aA\—-b)Nif —a then g else f
= (maAN-b)ANh NV —(maAN-b)N(—aNg V alf)
optimized = if athen f else if b then g else &

al f VvV —aAif b then g else h
aNfV —aN(bANg NV —bNh)

(maAN—=b)ANh NV =(maN—Db)N(—aNg NV aNf) < aANfVN —-aAN(bAgV —bAh)

satisfying assignment gives counter-example to equivalence

Tseitin Transformation: Circuit to CNF

D B et

Y

u

)
)

v

oN(x—a)N(x—=>c)N(x<alc)N ...

P

Bon

oN(XVa)\NXVc)AN(xVave)A ...

X < alc) A
y < bVx)A
u <+ aVb
Vv & bVece
W< UNVY
0O <> yodw

AN TN NN AN TN
N— N N N
> > >

Tseitin Transformation: Gate Constraints

Negation:

Disjunction:

Conjunction:

Equivalence:

x < (yVz)

x < (yAZ)

x> (y<2)

=
=

(0

(O

toeeeTe

(x=Y)A G —x)
(XVY)A(yVx)

d
Na¥

<
T
<
T

111
<8
:
= 2
1l
IR

NN AN AN N N —
N TN N

<
a Sy
1
=

>
<

—~ <
T
—~
~~
<

I > > >
<
>
<
=
>
L\l/l
1
=

STREOTREOTREUN N
ISTRE SIS TN
T <K
STEE=
> > > >
Q/\/'\
>
<& 4
1
s

<
<
A\
Na¥
>
<
<
&N
<
Na¥

Bit-Blasting of Bit-Vector Addition

addition of 4-bit numbers x,y with result s also 4-bit: s=Xx+Yy

[S37527S17SO]4 — [X3,X2,X1,XO]4+ [y37y27y17y0]4

53, -]2 = FullAdder(x3,y3,¢2)

s2,c2]2 = FullAdder(xy,y7,¢1)

(

(
s1,c1]2 = FullAdder(xy,y1,c0)
50,c0l2 = FullAdder(xq,yo,false)

where

[s,0]p = FullAdder(x,y,i) with
§ = X XOry Xor i

o = (xAY)V(EA)V(YAD) = (x+y+i)>2)

Boolector Architecture

D

#

[BTOR }’ parse
[SMT }» rewrite
O1

e

(o)

O1 = bottom up simplification
O2 = global but almost linear
O3 = normalizing (often non-linear) [default]

Lingeling / PicoSAT / MiniSAT / CaDiCalL

SAT Solver

~Cor

subst
02 *
slice synthesize
norm - *
03 AlG Vector J
N
Y
optimize
Y
[AIG
K
encode

Intermediate Representations

® encoding directly into CNF is hard, so we use intermediate levels:
1. application level
2. bit-precise semantics world-level operations (bit-vectors)
3. bit-level representations such as And-Inverter Graphs (AIGs)
4. conjunctive normal form (CNF)

® encoding “logical” constraints is another story

XOR as AlG

X Y

negation/sign are edge attributes
not part of node

xxory = (XAY)V(xAY) = (XAY)A(xAY)

vector of length 16 shifted by bit-vector of length 4

bit

Ao,

Encoding Logical Constraints

® Tseitin construction suitable for most kinds of “model constraints”
= assuming simple operational semantics: encode an interpreter

= small domains: one-hot encoding large domains: binary encoding

® harder to encode properties or additional constraints

= temporal logic / fix-points

= environment constraints

m example for fix-points / recursive equations: x=(aVy), y=(bVx)
= has unique least fix-point x=y=(aVb)
= and unique largest fix-point x=y=rtrue but unfortunately ...

= ... only largest fix-point can be (directly) encoded in SAT
otherwise need stable models / logical programming / ASP

Example of Logical Constraints: Cardinality Constraints

® given a set of literals {/y,...1,}
= constraint the number of literals assigned to true

" W+t >2k or Lh+--+ L <k or L+---+Il=k

= combined make up exactly all fully symmetric boolean functions

= multiple encodings of cardinality constraints
= paive encoding exponential: at-most-one quadratic, at-most-two cubic, etc.

= quadratic O(k-n) encoding goes back to Shannon

= linear O(n) parallel counter encoding [Sinz'05]

® many variants even for at-most-one constraints

= for an O(n-logn) encoding see Prestwich’s chapter in Handbook of SAT

= Pseudo-Boolean constraints (PB) or 0/1 ILP constraints have many encodings too

2-d+b+c+d+2-¢e >3

actually used to handle MaxSAT in SAT4J for configuration in Eclipse

BDD-Based Encoding of Cardinality Constraints

2<lj+--1g <3

S Uy Sy Oy B R——"

T T

/A Ny R A P R N —

/R R SR S SR N —

l-—l- = -l =~ L~ — L= = ~ly— - -1

0 0 0 0 0 0

If-Then-Else gates (MUX) with “then” edge downward, dashed “else” edge to the right

