Model Checking, SAT and Bit-Vectors

Armin Biere
Johannes Kepler University
Linz, Austria

Seminar Theoretical Computer Science
KTH Royal Institute of Technology
Stockholm, Sweden

Monday, 30rd November, 2015

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Formal
Specification

UML

Proving
Synchrono Modgl Checking Formal
bolic Execution Verification

Compiler Interpretation

Domain
Specific
Languages

quivalence Checking
)Ds g\MT Computer/Algebra

SAT

Formal
Synthesis

JXU

JOHANNES KEPLER
UNIVERSITY LINZ

Industrially Successfull Formal Verification Techniques

= Symbolic Execution
= particularly in combination with concolic testing

= impressive project SAGE at Microsoft (Patrice Godefroid)

® Equivalence Checking
= first widely adopted formal technique in HW verification

= originally check combinational equivalence of RTL versus gate-level

= first use since mid 90’ies, wide-spread adoption since 2000

= since 10 years applied to sequential equivalence too

= used for checking last-minute fixes: engineering change orders (ECOs)

= checking arithmetic circuits, e.g., multipliers, still not completely automatic

® Abstract Interpretation

= used to check for number / floating-point overflows etc.

= gtatic analyzer Astrée verified Airbus flight SW (2003)

® Model Checking or Property Checking increasingly used by certain companies

JXU

Personal Model Checking History

BurchClarkeMcMillanDillHwang’90: Symbolic Model Checking
ClaessenSorensson’12: k—-liveness
CoudertMadre’89: Symbolic Reachability
BiereArthoSchuppan’01: Liveness2Safety

Pnueli’77: Temporal Logic
Hel P g McMillan’03: Interpolation

McMillan’93: SMV Bradley’10: IC3

BiereCimattiClarkeZhu’99: Bounded Model Checking

ClarkeE '82: Model Checki
arketmerson odethecking SheeranSinghStalmarck’00: k—induction

Kurshan’93: Localization
ClarkeEmersonSifakis:

ielleSifakis’82: Model Checkin
QuielleSifakis'82: Mo N BallRajamani’01: SLAM Turing Award 2007

Holzmann'91: SPIN
olzmann GrafSaidi’97: Predicate Abstraction

Holzmann’81: On-The-Fly Reachability ClarkeGrumbergdJahLuVeith’03: CEGAR

Peled’94: Partial-Order—Reduction

Symbolic Model Checking without BDDs'

Armin Biere!, Alessandro Cimatti Edmund Clark& and Yunshan Zhu

1 Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A
{Armin.Biere,Edmund.Clarke,Yunshan.Zhu }@cs.cmu.edu
2 |stituto per la Ricerca Scientifica e Tecnologica (IRST)
via Sommarive 18, 38055 Povo (TN), Italy
cimatti@irst.itc.it

Abstract. Symbolic Model Checking [3, 14] has proven to be a powerful tech-
nique for the verification of reactive systems. BDDs [2] have traditionally been
used as a symbolic representation of the system. In this paper we show how
boolean decision procedures, likeaBbarck's Method [16] or the Davis & Put-

nam Procedure [7], can replace BDDs. This new technique avoids the space blow
up of BDDs, generates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length. We
introduce abounded model checkingrocedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction. We have implemented a model
checkerBMC, based on bounded model checking, and preliminary results are
presented.

