
Model Checking, SAT and Bit-Vectors

Armin Biere
Johannes Kepler University

Linz, Austria

Seminar Theoretical Computer Science
KTH Royal Institute of Technology

Stockholm, Sweden

Monday, 30rd November, 2015

Synchronous

Theorem Proving

Compiler

Languages

SDL

VDM

Formal
Specification

UML

Formal
Synthesis

ASM
Z

Specific

Formal

Verification
B−Method

Domain

Languages

Equivalence Checking

Abstract Interpretation

Model Checking

Symbolic Execution

Computer Algebra

SAT

BDDs SMT

Industrially Successfull Formal Verification Techniques 2/34

Symbolic Execution

particularly in combination with concolic testing

impressive project SAGE at Microsoft (Patrice Godefroid)

Equivalence Checking

first widely adopted formal technique in HW verification

originally check combinational equivalence of RTL versus gate-level

first use since mid 90’ies, wide-spread adoption since 2000

since 10 years applied to sequential equivalence too

used for checking last-minute fixes: engineering change orders (ECOs)

checking arithmetic circuits, e.g., multipliers, still not completely automatic

Abstract Interpretation

used to check for number / floating-point overflows etc.

static analyzer Astrée verified Airbus flight SW (2003)

Model Checking or Property Checking increasingly used by certain companies

Model Checking, SAT and Bit-Vectors KTH Stockholm

Personal Model Checking History 3/34

ClarkeGrumbergJahLuVeith’03: CEGAR

BurchClarkeMcMillanDillHwang’90: Symbolic Model Checking

McMillan’03: Interpolation

CoudertMadre’89: Symbolic Reachability

Bradley’10: IC3

BiereCimattiClarkeZhu’99: Bounded Model Checking

ClarkeEmerson’82: Model Checking

Kurshan’93: Localization

BallRajamani’01: SLAM
QuielleSifakis’82: Model Checking

Holzmann’91: SPIN

Pnueli’77: Temporal Logic

McMillan’93: SMV

Peled’94: Partial−Order−Reduction

Holzmann’81: On−The−Fly Reachability

GrafSaidi’97: Predicate Abstraction

BiereArthoSchuppan’01: Liveness2Safety

ClaessenSorensson’12: k−liveness

SheeranSinghStalmarck’00: k−induction

ClarkeEmersonSifakis:

Turing Award 2007

Symbolic Model Checking without BDDs?

Armin Biere1, Alessandro Cimatti2, Edmund Clarke1, and Yunshan Zhu1

1 Computer Science Department, Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA 15213, U.S.A

fArmin.Biere,Edmund.Clarke,Yunshan.Zhu g@cs.cmu.edu
2 Istituto per la Ricerca Scientifica e Tecnologica (IRST)

via Sommarive 18, 38055 Povo (TN), Italy
cimatti@irst.itc.it

Abstract. Symbolic Model Checking [3, 14] has proven to be a powerful tech-
nique for the verification of reactive systems. BDDs [2] have traditionally been
used as a symbolic representation of the system. In this paper we show how
boolean decision procedures, like St˚almarck’s Method [16] or the Davis & Put-
nam Procedure [7], can replace BDDs. This new technique avoids the space blow
up of BDDs, generates counterexamples much faster, and sometimes speeds up
the verification. In addition, it produces counterexamples of minimal length. We
introduce abounded model checkingprocedure for LTL which reduces model
checking to propositional satisfiability. We show that bounded LTL model check-
ing can be done without a tableau construction. We have implemented a model
checkerBMC , based on bounded model checking, and preliminary results are
presented.

1 Introduction

Model checking [4] is a powerful technique for verifying reactive systems. Able to find
subtle errors in real commercial designs, it is gaining wide industrial acceptance. Com-
pared to other formal verification techniques (e.g. theorem proving) model checking is
largely automatic.