Tseitin Encoding of If-Then-Else Gate

x> (c?t:e) & (x=(c=t)ANx=>C—oe) NF—=(c—D) AN F—(C—e))

& (EVEVE) A (EVeVe) A (xVEVI) A (xVeVe)

minimal but not arc consistent:
® if r and e have the same value then x needs to have that too
® possible additional clauses
(fAe—Xx) = (tVeVX) (tAhe—x) = (fVeVx)

® pbut can be learned or derived through preprocessing (ternary resolution)
keeping those clauses redundant is better in practice

DIMACS Format

$ cat example.cnf

c comments start with "¢’ and extend until the end of the line

C
c variables are encoded as integers:
C
C "tie’ becomes 1’
C "shirt’ becomes ’2'
C
¢ header 'p cnf <variables> <clauses>'’
C
p cnf 2 3
-1 20 c !tie or shirt
1 2 0 C tie or shirt
-1 -2 0 c !tie or !shirt

S picosat example.cnf
s SATISFIABLE
v -1 2 0

SAT Application Programmatic Interface (API)

® incremental usage of SAT solvers
= add facts such as clauses incrementally

= call SAT solver and get satisfying assignments

= optionally retract facts

® retracting facts
= remove clauses explicitly: complex to implement

= push / pop: stack like activation, no sharing of learned facts

= MiniSAT assumptions [EénSérensson’03]

® assumptions
= unit assumptions: assumed for the next SAT call

= easy to implement: force SAT solver to decide on assumptions first

= shares learned clauses across SAT calls

m |PASIR: Reentrant Incremental SAT API
= used in the SAT competition / race since 2015 [BalyoBierelserSinz’'16]

IPASIR Model
val

add
assume

add
assume

#include "ipasir.h"

#include <assert.h>

#include <stdio.h>

#define ADD (LIT) ipasir_add (solver, LIT)
#define PRINT (LIT) \

printf (ipasir_wal (solver, LIT) < 0 2 " =" #LIT : " " #LIT)
int main () {
void * solver = ipasir_init ();

enum { tie = 1, shirt = 2 };
ADD (-tie); ADD (shirt); ADD (0); 3 ./example

ADD (tie); ADD (shirt); ADD (O); satisfiable: shirt —-tie
ADD (-tie); ADD (-shirt); ADD (0);
int res = ipasir_solve (solver);

assuming now: tie shirt

unsatisfiable, failed: tie

assert (res == 10);

printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");
printf ("assuming now: tie shirt\n");

ipasir_assume (solver, tie); ipasir_assume (solver, shirt);
res = ipasir_solve (solver);

assert (res == 20);

printf ("unsatisfiable, failed:");

if (ipasir_failed (solver, tie)) printf (" tie");

if (ipasir_failed (solver, shirt)) printf (" shirt");
printf ("\n");

ipasir_release (solver);

return res;

IPASIR Functions

const char * ipasir_signature ();

void * ipasir_init ();

void ipasir_release (void * solver);

void ipasir_add (void * solver, int lit_or_zero);
void ipasir_assume (void * solver, int 1lit);

int ipasir_solve (void * solver);

int ipasir_val (void * solver, int 1it);

int ipasir_failed (void * solver, int 1it);

void ipasir_set_terminate (void * solver, woid * state,

int (*terminate) (void * state));

#include "cadical.hpp"

#include <cassert>

#include <iostream>

using namespace std;

##define ADD (LIT) solver.add (LIT)
##define PRINT (LIT) \

(solver.val (LIT) < O 2 "™ =" #LIT : " " #LIT)

int main () {

CaDiCaL: :Solver solver; solver.set ("quiet",

enum { tie = 1, shirt = 2 };

ADD (-tie), ADD (shirt), ADD (0);
ADD (tie), ADD (shirt), ADD (O);
ADD (-tie), ADD (-shirt), ADD (0);
int res = solver.solve ();
assert (res == 10);

1);

$./example

satisfiable: shirt —-tie
assuming now: tie shirt
unsatisfiable, failed: tie

cout << "satisfiable:" << PRINT (shirt) << PRINT (tie) << endl;

cout << "assuming now: tie shirt" << endl;

solver.assume (tie), solver.assume (shirt);

res = solver.solve ();

assert (res == 20);

cout << "unsatisfiable, failed:";

if (solver.failed (tie)) cout << " tie";

if (solver.failed (shirt)) cout << " shirt";

cout << endl;
return res;

DP / DPLL

® dates back to the 50’ies:

15t version DP is resolution based = preprocessing
2nd yersion D(P)LL splits space for time = |CDCL
= jdeas:

= 1St version: eliminate the two cases of assigning a variable in space or

= 2"d version: case analysis in time, e.g. try x = 0,1 in turn and recurse

= most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

® recent (< 25 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

DP Procedure

forever

if ¥ = T return satisfiable

if | € F return unsatisfiable

pick remaining variable x
add all resolvents on x

remove all clauses with x and —x

= Bounded Variable Elimination

D(P)LL Procedure

DPLL(F)
F := BCP(F)

if ' = T return satisfiable

if | € F return unsatisfiable

pick remaining variable x and literal / € {x, —x}

if DPLL(F N{l}) returns satisfiable return satisfiable

return DPLL(F N{—l})