Bounded Model Checking [BiereCimattiClarkeZhu-TACAS’99]

= |ook only for counter example made of k states “k” = bound

So Sy S Si+1 Sk So Sy 81 '/%J\Sk
O O O O O or O O =© O
P

2N —p N NV p N/ —p —p = —p —p

m simple for safety properties p invariantly true

k

I(so) A T(s,s1)) A== AT (sg—1,50) A\ —p(si)
i=0

® harder for liveness properties p eventually true

k k

I(so) A T(s0,51)) A= AT (sg—1,50) A\ =p(si) A\ T(sg,s1)
i=0 1=0

= compute and bound k by diameter

Export «

Symbolic model checking without BDDs [PDF] from cmu.edu

Authors Armin Biere, Alessandro Cimatti, Edmund Clarke, Yunshan Zhu
Publication date 1999/1/1
Tools and Algorithms for the Construction and Analysis of Systems
193-207
Springer Berlin Heidelberg

Abstract Symbolic Model Checking [3].[14] has proven to be a powerful technigue for the
verification of reactive systems. BDDs [2] have traditionally been used as a symbolic
representation of the system. In this paper we show how boolean decision procedures, like
Stalmarck's Method [16] or the Davis & Putnam Procedure [7]. can replace BDDs. This new
technique avoids the space blow up of EDDs, generates counterexamples much faster, and
sometimes speeds up the verification. In addition, it produces counterexamples of minimal ...

Cited by 2076

Symbolic medel checking without BDDs
A Biere, A Cimatti, E Clarke, ¥ Zhu - Tools and Algorithms for the Construction and Analysis ..., 1999
Cited by 2076 - Related articles - All 38 versions

Intel® Core™

Replacing Testing with Formal Verification in

Roope Kaivola, Rajnish Ghughal, Naren Narasimhan, Amber Telfer,

Jesse Whittemore, Sudhindra Pandav, Anna Slobodovi, Christopher Taylor,

Vladimir Frolov, Erik Reeber, and Armaghan Naik

Intel Corporation, JF4-451, 2111 NE 25th Avenue, Hillsboro, OR 97124, USA

Abstract. Formal verification of arithmetic datapaths has been part of the estab-
lished methodology for most Intel processor designs over the last years, usually
in the role of supplementing more traditional coverage oriented testing activities.
For the recent Intel® Core™ i7 design we took a step further and used formal
verification as the primary validation vehicle for the core execution cluster, the
component responsible for the functional behaviour of all microinstructions. We
applied symbolic simulation based formal verification techniques for full data-
path, control and state validation for the cluster, and dropped coverage driven
testing entirely. The project, involving some twenty person years of verification
work, is one of the most ambitious formal verification efforts in the hardware
industry to date. Our experiences show that under the right circumstances, full
formal verification of a design component is a feasible, industrially viable and
competitive validation approach.

1 Introduction
7 DA A A MMM A A AU EMEER B e o 4 44 o6 44 5 T T

i B L
e e e i el

Copyrighted

4el T T T
i Material
P L LU
et ae o Milida a
U TV VTSP BN TS TV T
L U BB I b 4 b b PPN

oo OB ASH BNC D IIRATY W A NLRLBR N O bbb A

A. Bouajjani and O. Maler (Eds.): CAV 2009, LNCS 5643, pp. 414-429, 2009.
© Springer-Verlag Berlin Heidelberg 2009

i7 Processor Execution Engine Validation

tha

Replacing Testing with Formal Verification 421

2 MR 1 0 ST O P M O A e O O I O TR R R W B B T e v v]
L RIS S A A IO ¢
A A N T Y I TN L TR Y Y SRS S ST @
LT b b LIS RNIAA W L A LA R T I ST RN D navempieted
BT R S————— s S S8 T ST)
LELT LI L 0 i i R B BB 00 430 0 405 M 5 -

6 Formal Verification Value Proposition

Theicanvenunnaipisdomahounformatuerfivation iy pdusirial contexis easy: Jocspell
QRIS S oo o ol e B e e T T —"
FIFERE L T R T T O T T T U UL T TRV TR WO P vy Vet P T 1OF P AR - ._..;n
-l'ﬂWAuunuJbs,

15181 S1G1G1EI S S SARMAMLAEA) 9 44) Do sl i e S
L ML MM HTR R SR A MR I T TEII "
RN RIRIRBERATUEAEALAL AL A) 40 A1 SN o il

