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Industrially Successfull Formal Verification Techniques

= Symbolic Execution
= particularly in combination with concolic testing

= impressive project SAGE at Microsoft (Patrice Godefroid)

® Equivalence Checking
= first widely adopted formal technique in HW verification

= originally check combinational equivalence of RTL versus gate-level

= first use since mid 90’ies, wide-spread adoption since 2000

= since 10 years applied to sequential equivalence too

= used for checking last-minute fixes: engineering change orders (ECOs)

= checking arithmetic circuits, e.g., multipliers, still not completely automatic

®  Abstract Interpretation

= used to check for number / floating-point overflows etc.

= gtatic analyzer Astrée verified Airbus flight SW (2003)

® Model Checking or Property Checking increasingly used by certain companies
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Symbolic Model Checking without BDDs'

Armin Biere!, Alessandro Cimatti Edmund Clark& and Yunshan Zhu
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Abstract. Symbolic Model Checking [3, 14] has proven to be a powerful tech-
nique for the verification of reactive systems. BDDs [2] have traditionally been
used as a symbolic representation of the system. In this paper we show how
boolean decision procedures, likeaBbarck's Method [16] or the Davis & Put-

nam Procedure [7], can replace BDDs. This new technique avoids the space blow
up of BDDs, generates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length. We
introduce abounded model checkingrocedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction. We have implemented a model
checkerBMC, based on bounded model checking, and preliminary results are
presented.



Bounded Model Checking [BiereCimattiClarkeZhu-TACAS’99]

= |ook only for counter example made of k states “k” = bound

So Sy S Si+1 Sk So Sy 81 '/%J\Sk
O O O O O or O O =© O
P

2N —p N NV p N/ —p —p = —p —p

m simple for safety properties p invariantly true

k

I(so) A T(s,s1)) A== AT (sg—1,50) A\ —p(si)
i=0

® harder for liveness properties p eventually true

k k

I(so) A T(s0,51)) A= AT (sg—1,50) A\ =p(si) A\ T(sg,s1)
i=0 1=0

= compute and bound k by diameter






Export «

Symbolic model checking without BDDs [PDF] from cmu.edu

Authors  Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu
Publication date  1999/1/1
Tools and Algorithms for the Construction and Analysis of Systems
193-207
Springer Berlin Heidelberg

Abstract Symbolic Model Checking [3].[14] has proven to be a powerful technigue for the
verification of reactive systems. BDDs [2] have traditionally been used as a symbolic
representation of the system. In this paper we show how boolean decision procedures, like
Stalmarck's Method [16] or the Davis & Putnam Procedure [7]. can replace BDDs. This new
technique avoids the space blow up of EDDs, generates counterexamples much faster, and
sometimes speeds up the verification. In addition, it produces counterexamples of minimal ...
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Intel® Core™

Replacing Testing with Formal Verification in

Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,

Jesse Whittemore, Sudhindra Pandav, Anna Slobodovi, Christopher Taylor,

Vladimir Frolov, Erik Reeber, and Armaghan Naik

Intel Corporation, JF4-451, 2111 NE 25th Avenue, Hillsboro, OR 97124, USA

Abstract. Formal verification of arithmetic datapaths has been part of the estab-
lished methodology for most Intel processor designs over the last years, usually
in the role of supplementing more traditional coverage oriented testing activities.
For the recent Intel® Core™ i7 design we took a step further and used formal
verification as the primary validation vehicle for the core execution cluster, the
component responsible for the functional behaviour of all microinstructions. We
applied symbolic simulation based formal verification techniques for full data-
path, control and state validation for the cluster, and dropped coverage driven
testing entirely. The project, involving some twenty person years of verification
work, is one of the most ambitious formal verification efforts in the hardware
industry to date. Our experiences show that under the right circumstances, full
formal verification of a design component is a feasible, industrially viable and
competitive validation approach.
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Impact of BMC

» widespread use in industry (EDA)

- Industry embraced bounding part immediately
- original industrial reservations: using SAT vs ATPG
- original academic reservations: incompleteness?

« BMC relies on efficient SAT (SMT) solving

- breakthroughs in SAT: CDCL '96, VSIDS '01, ...
- encouraged investment in SAT / SMT research

« extensions to non-boolean domains and SW
- bounding reduces complexity / decidability
e extensions to completeness

- diameter checking, k-induction, interpolation
J\YYU - SAT based model checking without unrolling: 1C3
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A Short Story on 15 years of

Bounded Model Checking

*1997: interest and capacity of BDDs stalled
but there were success stories of other techniques
 Ed Clarke hired Yunshan Zhu & Armin Biere as Post-Docs:
Use SAT for Symbolic Model Checking!
struggled for 10 months to come up with something that could
replace / improve BDDs (mainly looked at QBF then)
*Alessandro Cimatti came to an Al conference in Pittsburgh and
at lunch (at an Indian Restaurant) we realized, that in
Al Planing they do not care about completeness
What if we apply this to model checking?
How to handle temporal logic?
 After one afternoon for the theory and 3 months of
implementation and benchmarking later: TACAS submission

JOHANNES KEPLER
|||||||||||||||
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Symbolic Model Checking without BDDs™
Armin Biere!, Alessandro Cimatti?, Edmund Clarke!, Yunshan Zhu!