CDCL

DPLL Example

clauses
decision a

-|Clv-|bv-|C

a= y mavabv ¢
decision b C ~av bv-c
bh=1 —av bv c
aV‘IbV'IC
nC av-bv ¢

c =0
av bV'IC

Clvva

Conflict Driven Clause Learning (CDCL)
[MarqueSilvaSakallah’96]

= first implemented in the context of GRASP SAT solver
= name given later to distinguish it from DPLL

" not recursive anymore
® essential for SMT
® |earning clauses as no-goods
= notion of implication graph

® (first) unique implication points

Conflict Driven Clause Learning (CDCL)

clauses
decision a Cdvabuac

_ ~avabv ¢
a=1 decision b ~av bvac
h=1 ~av bv ¢

- av-bv-c

-0 1C av-bv ¢
€= av bv-c

av bv c

learn 'IaV'Ib

Conflict Driven Clause Learning (CDCL)

clauses
®

'IaV‘IbV'IC
-|av—|bv C

decision a

a=1

b e by e
b:O ¢ aV‘IbV'IC
~c BOP av-bv c

. av bv-c

av bv C
-|av-|b

learn = d

Conflict Driven Clause Learning (CDCL)

b=0

c=0

o
-a BCP

®
- ¢ decision

@
-b BCP

learn

clauses

~avabvac
~av-bv ¢
~av bvac
~av bv c
avabv-c

av bv-lc

-|Clv-|b

C

Conflict Driven Clause Learning (CDCL)

-a BCP

b BCP

learn

clauses

~avabvac
~avabv c
~av bvac
~av bv c

Q
<
.
<
o

av bv C
-|Clv-|b

I—"I

Implication Graph

top—level unit a=1@0 unit b=1@0

____________________________ I A

decision

decision

decision

t =1 @4 —>y=1@4

decision r=1@4 —

K conflict

z=1@4

Antecedents / Reasons

top—level unit a=1@0 unit b=1@0

____________________________ N A

decision

decision

decision

i=1@4 - ~y=1@4

decision

z7=1@4 —— K conflict

dNgNs — t (dVgVsVit)

Conflicting Clauses

top-level unit a=1@0 unit b=1@0

____________________________ I A

decision

decision

decision

t=1@4 —~y=1@4

decision

z=1@4 —— K conflict

(yVvz)

—(yAz) =

Resolving Antecedents 15t Time

top-level unit a=1@0 unit b=1@0

____________________________ I A

decision

decision

decision

decision

z=1@4 —— K conflict

(hViIVEVYy) (YVZ)

Resolving Antecedents 15t Time

top—level unit a=1@0 unit b=1@0

____________________________ I A

decision

decision

decision

decision

Resolvents = Cuts = Potential Learned Clauses

top—level unit a=1@0 unit b=1@0

____________________________ R A

decision

decision

decision

decision

(hViVIVy) (YV2Z)
(hViVEIVZ)

Potential Learned Clause After 1 Resolution

top—level unit a=1@0 unit b=1@0

____________________________ R A

decision

decision

decision

t =1 @4 —>y=1@4

decision

z=1 @4 —— K conflict

Resolving Antecedents 2" Time

top—level unit a=1@0 unit b=1@0

____________________________ R A

decision c¢c=1 @ 1

decision f =1@ 2

decision k=1 @ 3

decision r =1 @4

Resolving Antecedents 3" Time

top—level unit a=1@0 unit b=1@0

____________________________ R A

decision

____________________________ 5 N
decision

eoson k=1@3 = r=1@3 \\ N\

s o104 A1 @d NPT MY

Ky
x=1@4 —»[z:1@4 K conflict

Resolving Antecedents 4th Time

top—level unit a=1@0 unit b=1@0

____________________________ R A

decision ¢ =1 @ 1

decision f =1@ 2

decision k=1 @ 3

decision r =1 @4

15t UIP Clause after 4 Resolutions

top—level unit a=1@0 unit b=1@0

____________________________ I A

decision ¢c=1@1 — d=1 @ |

decision f=1@2 — g=1 @2
backjump level

decision k=1@3 — [=1 @3

[
®
N

decision r=1@4 s — 1 =1@4 —y=1@4

z=1@4 —— K conflict
(dVgVsVhVi)

UIP = unique implication point dominates conflict on the last level

Backjumping

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case — assuming x was used.