B e T B B T T T T T PR S 1
- R R PR

- \LM97~
T T TR RNRRRRRRERTY) | e
UKL s e A R 1) 1)
= FV nuy s snnaennun e s s sy sl alaies o

OL QU T EE Y B0 SIS MLk) b s o o o) M) M T SO
L T TR aeteteteneat ittt b b A A A A O D D D D L L
BERRRAL L D L LT LT T T TS TS T TE T G T
[AR RS S S i 0 0 8 1 BLSL BB b e
EERE LR EEEEE BT 0ot i Ty Sy S S
I AT AT T L R L D - -
et . viddddssssnnn -

,._.A.JMMA

B ———

© 0L the desrgnsand dOMMAIVETITICAlION © o ow wwwsough
£ SSTTetetSTSTSASMAN I S MINOOMLE BRI L L ~snsithat doing a
- T AT NIV AN B M D b AN A &3 A 1y L ~rough effort only

afewsnbotivcases-leadmgne aperceivedlow retum on invesunent. The areas where
projects have routinely chosen to do formal verification have then been limited to those
where an uncaught problem would be so visible and costly that the extra effort of doing
formal verification can be justified. As a positive exception, SAT-based bounded model
checking has been very successfully used as a bug-hunting tool in targeted areas.

The third usage model, mixing formal and dynamic techniques on validating a sin-
gleuloerem a e A SO e 8 10 2 Al ACHRARL L RO Q2 R KLG wpp R SRR 11!
b oo soas bR)) 1 D DEDETET R 0 0 0 A A bbbl 4 44 6 4 4 VLT TR
L4 d OO O TN PR I I I N A 0 200 00 o M M i e o 4 4 40 0 B L TR
ASPeutst O e U esTEn anuine SESTOE MICIESTNNE & o 414 ik 6 L NS SRt

Impact of BMC

» widespread use in industry (EDA)

- Industry embraced bounding part immediately
- original industrial reservations: using SAT vs ATPG
- original academic reservations: incompleteness?

« BMC relies on efficient SAT (SMT) solving

- breakthroughs in SAT: CDCL '96, VSIDS '01, ...
- encouraged investment in SAT / SMT research

« extensions to non-boolean domains and SW
- bounding reduces complexity / decidability
e extensions to completeness

- diameter checking, k-induction, interpolation
J\YYU - SAT based model checking without unrolling: 1C3

JOHANNES KEPLER
|||||||||||||||

A Short Story on 15 years of

Bounded Model Checking

*1997: interest and capacity of BDDs stalled
but there were success stories of other techniques
 Ed Clarke hired Yunshan Zhu & Armin Biere as Post-Docs:
Use SAT for Symbolic Model Checking!
struggled for 10 months to come up with something that could
replace / improve BDDs (mainly looked at QBF then)
*Alessandro Cimatti came to an Al conference in Pittsburgh and
at lunch (at an Indian Restaurant) we realized, that in
Al Planing they do not care about completeness
What if we apply this to model checking?
How to handle temporal logic?
 After one afternoon for the theory and 3 months of
implementation and benchmarking later: TACAS submission

JOHANNES KEPLER
|||||||||||||||

AWARD

Most influential paper
in the First 20 years of TACAS

Symbolic Model Checking without BDDs™
Armin Biere!, Alessandro Cimatti?, Edmund Clarke!, Yunshan Zhu!