1 Computer Science Department, Carnegic Mellon University
5000 Forbes Avemue, Pittsburgh, PA 15213, US.A
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Abstract. Symbolic Model Checking [3, 14] has proven to be s powerful tech-
nique for the verification of reactive systems. BDDs (2] have traditionally been
used as & symbolic representation of the system. In this paper we show how
boolean decision procedures, like Stilmarck's Method [16] or the Davis & Put-
‘am Procedure [7], ean replace BDDs. This new technique avoids the space blow
up of BDDs, gencrates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length, We
introduce s bounded model checking procedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction, We have implemented a model
checker BMC, based on bounded model checking, and prefiminary results are
presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, itis gaining wide industrial acceptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine, For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than 10°° states. BDDs [2], 2 canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDT
during mode] checking become too large for currently available cor

*This research is sponsored by the Semiconductor Research Corpo
No. 97-DJ-294 and the National Science Foundation (NSF) u-
Any opinions, findings and conclusions or recommendatio;
those of the authors and do not necessarily reflect the views
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SAT Based Model Checking

« BMC
° k_lnductlon Abstract Modern satisfiability (SAT) solvers have become the enabling technol-
ogy of many Mode] Checkers. In this chapter, we will focus on those echniques
. most relevant to industrial practice. In Bounded Model Checking (BMC), a transi-
° Abstract|0ns / CEGAR tion system and a property are jointly unwound for a given number & of steps to
obtain a formula that is satisfisble if there is a counterexample for the property up
. to kength & The formula is then passed to an efficient SAT solver. The strength of
L Inte rpOIatlon BMC is refigarion: BMC has been used to discover subtle flaws in digital systems.
We cover the application of BMC to both hardware and software systems, and to
o I C 3 hardw are/software co-verification. We also discuss means to make BMC complete,
including k-induction, Craig interpolation, abstraction mrefinement techniques and

inductive techniques with iterative strengthening.

SAT Based Model Checking

Armin Biere, Daniel Kroning

Handbook of Model Checking

Edmund Clarke, Thomas Henzinger, Helmut Veith, editors

JXU
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Lessons from BMC

« simple but useful ideas are very controversial

- hard to get accepted (literally)
- many comments of the sort: we did this before ...
- main points: make it work, show that it works!

* In retrospective

- classification considerations might have been useful since
we tried to use SAT for symbolic model checking without
taking Savitch's theorem into account

- but might have prevented us going along that route ...

JOHANNES KEPLER
IIIIIIIIIIIIIII



Some Complexity Classes

= P
= problems with polynonmially time-bounded algorithms

= pbounds measured in terms of input (file) size

m NP
= same as P but with non-determininistic choice
" needs a SAT solver

= PSPACE NEXPTIME
= as P but space-bounded PSPACE
= QBF and bit-level model checking fall in this class
NP
= NEXPTIME
= same as NP but with exponential time P
E P C NP C PSPACE C NEXPTIME
= usually itis assumed: P # NP

= jtis further known: NP # NEXPTIME

JXU



Complexity Concretely

= NP problems

anything which can be (polynomially) encoded into SAT

combinational equivalence checking, bounded model checking

= PSPACE problems

anything which can be encoded (polynomially) into QBF

or into (bit-level) symbolic model checking

sequential equivalence checking, combinational synthesis or bounded games

= NEXPTIME problems

anything which can be encoded exponentially into SAT

first-order logic Bernays-Schonfinkel class (EPR):  no functions, 3*V* prefix
QBF with explicit dependencies (Henkin Quantifiers): DQBF

partial observation games, black-box bounded model checking

bit-vector logics: QF_BV



NEXPTIME Completeness of Bit-Vectors

joined work with Gergely Kovasznai and Andreas Frohlich

= QF_BV contained in NEXPTIME
= bit-blast (exponential)

= give resulting formula to SAT solver

= we showed QF_BV is NEXPTIME hard by reducing DQBF to QF_BV

VX0, X1,%2,%3,X4 Feq(x0,X1,%2,X3),€1(X1,X2,X3,%4) P
= polynomially encodes dependencies (for Henkin quantiers)