Resolving Antecedents 5t Time

top-level unit a=1@0 unit b=1@0

____________________________ R A

decision

decision

decision

decision

Decision Learned Clause

top—level unit a=1@0 unit b=1@0

____________________________ I A

decision

decision

decision

backtrack
level

decision [r=1@4 t=1@4 ——y=1@4

last UIP
z=1@4 —— K conflict

15t UIP Clause after 4 Resolutions

top—level unit a=1@0 unit b=1@0

____________________________ I A

decision

decision

decision

t=1@4 —~y=1@4

decision

z7=1@4 —— K conflict

Locally Minimizing 15t UIP Clause

top-level unit a=1@0 unit b=1@0

____________________________ R A

decision ¢ =1 @ 1

decision f =1@ 2

decision k=1 @ 3

decision r =1 @4

Locally Minimized Learned Clause

top—level unit a=1@0 unit b=1@0

____________________________ I A

decision

decision

decision

decision t=1@4 —y=1@4

z=1@4 —— K conflict

Minimizing Locally Minimized Learned Clause Further?

top-level unit a=1@0 unit b=1@0

____________________________ R A

decision

decision

decision

t=1@4 —~y=1@4

decision

z=1@4 —— K conflict

Recursively Minimizing Learned Clause

top-level unit a=1@0 unit /b =] @ O\

decision

decision

t=1@4 —~y=1@4

decision

z=1@4 —— K conflict

VEVSVh)
Vs

V)

Recursively Minimized Learned Clause

top—level unit a=1@0 unit b=1@0

____________________________ R A

decision

decision

decision

decision t=1@4 —y=1@4

z=1@4 —— K conflict

Decision Heuristics

® number of variable occurrences in (remaining unsatisfied) clauses (LIS)
= eagerly satisfy many clauses with many variations studied in the 90ies

= actually expensive to compute

® dynamic heuristics
= focus on variables which were usefull recently in deriving learned clauses

= can be interpreted as reinforcement learning

= started with the VSIDS heuristic [MoskewiczMadiganZhaoZhangMalik’01]
= most solvers rely on the exponential variant in MiniSAT (EVSIDS)

= recently showed VMTF as effective as VSIDS [BiereFrohlich-SAT’15] survey

= |ook-ahead
= spent more time in selecting good variables (and simplification)
= related to our Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC'11]

= “The Science of Brute Force” [Heule & Kullman CACM August 2017]

= EVSIDS during stabilization VMTF otherwise [Biere-SAT-Race-2019]

Fast VMTF Implementation

m Siege SAT solver [Ryan Thesis 2004] used variable move to front (VMTF)
= bumped variables moved to head of doubly linked list

= search for unassigned variable starts at head
= variable selection is an online sorting algorithm of scores

= classic “move-to-front” strategy achieves good amortized complexity

® fast simple implementation for caching searches in VMTF [BiereFrohlich’SAT15]
= doubly linked list does not have positions as an ordered array

= bump = move-to-front = dequeue then insertion at the head

= fime-stamp list entries with “insertion-time”
= maintained invariant: all variables right of next-search are assigned

= requires (constant time) update to next-search while unassigning variables

= occassionally (32-bit) time-stamps will overflow: update all time stamps

idx: 5
val: x
time: 6

idx: 3
val: 1
time: 8

idx: 4
val: 0
time: 9

idx: 9

~— ™ val: 1

time: 12

idx: 7
val: 0
time: 15

next—search ﬁ

bump 4

idx: 5
val: x
time: 6

unassign 9

idx: 3
val: 1
time: 8

—
next—search’

idx: 9
val: x
time: 12

idx: 7
val: 0
time: 15

ﬁ next—search

idx: 4
val: 0
time: 16

Variable Scoring Schemes
[BiereFrohlich-SAT’15]

/

s old score s new score
variable score s’ after i conflicts
bumped not-bumped
STATIC s s static decision order
INC s+ 1 s increment scores
SUM s+i s sum of conflict-indices
VSIDS h?0 s+ 1 W20 s original implementation in Chaff
NVSIDS f-s+(1—=f) f-s normalized variant of VSIDS
EVSIDS s+ g s exponential MiniSAT dual of NVSIDS
ACIDS (s+1i)/2 s average conflict-index decision scheme
VMTF4 i s variable move-to-front
VMTF»5 b s variable move-to-front variant
0<f<l g=1/f W'=0.5 iftm dividesi h"=1 otherwise

i conflict index

b bumped counter

Basic CDCL Loop

int basic_cdcl_loop

int res = 0;

while
else
else

else

return

(!'res)

if (unsat)

0 |

res = 20;

if (!propagate ())
if (satisfied ())

decide

res,

();

analyze

res

10;

()

// analyze propagated conflict
// all variables satisfied
// otherwise pick next decision

Reducing Learned Clauses

® keeping all learned clauses slows down BCP kind of quadratically
= so SATO and RelSAT just kept only “short” clauses

® petter periodically delete “useless” learned clauses
= keep a certain number of learned clauses “search cache”

= if this number is reached MiniSAT reduces (deletes) half of the clauses

= then maximum number kept learned clauses is increased | geometrically

= | BD (glucose level / glue) prediction for usefulness [AudemardSimon-IJCAI'09]
= LBD = number of decision-levels in the learned clause

= allows | arithmetic | increase of number of kept learned clauses

= keep clauses with small LBD forever (<2...5)

= three Tier system by [Chanseok Oh]

® eagerly reduce hyper-binary resolvents derived in inprocessing

Restarts

m often it is a good strategy to abandon what you do and restart
= for satisfiable instances the solver may get stuck in the unsatisfiable part