1 Computer Science Department, Carnegic Mellon University
5000 Forbes Avemue, Pittsburgh, PA 15213, US.A
{Azmin.Bieze,Edmund.Clarke, Yunshan. Zhu}écs .cmu. edu
2 Istituto per la Ricerca Scientifica ¢ Tecnologica (IRST)
via Soramarive 18, 38055 Povo (TN), Italy
cimatti@irst.itc.it

Abstract. Symbolic Model Checking [3, 14] has proven to be s powerful tech-
nique for the verification of reactive systems. BDDs (2] have traditionally been
used as & symbolic representation of the system. In this paper we show how
boolean decision procedures, like Stilmarck's Method [16] or the Davis & Put-
‘am Procedure [7], ean replace BDDs. This new technique avoids the space blow
up of BDDs, gencrates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length, We
introduce s bounded model checking procedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction, We have implemented a model
checker BMC, based on bounded model checking, and prefiminary results are
presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, itis gaining wide industrial acceptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine, For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than 10°° states. BDDs [2], 2 canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDT
during mode] checking become too large for currently available cor

*This research is sponsored by the Semiconductor Research Corpo
No. 97-DJ-294 and the National Science Foundation (NSF) u-
Any opinions, findings and conclusions or recommendatio;
those of the authors and do not necessarily reflect the views
Government

‘W Cleaveland (Ed): TACASETAPS'S9, LNCS 1575, pp. 193-207, 195
© Springer-Verlag Berlin Heidelberg 1999

April 8th 2014, Grenoble
it

e fio—o

—

SAT Based Model Checking

« BMC
° k_lnductlon Abstract Modern satisfiability (SAT) solvers have become the enabling technol-
ogy of many Mode] Checkers. In this chapter, we will focus on those echniques
. most relevant to industrial practice. In Bounded Model Checking (BMC), a transi-
° Abstract|0ns / CEGAR tion system and a property are jointly unwound for a given number & of steps to
obtain a formula that is satisfisble if there is a counterexample for the property up
. to kength & The formula is then passed to an efficient SAT solver. The strength of
L Inte rpOIatlon BMC is refigarion: BMC has been used to discover subtle flaws in digital systems.
We cover the application of BMC to both hardware and software systems, and to
o I C 3 hardw are/software co-verification. We also discuss means to make BMC complete,
including k-induction, Craig interpolation, abstraction mrefinement techniques and

inductive techniques with iterative strengthening.

SAT Based Model Checking

Armin Biere, Daniel Kroning

Handbook of Model Checking

Edmund Clarke, Thomas Henzinger, Helmut Veith, editors

JXU

JOHANNES KEPLER
UNIVERSITAT LINZ

Lessons from BMC

« simple but useful ideas are very controversial

- hard to get accepted (literally)
- many comments of the sort: we did this before ...
- main points: make it work, show that it works!

* In retrospective

- classification considerations might have been useful since
we tried to use SAT for symbolic model checking without
taking Savitch's theorem into account

- but might have prevented us going along that route ...

JOHANNES KEPLER
IIIIIIIIIIIIIII

Some Complexity Classes

= P
= problems with polynonmially time-bounded algorithms

= pbounds measured in terms of input (file) size

m NP
= same as P but with non-determininistic choice
" needs a SAT solver

= PSPACE NEXPTIME
= as P but space-bounded PSPACE
= QBF and bit-level model checking fall in this class
NP
= NEXPTIME
= same as NP but with exponential time P
E P C NP C PSPACE C NEXPTIME
= usually itis assumed: P # NP

= jtis further known: NP # NEXPTIME

JXU

Complexity Concretely

= NP problems

anything which can be (polynomially) encoded into SAT

combinational equivalence checking, bounded model checking

= PSPACE problems

anything which can be encoded (polynomially) into QBF

or into (bit-level) symbolic model checking

sequential equivalence checking, combinational synthesis or bounded games

= NEXPTIME problems

anything which can be encoded exponentially into SAT

first-order logic Bernays-Schonfinkel class (EPR): no functions, 3*V* prefix
QBF with explicit dependencies (Henkin Quantifiers): DQBF

partial observation games, black-box bounded model checking

bit-vector logics: QF_BV

NEXPTIME Completeness of Bit-Vectors

joined work with Gergely Kovasznai and Andreas Frohlich

= QF_BV contained in NEXPTIME
= bit-blast (exponential)