In model checking, the specification is expressed in temporal logic and the sys-
tem is modeled as a finite state machine. For realistic designs, the number of states of
the system can be very large and the explicit traversal of the state space becomes in-
feasible. Symbolic model checking [3, 14], with boolean encoding of the finite state
machine, can handle more than 1020 states. BDDs [2], a canonical form for boolean
expressions, have traditionally been used as the underlying representation for symbolic
model checkers [14]. Model checkers based on BDDs are usually able to handle sys-
tems with hundreds of state variables. However, for larger systems the BDDs generated
during model checking become too large for currently available computers. In addition,

? This research is sponsored by the Semiconductor Research Corporation (SRC) under Contract
No. 97-DJ-294 and the National Science Foundation (NSF) under Grant No. CCR-9505472.
Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect the views of SRC, NSF, or the United States
Government.

Bounded Model Checking [BiereCimattiClarkeZhu-TACAS’99]

look only for counter example made of k states “k” = bound

∨ ∨ ∨ ∨p¬ p¬ p¬ p¬p¬

0s s1 l+1s sksl

or
p¬ p¬ p¬ p¬p¬

0s sls1 l+1s sk

simple for safety properties p invariantly true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∨

i=0
¬p(si)

harder for liveness properties p eventually true

I(s0) ∧ T (s0,s1))∧·· ·∧T (sk−1,sk) ∧
k∧

i=0
¬p(si) ∧

k∨
l=0

T (sk,sl)

compute and bound k by diameter

Copyrighted
Material

Impact of BMC
● widespread use in industry (EDA)

– industry embraced bounding part immediately

– original industrial reservations: using SAT vs ATPG

– original academic reservations: incompleteness?

● BMC relies on efficient SAT (SMT) solving
– breakthroughs in SAT: CDCL '96, VSIDS '01, ...

– encouraged investment in SAT / SMT research

● extensions to non-boolean domains and SW
– bounding reduces complexity / decidability

● extensions to completeness
– diameter checking, k-induction, interpolation

– SAT based model checking without unrolling: IC3

A Short Story on 15 years of

Bounded Model Checking
●1997: interest and capacity of BDDs stalled

but there were success stories of other techniques
● Ed Clarke hired Yunshan Zhu & Armin Biere as Post-Docs:

Use SAT for Symbolic Model Checking!
●struggled for 10 months to come up with something that could
replace / improve BDDs (mainly looked at QBF then)
●Alessandro Cimatti came to an AI conference in Pittsburgh and
at lunch (at an Indian Restaurant) we realized, that in
AI Planing they do not care about completeness

 What if we apply this to model checking?
 How to handle temporal logic?

● After one afternoon for the theory and 3 months of
implementation and benchmarking later: TACAS submission

SAT Based Model Checking

● BMC
● k-induction
● Abstractions / CEGAR
● Interpolation
● IC3

SAT Based Model Checking

Armin Biere, Daniel Kröning

Handbook of Model Checking

Edmund Clarke, Thomas Henzinger, Helmut Veith, editors

Lessons from BMC

● simple but useful ideas are very controversial
– hard to get accepted (literally)

– many comments of the sort: we did this before …

– main points: make it work, show that it works!

● in retrospective
– classification considerations might have been useful since

we tried to use SAT for symbolic model checking without
taking Savitch's theorem into account

– but might have prevented us going along that route ...