= for unsatisfiable instances focusing on one part might miss short proofs

= restart after the number of conflicts reached a restart limit

= avoid to run into the same dead end
= by randomization (either on the decision variable or its phase)

= and/or just keep all the learned clauses during restart

® for completeness dynamically increase restart limit
= arithmetically, geometrically, Luby, Inner/Outer

B Glucose restarts [AudemardSimon-CP’12]
= short vs. large window exponential moving average (EMA) over LBD

= if recent LBD values are larger than long time average then restart

® interleave “stabilizing” (no restarts) and “non-stabilizing” phases [Chanseok Oh]
call it now “stabilizing mode” and “focused mode”

Luby’s Restart Intervals

35

30

25

20

15

10

-

++ ++

++ ++

++ ++

++ ++
!

++ ++
!

s
!

++ ++

++ ++

10

20

30

40

50

60

70

Luby Restart Scheduling

unsigned

luby (unsigned 1)
{

unsigned k;

for (k = 1; k < 32; k++)
if (1 == (1 << k) - 1)
return 1 << (k - 1);

for (k = 1;; k++)

1f ((1 << (k = 1)) <=1 && 1 < (1 << k) - 1)
return luby (i - (1 << (k-=1)) + 1);

limit = 512 x luby (++restarts);

// run SAT core loop for ’'limit’ conflicts

Reluctant Doubling Sequence
[Knuth’12]

(ur,vi) = (1,1)

(Unt1,Vnp1) = ((un & —up==vp) ? (un+1,1) : (un,2vy))

(1,1), (2,1), (2,2), (3, 1), (4,1), (4,2), (4,4), (5,1), ...

Restart Scheduling with Exponential Moving Averages
[BiereFrohlich-POS’15]

o LBD — fast EMA of LBD with oo =27
| restart slow EMA of LBD with oo =2"'* (ema-14)
| inprocessing — CMA of LBD (average)

120
|

100
|

80
|

40

20
|

conflicts

Phase Saving and Rapid Restarts

® phase assignment:
= assign decision variable to 0 or 1?

= “Only thing that matters in satisfiable instances” [Hans van Maaren]

®m “phase saving” as in RSat [PipatsrisawatDarwiche’ 07]
= pick phase of last assignment (if not forced to, do not toggle assignment)

= initially use statically computed phase (typically LIS)

= s0 can be seen to maintain a global full assignment

® rapid restarts
= varying restart interval with bursts of restarts

= not only theoretically avoids local minima

= works nicely together with phase saving
® reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT 11]

® target phases of largest conflict free trail / assignment
[Biere-SAT-Race-2019] [BiereFleury-POS-2020]

CDCL Loop with Reduce and Restart

int basic_cdcl_loop _with_reduce_and_restart () {
int res = 0;

while (!res)
if (unsat) res = 20;

else if (!propagate ()) analyze (); // analyze propagated conflict
else if (satisfied ()) res = 10; // all variables satisfied

else if (restarting ()) restart (); // restart by backtracking

else if (reducing ()) reduce (); // collect useless learned clauses
else decide (); // otherwise pick next decision

return res;

Code from our SAT Solver CaDiCalL

while (!res) {
if (unsat) res = 20;
else if (!propagate ()) analyze ();
else if (iterating) iterate ();
else if (satisfied ()) res = 10;
else if (search_limits_hit ()) break;
else if (terminated asynchronously ())
break;
else if (restarting ()) restart ();
else if (rephasing ()) rephase ();
else if (reducing ()) reduce ();
else if (probing ()) probe ();
else if (subsuming ()) subsume ();
else if (eliminating ()) elim ();
else if (compacting ()) compact ();
else if (conditioning ()) condition ();
else res = decide ();

//
//
//
//
//

//
//
//
//
//
//
//
//
//

newest Version 1.3.1 from June 18

propagate and analyze
report learned unit

found model

decision or conflict limit

externally terminated

restart by backtracking
reset variable phases
collect useless clauses
failed literal probing
subsumption algorithm
variable elimination
collect variables
globally blocked clauses
next decision

https://github.com/arminbiere/cadical

https://fmv.jku.at/cadical

https://github.com/arminbiere/cadical
https://fmv.jku.at/cadical

Two-Watched Literal Schemes

= original idea from SATO [ZhangStickel’00]

= jnvariant: |always watch two non-false literals

= if a watched literal becomes false replace it
= if no replacement can be found clause is either unit or empty
= original version used head and tail pointers on Tries
® improved variant from Chaff [MoskewiczMadiganZhaoZhangMalik’01]
= watch pointers can move arbitrarily SATO: head forward, tail backward

= no update needed during backtracking

® one watch is enough to ensure correctness but looses arc consistency

® reduces visiting clauses by 10x
= particularly useful for large and many learned clauses

® blocking literals [ChuHarwoodStuckey'09]
m gpecial treatment of short clauses (binary [PilarskiHu'02] or ternary [Ryan'04])