= give resulting formula to SAT solver

= we showed QF_BV is NEXPTIME hard by reducing DQBF to QF_BV

VX0, X1,%2,%3,X4 Feq(x0,X1,%2,X3),€1(X1,X2,X3,%4) P
= polynomially encodes dependencies (for Henkin quantiers)

= my student Andreas has now an (yet unpublished) direct proof

. ?
= why are bit-vectors NEXPTIME complete* x,y : bool[1000000]

(set—logic QF_BV) o
(declare-fun x () (_ BitVec 1000000)) y#EX A x+y=x<1
(declare-fun y () (_ BitVec 1000000))

(declare—-fun z () (_ BitVec 1000000))

(assert (= z (bvadd x v)))

(

(

assert (= z (bvshl x (_ bvl 1000000))))
assert (distinct x vy))

JXU

Bit-Wise Operators and Shifting Neighbouring Bits Only

= NP complete: QF BV,,,
= relate same bits: equality and all bit-wise operators

= gsimilar to well-known Ackermann reduction

= PSPACE complete: QF BV,
= only allow operators which relate neighbouring bits:

base operators: equality, inequality/comparison, bit-wise ops, shift-by-one
extended operators: addition, multiplication by constants, single-bit-slices etc.

= encode in symbolic model checking logarithmically in bit-width

®m see our CSR’12, SMT’13 papers and our 2015 journal article in TOCS

® came accross otherwise unsolvable benchmarks from industry!

JXU

Commutativity of Bit-Vector Addition in SMV

MODULE main

VAR
Cc : boolean; —— carry ’"bvadd x y’
d : boolean; —— carry ’"bvadd y x’
X : boolean; -- x0, x1,
y : boolean; -- vy0, vi1,
ASSIGN
init (c¢) := FALSE;
init (d) := FALSE;
ASSIGN
next (c) = c&x | c&y | x&y; -—— C y >= 2
next (d) := d&y | d&x | v&x; — d + vy + x >= 2
DEFINE
o :=c¢c !'= (x 1= v); —— C XOr y XOr X
p :=d !'= (v !'= x); —— d X0or X XOr Vy
SPEC
AG (o = p)

Commutativity of Bit-Vector Addition in AIGER

AIGER_NEVER _0

JXU

Ripple-Carry-Adder vs Carry-Save-Adder

not really realistic example but shows the fundamental problem of checking arithmetic circuit equivalence

c 1—c i—c i—c 1 C i ¢ il |¢ il |¢ 1—0
XYy Xy Xy Xy XYy Xy XYy Xy
S S S S S S S S
c I—c i—c i—c 1 C i ¢ il |¢ i |¢ i—0
XYy XYy Xy XYy XYy Xy XYy Xy
S s S S S S s S
c I—c i—c iF—c 1 C i ¢ il ¢ il |¢ 10
Xy XYy Xy XYy Xy XYy Xy XYy
S S S S s S s S
c 1—c i—c iF—c i C i ¢ il ¢ il |¢ 10
y

JXU

Commutativity of Bit-Vector Multiplication

(set—-logic QF_BV)
(declare—-fun x () (_ BitVec 12))
(declare—-fun y () (_ BitVec 12))
(assert (distinct (bvmul x y) (bvmul y x)))
(check—-sat)
12 core

1 core 1 core cube—and-conquer 12 core

bits Glucose Lingeling March|ilingeling Treengeling

01 0.00 0.00 0.00 0.01
02 0.00 0.00 0.00 0.01
03 0.00 0.00 0.00 0.01
04 0.00 0.00 0.02 0.03
05 0.00 0.01 0.05 0.13
06 0.02 0.03 0.36 0.31
07 0.14 0.27 0.63 0.72
08 1.18 1.98 1.38 2.47
09 7.85 10.98 2.63 4.65
10 37.16 41.49 5.02 10.86
11 147.62 214.98 15.72 21.96
12 833.62 649.49 56.57 61.48
13 —— —— 238.10 263.44

limit of 900 seconds wall clock time

JXU

Challenge Arithmetic Circuit Equivalence Checking

m secret of the success of (combinational) equivalence checking
= assumption: many internal equivalence points