= my student Andreas has now an (yet unpublished) direct proof

. ?
= why are bit-vectors NEXPTIME complete* x,y : bool[1000000]

(set—logic QF_BV) o
(declare-fun x () (_ BitVec 1000000)) y#EX A x+y=x<1
(declare-fun y () (_ BitVec 1000000))

(declare—-fun z () (_ BitVec 1000000))

(assert (= z (bvadd x v)))

(

(

assert (= z (bvshl x (_ bvl 1000000))))
assert (distinct x vy))

JXU



Bit-Wise Operators and Shifting Neighbouring Bits Only

= NP complete: QF BV,,,
= relate same bits: equality and all bit-wise operators

= gsimilar to well-known Ackermann reduction

= PSPACE complete: QF BV,
= only allow operators which relate neighbouring bits:

base operators: equality, inequality/comparison, bit-wise ops, shift-by-one
extended operators:  addition, multiplication by constants, single-bit-slices etc.

= encode in symbolic model checking logarithmically in bit-width

®m see our CSR’12, SMT’13 papers and our 2015 journal article in TOCS

® came accross otherwise unsolvable benchmarks from industry!

JXU



Commutativity of Bit-Vector Addition in SMV

MODULE main

VAR
Cc : boolean; —— carry ’"bvadd x y’
d : boolean; —— carry ’"bvadd y x’
X : boolean; -- x0, x1,
y : boolean; -- vy0, vi1,
ASSIGN
init (c¢) := FALSE;
init (d) := FALSE;
ASSIGN
next (c) = c&x | c&y | x&y; -—— C y >= 2
next (d) := d&y | d&x | v&x; — d + vy + x >= 2
DEFINE
o :=c¢c !'= (x 1= v); —— C XOr y XOr X
p :=d !'= (v !'= x); —— d X0or X XOr Vy
SPEC
AG (o = p)



Commutativity of Bit-Vector Addition in AIGER

AIGER_NEVER _0

JXU



Ripple-Carry-Adder vs Carry-Save-Adder

not really realistic example but shows the fundamental problem of checking arithmetic circuit equivalence

c 1—c  i—c  i—c 1 C i ¢ il |¢ il |¢ 1—0
XYy Xy Xy Xy XYy Xy XYy Xy
S S S S S S S S
c I—c  i—c  i—c 1 C i ¢ il |¢ i |¢ i—0
XYy XYy Xy XYy XYy Xy XYy Xy
S s S S S S s S
c I—c  i—c  iF—c 1 C i ¢ il ¢ il |¢ 10
Xy XYy Xy XYy Xy XYy Xy XYy
S S S S s S s S
c 1—c  i—c  iF—c i C i ¢ il ¢ il |¢ 10
y
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Commutativity of Bit-Vector Multiplication

(set—-logic QF_BV)
(declare—-fun x () (_ BitVec 12))
(declare—-fun y () (_ BitVec 12))
(assert (distinct (bvmul x y) (bvmul y x)))
(check—-sat)
12 core

1 core 1 core cube—and-conquer 12 core

bits Glucose Lingeling March|ilingeling Treengeling

01 0.00 0.00 0.00 0.01
02 0.00 0.00 0.00 0.01
03 0.00 0.00 0.00 0.01
04 0.00 0.00 0.02 0.03
05 0.00 0.01 0.05 0.13
06 0.02 0.03 0.36 0.31
07 0.14 0.27 0.63 0.72
08 1.18 1.98 1.38 2.47
09 7.85 10.98 2.63 4.65
10 37.16 41.49 5.02 10.86
11 147.62 214.98 15.72 21.96
12 833.62 649.49 56.57 61.48
13 —— —— 238.10 263.44

limit of 900 seconds wall clock time

JXU



Challenge Arithmetic Circuit Equivalence Checking

m secret of the success of (combinational) equivalence checking
= assumption: many internal equivalence points

= makes BDD and SAT sweeping effective

= problems with arithmetic circuits
= almost no equivalent internal signals (except for outputs)

= proof complexity conjectured to be beyond resolution

= often no "clean” implementation circuit available

= challenges
= prove conjectured complexity

= use world-level (bit-vector) information
= arithmetic reasoning on the bit-level

= robust integration in SAT and/or SMT solver

® gstarted to collect a large number of such benchmarks

JXU
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Personal SAT Solver History