® cache start of search for replacement [Gent-JAIR'13]

Parallel SAT

® vector units, GPU, multi-core, cluster, cloud
m gpplication level parallelism usually trivial

® classic work on guiding path principle

m portfolio (with sharing)

® (concurrent) cube & conquer

® control vs. data flow parallelism

® achieve low-level parallelism even though even already BCP is P-complete

= Handbook of Parallel Constraint Reasoning

= still many low-level programming issues left

Proofs / RES / RUP / DRUP

® resolution proofs (RES) are simple to check but large and hard(er) to produce directly

® original idea for clausal proofs and checking them:
= proof traces are sequences of “learned clauses” C

= first check clause through unit propagation | £ =1 C | thenadd Cto F

= reverse unit implied clauses (RUP) [GoldbergNovikov'03] [VanGelder'12]
® deletion information:

= “deletion” lines tell checker to forget clause, decreases checking time substantially
= trace of added and deleted clauses (DRUP) [HeuleHuntWetzler-FMCAD13/STVR'14]

® RUP/RES tracks SAT Competion 2007, 2009, 2011,
now DRUP/DRAT mandatory since 2013 to certify UNSAT

® big certified proofs:
= Pythagorean Triples [HeuleKullmannMarek-SAT'16] (200TB)
= Schur Number Five [Heule-AAAI18] (2PB)

= Certification: Coq [CruzFilipeMarquesSilvaSchneiderKamp-TACAS™ 17 /JAR19],
similar papers for ACL2, Isabelle, ...

p

-1
-1
-1
-1

==

CNF

cnf 3 8
-2 -3 0
-2 30
2 =30
2 30

-2 -3 0

-2 30

2 -3 0

2 30

trace

-2 -3 -1 00
-2 3 -1 00
-3 -1 00
3 -1 00
-3 -2 00
3 -2 00
-3 2 00
3200

7 8 0

W Joy Ul WN R
R R R R NN

9 56 0

1 10 2 O

10 11 4 O

10 11 3 12 O

b

picosat -t

extended trace

1 -2-3-100
2 -2 3 -100
32 -3-100
4 2 3 -1 00
51 -3 -200
61 3 -200
71 -3 200
81 3200
91 2 07 80

101 0 9560

11 -2 01 10 2 0
12 3 0 10 11 4 O
13 0 10 11 3 12 O

picosat -T

resolution trace RUP
1 -1 -3 -200

2 -1 3 -2 00

32 -1 -300

4 2 -1 3 00

5 -2 -3100

6 -2 31 00

71 -3 2 00

81 3200
9120780 -2 -3 0
10 -2 1 0 56 0 -3 0
11 1 0 10 9 0 2 0
12 -1 -2 01 2 0 -1 0
13 -2 0 12 11 O 0

14 2 3 0 11 4 O
15 3 0 14 13 0
le 2 -3 0 11 3 O
17 =3 0 16 13 O
18 0 17 15 O

tracecheck -B cadical

DRUP

cadical -P1

Blocked Clause Elimination, Plaisted-Greenbaum Encoding, Monotone Input Removal
[Kullman-DAM’99] [JarvisaloHeuleB-TACAS’10] [JarvisaloHeuleB-JAR’12] [PlaistedGreenbaum-JSC’86]

Definition. Clause C blocked on literal | /| C w.r.t CNF F if
for all resolution candidates D € F with ¢ € D the resolvent (C\¢) v (D\/) is tautological.

Assume output true, thus single unit clause constraint (x)

(%) (%) (x)

([x]VI)h (VZ) (¥VyVz) (XVyVz) (XVyVz)
(FVa) GV VaVb = (FVial)s Vvb) = (yVb)
(VD) (zV .\/b\/c (zVb) (zV[c])e (zV D)

PG encoding drops upward propagating clauses of only positively occurring gates.
PG encoding drops downward propagating clauses of only negatively occurring gates.

Unconstrained or monotone inputs can be removed too.

Resolution Asymmetric Tautologies (RAT)
“Inprocessing Rules” [JarvisaloHeuleBiere-lUCAR'12]

m justify complex preprocessing algorithms in Lingeling [Biere-TR'10]
= examples are adding blocked clauses or variable elimination

= interleaved with research (forgetting learned clauses = reduce)

= need more general notion of redundancy criteria
= extension of blocked clauses

= replace “resolvents on |/ | are tautological” by “resolvents on |/ |are RUP”

example: (aV (1)) RATon! wrt (aVB)A(IVc)A(IVD)
D

= deletion information is again essential (DRAT) [HeuleHuntWetzler-FMCAD'13/STVR'14]
= now mandatory in the main track of the SAT competitions since 2013

= pretty powerful: can for instance also cover symmetry breaking

"Clause Elimination for SAT and QSAT"

by Marijn Heule, Matti Jarvisalo, Florian Lonsing, Martina Seidl and Armin Biere

has been selected as the winner of the

2019 IJCAI-JAIR Best Paper Prize

with the following citation:

This paper describes fundamental and practical results on a range of clause elimination procedures as preprocessing
and simplification techniques for SAT and QBF solvers. Since its publication, the techniques described therein have been
demonstrated to have profound impact on the efficiency of state-of-the-art SAT and QBF solvers.