= makes BDD and SAT sweeping effective

= problems with arithmetic circuits
= almost no equivalent internal signals (except for outputs)

= proof complexity conjectured to be beyond resolution

= often no "clean” implementation circuit available

= challenges
= prove conjectured complexity

= use world-level (bit-vector) information
= arithmetic reasoning on the bit-level

= robust integration in SAT and/or SMT solver

® gstarted to collect a large number of such benchmarks

JXU

SAT- —
T Racem@w@?
ar

48 ?
bPlIngeling“
y Armin Biére 2

i“ L[ngeling“

; Tenth Intern® sonel Conference
Wm&l’@g\?\m\:ﬁm‘ﬁ Satisfiabihity Testing is av
: a
- v ovat rded the il &
Fy san- T est P L g
aR : aralle] 2 by Armin Biere
i " 3 e el Sol
& & : = Ver :
Ty el \ is awarded the title of
5 ., N ; : -
i 2 V / \'&k&_\ Second Pnze WIn, o nww"‘:;nffph;zwaﬁﬂnal Confere
S : --ofw,;_“ ! e P "BnansofSatisﬂab;f;T .
Compeiion 2007 e 5. ey 100 . esting
— 2. - vpRTraend
o
x
A¥s

Gold medal

Avarded 10 — e B3 e
wrigten bY

for best performancs y sakver i the 3
penshmarks spechalvy:

Resin
4 (al categury B8ELY gaable

nduat

goa a4 oTERR
o

o =

The SAT200T compatition jd

CPU Time (in seconds)

1200

1000

B0

200

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

44 » m 0

*

SN- N-N--N N Re el

T I T T T T T el I
Limmat (2002) o LA . 0%
Zchaff (2002) s - . 7 o Sl

Berkmin (2002) > . e W
Forklift (2003) TR v & g
Siege (2003) . L7 s ‘ﬁf

Zchaff (2004) e a ¥ e © o &
SatELite (2005) y - L7

Minisat 2 (2006) I

Picasat (2007) s
Rsat (2007) _ :
Minisat 2.1 (2008) - L v * Yo
Precosat (2009) 0 ' ' '
Glucose (2009) . A K.

Clasp (2009) oo .
Cryptominisat (2010) - dTo ¥ Oud
Lingeling (2010) .
Minisat 2.2 (2010) @ W
Glucose 2 (2011) 0 :
Glueminisat (2011)

Contrasat (2011) ﬁl
Glucose 2.1 (2012)

Lingeling 587f (2012)

. o &
Glucose 3 (2013) f -
8 :

Lingeling agw (2013)

20 40 60 80 100 120 140 160 180
Number of problems solved

200

from Daniel Le Berre

Personal SAT Solver History

Handbook of SAT
Inprocessing
Tseitin BMC | [SMT Cube & Conquer
DPL Encoding SAT Chapter
\p SAT - CDCL VSIDS Donald Knuth
complete
Op p WalkSAT [BD S ATh
| ‘ GSAT — ‘ ever}|lw ere
|] | | C T~
1960 1970 1980 1990 2000 2010 2020
I1st SAT Portfolio |!Ehase ‘ QBF
competition Saving working
Look Ahead Bounded |ProbSAT ,
Variable Avatar Massively
SAT for Elimination vatar 1 " Parallel
Planing Arithmetic
Solvers

JXU

185

Sarisfiabiliny (5ATH related topics hawe accracted researchers from various disciplines Legic, FErontiers in Artificial |I‘|tE||i§EI'|EE and Applicatmns

appled aress such as planning, scheduling, operatons research and combinatoral epomization,

bt also chegredcal ssuas en the thame of complexing, and much mere, they all are connaecoed
HANDBOOK