Handbook of SAT
Inprocessing
Tseitin BMC | [SMT Cube & Conquer
DPL Encoding SAT Chapter
\p SAT - CDCL VSIDS Donald Knuth
complete
Op p WalkSAT [ BD S ATh
| ‘ GSAT — ‘ ever}|lw ere
| ] | | C T~
1960 1970 1980 1990 2000 2010 2020
I1st SAT Portfolio |!Ehase ‘ QBF
competition Saving working
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Planing Arithmetic
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Sarisfiabiliny (5ATH related topics hawe accracted researchers from various disciplines Legic, FErontiers in Artificial |I‘|tE||i§EI'|EE and Applicatmns

appled aress such as planning, scheduling, operatons research and combinatoral epomization,

bt also chegredcal ssuas en the thame of complexing, and much mere, they all are connaecoed
HANDBOOK

My personal interest in 5AT sterms from acoual solving: The increase in power of modern SAT
salvers over the past | 5 years has been phenomenal |t has became the key erabling technology
in auvemaced verification of both computer hardware and sefoware. Bounded Model Checking - -
(BMC) of computer hardware is now probably the mest widely used model checking technigue, f 3 f‘ b‘ I' f t f' b I t
The counterexarnples that it finds are just satisfying instances of a Boolean farmula obtained by D Sa.tls Ia I Ity . . . Sa I S I a. I I y
unwinding to some fixed depth a sequential circuit and its specification in Enear temporal logic.

Extending model checking to software verification is 2 much more difficult problem on the frontier .
of current research. One promising approach for Binguages like C with finite word-length integers

is to use the same idea as in BMC but with a decision procedure for the theory of bit-vectors .
instead of SAT. All decision procedures for bitwvectors that | am famillar with itimately make uses

of a fast SAT solver to handle complex formaulas. . .
Diecision procedures for more comiplicated theories, like linear real and noeper arichmetic, are Ediwrs:
also used in program werification, Most of them use powerful 54T solvers in an essential way

Armin Biere

Clearly, efficient SAT sobving & @ key technology for 215t century computer science. | expect -
this collection of papers on all cheorevcal and pracical aspects of SAT soling will be exmrernaly I."'II:""]"'I Heule
usaful ta bech studencs and researchers and will lead to many furthar advances i the fleld Hans van Maaren

Edmund Clarke Toby Walsh

Ederivng M. Clovke, FORE Systems University Professor of Computer Science and Professor of Electrical
ond Computer Engimeering at Cornegie Mellan University, 2 one af the initiators and main contributors
to i fhedd of Model Checking, for wivich e afso recelved the 2007 ACH Turing Aword,

n the late %05 Professor Clarke was one of the first reseorchers to reolize that SAT solving fas the
potential to become one of the most important technologies in mode checking.

® ® ® Editors:
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PREFACE

Special thanks are due to Armin Biere. Randy Bryvant, Sam Buss, Niklas Eén,
lan Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz, Niklas Sorensson. Udo Wermuth, Ryvan Williams. and . .. for their detailed
comments on my early attempts at exposition. as well as to numerous other cor
respondents who have contributed crucial corrections. Thanks also to Stanford’s
Information Systems Laboratory for providing extra computer power when my
laptop machine was inadequate.

Wow  Section 7.2.2.2 has turned out to be the longest section, by far, in
The Art of Computer Programming. The SAT problem is evidently a “killer
app.” because it is key to the solution of so many other problems. Consequently
I can only hope that my lengthy freatment does not also kill off my faithful
readers! As | wrote this material. one topic always seemed to fow naturally
into another, so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn’t allow for a Section
7.2.2.2.1.)

I've tried to ameliorate the reader’s navigation problem by adding subhead
ings at the top of each right-hand page. Furthermore, as in other sections,
the exercises appear in an order that roughly parallels the order in which corre

sponding topics are taken up in the text. Numerous cross-references are provided
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Competitions, Benchmarks, Science

® competitions are used to
= compare and evaluate implementations and algorithms

= generate benchmarks used in papers

= SAT competition is one of the largest competitions
= many solvers, highly competitive

= portfolio solving, over-tuning issues

= penchmark selection scheme broken due to competing goals:
assess the state-of-the-art

high-light new ideas

give a fair chance to everybody

® research in SAT solving, verification, etc. in essence empirical science
= pbenchmark selection critical

= how to select benchmarks?
for the competition?

in your papers?

JXU



Conclusion

= what | did not talk about ... (yet)
= parallel SAT

= QBF / quantifiers in general

= huge improvements in local research in recent years
= how to apply local search to bit-vectors and SMT

= testing / debugging

= assertion synthesis
® acknowledgements:

Ed Clarke, all co-authors, collaborators, students and Post-Docs
and if would list more names | would struggle with order and probably forget somebody

= if you have model checking, SMT, or SAT problems you want share let me know ...

looking for Post-Doc’s and PhD students too

JXU