Some Complexity Classes 15/34

P
problems with polynonmially time-bounded algorithms

bounds measured in terms of input (file) size

NP
same as P but with non-determininistic choice

needs a SAT solver

PSPACE
as P but space-bounded

QBF and bit-level model checking fall in this class

NEXPTIME
same as NP but with exponential time

P ⊆ NP ⊆ PSPACE ⊆ NEXPTIME
usually it is assumed: P 6= NP

it is further known: NP 6= NEXPTIME

P

NEXPTIME

PSPACE

NP

Model Checking, SAT and Bit-Vectors KTH Stockholm

Complexity Concretely 16/34

NP problems

anything which can be (polynomially) encoded into SAT

combinational equivalence checking, bounded model checking

PSPACE problems

anything which can be encoded (polynomially) into QBF

or into (bit-level) symbolic model checking

sequential equivalence checking, combinational synthesis or bounded games

NEXPTIME problems

anything which can be encoded exponentially into SAT

first-order logic Bernays-Schönfinkel class (EPR): no functions, ∃∗∀∗ prefix

QBF with explicit dependencies (Henkin Quantifiers): DQBF

partial observation games, black-box bounded model checking

bit-vector logics: QF BV

Model Checking, SAT and Bit-Vectors KTH Stockholm

NEXPTIME Completeness of Bit-Vectors 17/34

joined work with Gergely Kovásznai and Andreas Fröhlich

QF BV contained in NEXPTIME

bit-blast (exponential)

give resulting formula to SAT solver

we showed QF BV is NEXPTIME hard by reducing DQBF to QF BV

∀x0,x1,x2,x3,x4 ∃e0(x0,x1,x2,x3),e1(x1,x2,x3,x4) ϕ

polynomially encodes dependencies (for Henkin quantiers)

my student Andreas has now an (yet unpublished) direct proof

why are bit-vectors NEXPTIME complete? x,y : bool[1000000]

y 6= x ∧ x+ y = x� 1(set-logic QF_BV)
(declare-fun x () (_ BitVec 1000000))
(declare-fun y () (_ BitVec 1000000))
(declare-fun z () (_ BitVec 1000000))
(assert (= z (bvadd x y)))
(assert (= z (bvshl x (_ bv1 1000000))))
(assert (distinct x y))

Model Checking, SAT and Bit-Vectors KTH Stockholm

Bit-Wise Operators and Shifting Neighbouring Bits Only 18/34

NP complete: QF BVbw

relate same bits: equality and all bit-wise operators

similar to well-known Ackermann reduction

PSPACE complete: QF BVbw,<<1

only allow operators which relate neighbouring bits:

base operators: equality, inequality/comparison, bit-wise ops, shift-by-one

extended operators: addition, multiplication by constants, single-bit-slices etc.

encode in symbolic model checking logarithmically in bit-width

see our CSR’12, SMT’13 papers and our 2015 journal article in TOCS

came accross otherwise unsolvable benchmarks from industry!

Model Checking, SAT and Bit-Vectors KTH Stockholm

Commutativity of Bit-Vector Addition in SMV 19/34

MODULE main

VAR

c : boolean; -- carry ’bvadd x y’

d : boolean; -- carry ’bvadd y x’

x : boolean; -- x0, x1, ...

y : boolean; -- y0, y1, ...

ASSIGN

init (c) := FALSE;

init (d) := FALSE;

ASSIGN

next (c) := c&x | c&y | x&y; -- c + x + y >= 2

next (d) := d&y | d&x | y&x; -- d + y + x >= 2

DEFINE

o := c != (x != y); -- c xor y xor x

p := d != (y != x); -- d xor x xor y

SPEC

AG (o = p)

Model Checking, SAT and Bit-Vectors KTH Stockholm

Commutativity of Bit-Vector Addition in AIGER 20/34

2

x

4

y

10

6

12 14

16

18

20

8

22

24

26

2830

32

34 36

38

40 42

44

4648

50

AIGER_NEVER_0

c d

Model Checking, SAT and Bit-Vectors KTH Stockholm

Ripple-Carry-Adder vs Carry-Save-Adder 21/34
not really realistic example but shows the fundamental problem of checking arithmetic circuit equivalence

EE

=

?