The work is elegant and extends beautifully some well-established theoretical concepts. In addition, the paper gives new
emphasis and impulse to pre- and in-processing techniques - an emphasis that resonates beyond the two
key problems, SAT and QBF, covered by the authors.

The IJCAI-JAIR Best Paper Prize is awarded to an outstanding paper published in the
Journal of Artificial Intelligence Research in the preceding five calendar years.

Macao, 13 August 2019

Shaul Markovitch M‘/ eldor H. Hoos
Editor-in-Chief, JAIR Chair, 2019 IJCAI-J e er Pfize Selection Committee

Associate-Editor-in-Chief, JAIR

FAKULTAT
FUR INFORMATIK

Faculty of Informatics

Structural Reasoning Methods for
Satisfiability Solving and Beyond

DISSERTATION
submitted in partial fulfillment of the requirements for the degree of
Doktor der Technischen Wissenschaften
by

Dipl.-Ing. Benjamin Kiesl, BSc
Registration Number 1127227

to the Faculty of Informatics

at the TU Wien

Advisors: Assoc.-Univ.Prof. Dr. Martina Seidl
a.0. Univ.-Prof. Dr. Hans Tompits

The dissertation has been reviewed by:

Olaf Beyersdorff Christoph Weidenbach

Vienna, 20" February, 2019

Benjamin Kiesl|

Technische Universitat Wien
A-1040 Wien - Karlsplatz 13 - Tel. +43-1-58801-0 - www.tuwien.ac.at

Set Blocked Clauses (SBC)
[KiesISeidlTompitsBiere-lJCAR’16] [KieslSeidl TompitsBiere-LMCS’18]

C is set blocked on L C C iff (C\L)ULUD is a tautology for all D € F with a literal in L

® easy to check if the “witness” L is given
= NP hard to check otherwise (“exponential”in |L|)

® |ocal redundancy property
= only considering the resolution environment of a clause

= in constrast to (R)AT / RUP

m gstrictly more powerful than blocked clauses (|L| =1)

Example:

C =

d

V

b

set blocked

in F = (avb) A (aVb)
by L={a,b}

® most general local redundancy property super blocked clauses

= strictly more powerful than blocked clauses

= 15 complete to chec

Redundancy
“Short Proofs Without New Variables” [HeuleKiesIBiere-CADE’17] best paper

Definition. A partial assignment o blocks a clause C if o assigns the literals in C to false
(and no other literal).

Definition. A clause C is redundant w.r.t. a formula F if F and F U{C} are satisfiability
equivalent.

Definition. A formula F simplified by a partial assignment a is written as F | g.

Theorem.

Let F be a formula, C a clause, and o the assignment blocked by C.
Then Cisredundant w.r.t. F iff exists an assignment w such that
(i) o satisfiesC and (ii) Flo = F|o.

Propagation Redundant (PR)
[HeuleKiesIBiere-CADE’17] [HeuleKiesIBiere-JAR’19]

® more general than RAT: short proofs for pigeon hole formulas without new variables

C propagation redundant (PR) if exists o satisfying C with F |, F; F' |

so in essence replacing “=” by “+;” (implied by unit propagation)
where again a is the clause that blocks C

m Satisfaction Driven Clause Learning (SDCL) [HeuleKies|SeidIBiere-HVC'17] best paper
= first automatically generated PR proofs
= prune assignments for which we have other at least as satisfiable assignments

= (filtered) positive reduct in SaDiCaL [HeuleKies|Biere-TACAS'19] nom. best paper
® franslate PR to DRAT [HeuleBiere-TACAS’18]

= only one additional variable needed

= shortest proofs for pigeon hole formulas
® translate DRAT to extended resolution [KiesIRebolaPardoHeule-lJCAR’18] best paper

® recent seperation results in [BussThapen-SAT'19]
but PR and can not simulate covered clauses [BarnetiCernaBiere-lJCAR’20]

Mutilated Chessboard

CDCL

SDCL

Landscape of Clausal Redundancy

Flo=Flo
R

[HeuleKiesIBiere-JAR’19]

FlokE L
~ IMP

FloF1 Flo
PR

F|(x 1 F‘OCLQC

satisfiability
equivalence

»
>

SPR

Flo 1 Floy

Flo 2 Flog

SBC

»
>

LPR

RAT

FloF1 L

Y

Flo o Floy

Flo 2 Floy

RS

RUP

F’(xl—oj_

»
>

BC

Y
n

logical
equivalence

0 N o Ou b~ w N

13
14
15
16

CDCL (formula F)

o:=0
forever do
o := UnitPropagate (F, o)
If o falsifies a clause in F then
C := AnalyzeConflict()
F.=FNC
if Cisthe empty clause L then return UNSAT
o := Backdump(C,a)

else
if all variables are assigned then return SAT
[= Decide()
o =oU{l}

O 00 4 o b~ w N

10
11
12
13
14
15
16

SDCL (formula F)

o:=0
forever do
o := UnitPropagate (F, o)
if a falsifies a clause in F' then
C := AnalyzeConflict()
F . =FNC
if Cisthe empty clause L then return UNSAT
o := Backdump(C,a)
else if the pruning predicate Py(F) is satisfiable then
C := AnalyzeWitness()