My personal interest in 5AT sterms from acoual solving: The increase in power of modern SAT
salvers over the past | 5 years has been phenomenal |t has became the key erabling technology
in auvemaced verification of both computer hardware and sefoware. Bounded Model Checking - -
(BMC) of computer hardware is now probably the mest widely used model checking technigue, f 3 f‘ b‘ I' f t f' b I t
The counterexarnples that it finds are just satisfying instances of a Boolean farmula obtained by D Sa.tls Ia I Ity . . . Sa I S I a. I I y
unwinding to some fixed depth a sequential circuit and its specification in Enear temporal logic.

Extending model checking to software verification is 2 much more difficult problem on the frontier .
of current research. One promising approach for Binguages like C with finite word-length integers

is to use the same idea as in BMC but with a decision procedure for the theory of bit-vectors .
instead of SAT. All decision procedures for bitwvectors that | am famillar with itimately make uses

of a fast SAT solver to handle complex formaulas. . .
Diecision procedures for more comiplicated theories, like linear real and noeper arichmetic, are Ediwrs:
also used in program werification, Most of them use powerful 54T solvers in an essential way

Armin Biere

Clearly, efficient SAT sobving & @ key technology for 215t century computer science. | expect -
this collection of papers on all cheorevcal and pracical aspects of SAT soling will be exmrernaly I."'II:""]"'I Heule
usaful ta bech studencs and researchers and will lead to many furthar advances i the fleld Hans van Maaren

Edmund Clarke Toby Walsh

Ederivng M. Clovke, FORE Systems University Professor of Computer Science and Professor of Electrical
ond Computer Engimeering at Cornegie Mellan University, 2 one af the initiators and main contributors
to i fhedd of Model Checking, for wivich e afso recelved the 2007 ACH Turing Aword,

n the late %05 Professor Clarke was one of the first reseorchers to reolize that SAT solving fas the
potential to become one of the most important technologies in mode checking.

® ® ® Editors:
@® Armin Biere
@

Marijn Heule

1506 STE-1-5E8

ISBM 9TE-1-58603-975-5
IS5 D90 2- 6355

Hans van Maaren
® @ Toby Walsh

|OS |10S

Press Press

Part . Theory and Algorithms Part Il. Applications and Extensions

& & John Franco, John Martin: [L ® Armin Biere:
A History of Satisfiability. 3-74 Bounded Model Checking. 457-481
& ® steven David Prestwich: [g & Jussi Rintanen:
CNF Encodings. 75-97 Planning and SAT. 483-504
8, ® Adnan Darwiche, Knot Pipatsrisawat: [8. ® Daniel Kroening:
Complete Algorithms. 99-130 Software Verification. 505-532
L. ® Joao P. Marques Silva, Inés Lynce, Sharad Malik: | 8. ® Hantao Zhang:
Conflict-Driven Clause Learning SAT Solvers. 131-153 Combinatorial Designs by SAT Solvers. 533-568
8 @& Marijn Heule, Hans van Maaren: [| 2. & Fabrizio Altarelli, Rémi Monasson, Guilhem Semerjian, Francesco Zamponi:
Look-Ahead Based SAT Solvers. 155-184 Connections to Statistical Physics. 569-611
&, & Henry A. Kautz, Ashish Sabharwal, Bart Selman: | & @& chu Min Li, Felip Manya:
Incomplete Algorithms. 185-203 MaxSAT, Hard and Soft Constraints. 613-631
8. @ oliver Kullmann: [| 8 ® carlaP. Gomes, Ashish Sabharwal, Bart Selman:
Fundaments of Branching Heuristics. 205-244 Model Counting. 633-654
& ® Dimitris Achlioptas: [8. ® Rolf Drechsler, Tommi A. Junttila, llkka Niemela:
Random Satisfiability. 245-270 Non-Clausal SAT and ATPG. 655-693
8 & carlar Gomes, Ashish Sabharwal: [| 8. @ Olivier Roussel, Vasco M. Manguinho:
Exploiting Runtime Variation in Complete Solvers. 271-288 Pseudo-Boolean and Cardinality Constraints. 695-733
&, ® Karem A. sakallah: [&, ® Hans Kleine Buning, Uwe Bubeck:
Symmetry and Satisfiability. 289-338 Theory of Quantified Boolean Formulas. 735-760
L. ® Hans Kleine Baning, Oliver Kullmann: [| 4. ® Enrico Giunchiglia, Paclo Marin, Massimo Narizzano:
Minimal Unsatisfiability and Autarkies. 339-401 Reasoning with Quantified Boolean Formulas. 761-780
8 ® Evgeny Dantsin, Edward A. Hirsch: | &, ® Roberto Sebastiani, Armando Tacchella:
Worst-Case Upper Bounds. 403-424 SAT Techniques for Modal and Description Logics. 781-824
& ® Marko Samer, Stefan Szeider: [| L ® cClark w. Barrett, Roberto Sebastiani, Sanjit A. Seshia, Cesare Tinelli:
Fixed-Parameter Tractability. 425-454 Satisfiability Modulo Theories. 825-885
[& ® stephen M. Majercik:

Stochastic Boolean Satisfiability. 887-925

File Edit View Document Tools Window Help

= &6 4S5 /318 © ® [150%-

8.26 x 11.69in

PREFACE

Special thanks are due to Armin Biere. Randy Bryvant, Sam Buss, Niklas Eén,
lan Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, Daniel
Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten
Sinz, Niklas Sorensson. Udo Wermuth, Ryvan Williams. and . .. for their detailed
comments on my early attempts at exposition. as well as to numerous other cor
respondents who have contributed crucial corrections. Thanks also to Stanford’s
Information Systems Laboratory for providing extra computer power when my
laptop machine was inadequate.

Wow Section 7.2.2.2 has turned out to be the longest section, by far, in
The Art of Computer Programming. The SAT problem is evidently a “killer
app.” because it is key to the solution of so many other problems. Consequently
I can only hope that my lengthy freatment does not also kill off my faithful
readers! As | wrote this material. one topic always seemed to fow naturally
into another, so there was no neat way to break this section up into separate
subsections. (And anyway the format of TAOCP doesn’t allow for a Section
7.2.2.2.1.)

I've tried to ameliorate the reader’s navigation problem by adding subhead
ings at the top of each right-hand page. Furthermore, as in other sections,
the exercises appear in an order that roughly parallels the order in which corre

sponding topics are taken up in the text. Numerous cross-references are provided
4

Biere
Bryant
BEuss

Feén

Crend
Heule
Hoos
Janson
Jeavons
Kroening
Kullmanmn
Lauria
Pegden
shortz
=inz
SOrensson
Wermuath
Williams
MPR

Internet

Competitions, Benchmarks, Science

® competitions are used to
= compare and evaluate implementations and algorithms

= generate benchmarks used in papers

= SAT competition is one of the largest competitions
= many solvers, highly competitive

= portfolio solving, over-tuning issues

= penchmark selection scheme broken due to competing goals:
assess the state-of-the-art

high-light new ideas

give a fair chance to everybody

® research in SAT solving, verification, etc. in essence empirical science
= pbenchmark selection critical

= how to select benchmarks?
for the competition?

in your papers?

JXU

Conclusion

= what | did not talk about ... (yet)
= parallel SAT

= QBF / quantifiers in general

= huge improvements in local research in recent years
= how to apply local search to bit-vectors and SMT

= testing / debugging

= assertion synthesis
® acknowledgements:

Ed Clarke, all co-authors, collaborators, students and Post-Docs
and if would list more names | would struggle with order and probably forget somebody

= if you have model checking, SMT, or SAT problems you want share let me know ...

looking for Post-Doc’s and PhD students too

JXU