yx

s
ic 0

yx

s
ic

yx

s
ic

yx

s
ic

yx

s
ic 0

yx

s
ic

yx

s
ic

yx

s
ic

yx
ic

s

yx
ic

s

yx
ic

s

yx
ic

s

yx
ic

s

yx
ic

s

yx
ic

s

yx
ic

s

yx
ic

s

A

yx
ic

s

0

0

yx
ic

s

yx
ic

s

0yx
ic

s

0yx
ic

s

B

A

B

C

yx

s
ic 0

yx

s
ic

yx

s
ic

yx

s
ic

DD

C

yx
ic

s

yx
ic

s

yx
ic

s

yx

s
ic 0

yx

s
ic

yx

s
ic

yx

s
ic

0yx
ic

s

yx
ic

s

yx
ic

s

0

Model Checking, SAT and Bit-Vectors KTH Stockholm

Commutativity of Bit-Vector Multiplication 22/34

(set-logic QF_BV)
(declare-fun x () (_ BitVec 12))
(declare-fun y () (_ BitVec 12))
(assert (distinct (bvmul x y) (bvmul y x)))
(check-sat)

12 core
1 core 1 core cube-and-conquer 12 core

bits Glucose Lingeling March|iLingeling Treengeling

01 0.00 0.00 0.00 0.01
02 0.00 0.00 0.00 0.01
03 0.00 0.00 0.00 0.01
04 0.00 0.00 0.02 0.03
05 0.00 0.01 0.05 0.13
06 0.02 0.03 0.36 0.31
07 0.14 0.27 0.63 0.72
08 1.18 1.98 1.38 2.47
09 7.85 10.98 2.63 4.65
10 37.16 41.49 5.02 10.86
11 147.62 214.98 15.72 21.96
12 833.62 649.49 56.57 61.48
13 -- -- 238.10 263.44

limit of 900 seconds wall clock time

Model Checking, SAT and Bit-Vectors KTH Stockholm

Challenge Arithmetic Circuit Equivalence Checking 23/34

secret of the success of (combinational) equivalence checking

assumption: many internal equivalence points

makes BDD and SAT sweeping effective

problems with arithmetic circuits

almost no equivalent internal signals (except for outputs)

proof complexity conjectured to be beyond resolution

often no ”clean” implementation circuit available

challenges

prove conjectured complexity

use world-level (bit-vector) information

arithmetic reasoning on the bit-level

robust integration in SAT and/or SMT solver

started to collect a large number of such benchmarks

Model Checking, SAT and Bit-Vectors KTH Stockholm

from Daniel Le Berre

Personal SAT Solver History 26/34

19801960 2000 20101970 2020

DPL
SAT Chapter
Donald Knuth

DP

CDCL

LBD

Phase

Tseitin
Encoding

BMC

SAT
NP complete

SAT
everywhere

QBF

Solvers

Massively
Parallel

Arithmetic

working

WalkSAT

GSAT

Handbook of SAT

ProbSAT

Saving

Avatar

Inprocessing

Cube & Conquer

VSIDS

SMT

Bounded
Variable

Elimination

competition

Look Ahead

SAT for
Planing

1st SAT

1990

Portfolio

*

Model Checking, SAT and Bit-Vectors KTH Stockholm

Competitions, Benchmarks, Science 33/34

competitions are used to

compare and evaluate implementations and algorithms

generate benchmarks used in papers

SAT competition is one of the largest competitions

many solvers, highly competitive

portfolio solving, over-tuning issues

benchmark selection scheme broken due to competing goals:

assess the state-of-the-art

high-light new ideas

give a fair chance to everybody

research in SAT solving, verification, etc. in essence empirical science
benchmark selection critical

how to select benchmarks?

for the competition?

in your papers?

Model Checking, SAT and Bit-Vectors KTH Stockholm

Conclusion 34/34

what I did not talk about ... (yet)

parallel SAT

QBF / quantifiers in general

huge improvements in local research in recent years

how to apply local search to bit-vectors and SMT

testing / debugging

assertion synthesis

acknowledgements:

Ed Clarke, all co-authors, collaborators, students and Post-Docs
and if would list more names I would struggle with order and probably forget somebody

if you have model checking, SMT, or SAT problems you want share let me know . . .

looking for Post-Doc’s and PhD students too

Model Checking, SAT and Bit-Vectors KTH Stockholm