F =FANC
o = Backdump(C, o)
else
if all variables are assigned then return SAT
[= Decide()

o =oU{l}

Positive and Filtered Positive Reduct
[HeuleKieslSeidlBiere-HVC’17] [HeuleKiesIBiere-TACAS’19]

In the positive reduct consider clauses satisfied by a, unassigned literals and add C:

Definition. Let F be a formula and o an assignment. Then, the positive reduct of F and
o is the formula G A C where C is the clause that blocks a and
G = {touchedo(D) | D€ Fand D|g= T }.

Theorem. Let F be a formula, o an assignment, and C the clause that blocks a.
Then, Cis|SBC|by an L C C with respect to F' if and only if the assignment o satisfies the
positive reduct.

We obtain the filtered positive reduct by not taking all satisfied clauses of F' but only those
for which the untouched part is not implied by F'| ¢ via unit propagation:

Definition. Let F' be a formula and o an assignment. Then, the filiered positive reduct of
F and a is the formula G A C where G = {touched (D) | D € F and F | /] untouchedq(D)}.

Theorem. Let F be a formula, oo an assignment, and C the clause that blocks a.
Then, Cis |SPR|by an L C C with respect to F if and only if the assignment o, satisfies the
filtered positive reduct.

where SPR extends SBC in the same way by propagation as RAT extends BC

Experiments

[HeuleKiesIBiere-TACAS’19]

formula MAPLECHRONO | [HVC'17] CDCL | positive | filtered ACL2
Urquhart-s3-b1 2.95 5.86 16.31 > 3600 0.02 0.09
Urquhart-s3-b2 1.36 2.4 2.82 | >3600 0.03 0.13
Urquhart-s3-b3 2.28 19.94 2.08 | > 3600 0.03 0.16
Urquhart-s3-b4 10.74 32.42 7.65 | > 3600 0.03 0.17
Urquhart-s4-b1 86.11 583.96 > 3600 > 3600 0.32 2.37
Urquhart-s4-b2 154.35 | 1824.95 183.77 | > 3600 0.11 0.78
Urquhart-s4-b3 258.46 | > 3600 129.27 | > 3600 0.16 1.12
Urquhart-s4-b4 > 3600 > 3600 > 3600 > 3600 0.14 1.17
Urquhart-s5-b1 > 3600 > 3600 > 3600 > 3600 1.27 9.86
Urquhart-s5-b2 > 3600 > 3600 > 3600 > 3600 0.58 4.38
Urquhart-s5-b3 > 3600 | > 3600 > 3600 | > 3600 1.67 17.99
Urquhart-s5-b4 > 3600 > 3600 > 3600 > 3600 291 24.24
hole20 > 3600 1.13 > 3600 0.22 0.55 6.78
hole30 > 3600 8.81 > 3600 1.71 4.30 87.58
hole40 > 3600 43.10 > 3600 7.94 20.38 611.24
hole50 > 3600 149.67 > 3600 25.60 68.46 2792.39
mchess 15 51.53 | 1473.11 || 2480.67 | >3600 | 13.14 29.12
mchess 16 380.45 | >3600 | 211575 | >3600 | 15.52 36.86
mchess 17 2418.35 | >3600 | >3600 | >3600 | 25.54 57.83
mchess_18 > 3600 | > 3600 > 3600 | > 3600 43.88 100.71

Further things we could discuss ...

® relation to proof complexity Banff, Fields, Dagstuhl seminars
m extensions formalisms: QBF, Pseudo-Boolean, #SAT, ...
® |ocal search this year’s best solvers have all local search in it

® challenges: arithmetic reasoning (and proofs)
best paper [KaufmannBiereKauers-FMCAD’17] [PhD thesis Daniela Kaufmann 2020]

= chronological backtracking [RyvchinNadel-SAT’ 18] [MdhleBiere-SAT’19]

= incremental SAT solving
best student paper [FazekasBiereScholl-SAT'19] [PhD thesis of Katalin Fazekas in 2020]

® parallel and distributed SAT solving Handbook of Parallel Constraint Reasoning, ...

® and probably many more ...

Personal SAT Solver History

Handbook of SAT
Inprocessing
Tseitin BMC ~ smT Cube & Conquer
Encoding SAT Chapter
DPLL o AT CDCL | |, vSIDS Donald Knuth
complete WalkSAT
DP GSAT _ LBD Proofs SAT & SMT
‘ ‘ I ‘ ‘ — everywhere
| ol | | L o
1960 1970 1980 1990 2000 2010
competition Saving w(gili:ng
Look Ahead Bounded |ProbSAT .
SAT for Elimination | Parallel
Planning Arithmetic

Solvers

