Tutorial on Modern SAT Solving

Armin Biere

Logic Synthesis Software School

EPFL
Lausanne, Switzerland
June 20, 2019
Dress Code Tutorial Speaker as SAT Problem

- **propositional logic:**
 - **variables**
 - tie
 - shirt
 - **negation** \(\neg\) (not)
 - **disjunction** \(\lor\) (or)
 - **conjunction** \(\land\) (and)

- **clauses (conditions / constraints)**
 1. clearly one should not wear a **tie** without a **shirt**

 \(\neg tie \lor shirt\)
 2. not wearing a **tie** nor a **shirt** is impolite

 \(tie \lor shirt\)
 3. wearing a **tie** and a **shirt** is overkill

 \(\neg (tie \land shirt) \equiv \neg tie \lor \neg shirt\)

- Is this formula in conjunctive normal form (CNF) **satisfiable**?

\[
(\neg tie \lor shirt) \land (tie \lor shirt) \land (\neg tie \lor \neg shirt)
\]
Special thanks are due to Armin Biere, Randy Bryant, Sam Buss, Niklas Eén, Ian Gent, Marijn Heule, Holger Hoos, Svante Janson, Peter Jeavons, Daniel Kroening, Oliver Kullmann, Massimo Lauria, Wes Pegden, Will Shortz, Carsten Sinz, Niklas Sörensson, Udo Wermuth, Ryan Williams, and ... for their detailed comments on my early attempts at exposition, as well as to numerous other correspondents who have contributed crucial corrections. Thanks also to Stanford’s Information Systems Laboratory for providing extra computer power when my laptop machine was inadequate.

* * *

Wow — Section 7.2.2.2 has turned out to be the longest section, by far, in The Art of Computer Programming. The SAT problem is evidently a “killer app,” because it is key to the solution of so many other problems. Consequently I can only hope that my lengthy treatment does not also kill off my faithful readers! As I wrote this material, one topic always seemed to flow naturally into another, so there was no neat way to break this section up into separate subsections. (And anyway the format of TAOCP doesn’t allow for a Section 7.2.2.2.1.)
What is Practical SAT Solving?

- encoding
- simplifying
- reencoding
- inprocessing
- search
 - CDCL
Equivalence Checking If-Then-Else Chains

original C code

```c
if(!a && !b) h();
else if(!a) g();
else f();
else h();
```

optimized C code

```c
if(a) f();
else if(b) g();
else h();
```

How to check that these two versions are equivalent?
(\neg a \land \neg b) \land h \lor \neg(\neg a \land \neg b) \land (\neg a \land g \lor a \land f)

\Rightarrow a \land f \lor \neg a \land (b \land g \lor \neg b \land h)

satisfying assignment gives counter-example to equivalence
Tseitin Transformation: Circuit to CNF

\[
o \land (x \leftrightarrow a \land c) \land (y \leftrightarrow b \lor x) \land (u \leftrightarrow a \lor b) \land (v \leftrightarrow b \lor c) \land (w \leftrightarrow u \land v) \land (o \leftrightarrow y \oplus w)
\]

\[
o \land (x \rightarrow a) \land (x \rightarrow c) \land (x \leftarrow a \land c) \land \ldots
\]

\[
o \land (\overline{x} \lor a) \land (\overline{x} \lor c) \land (x \lor \overline{a} \lor \overline{c}) \land \ldots
\]
Tseitin Transformation: Gate Constraints

Negation: \[x \leftrightarrow y \iff (x \rightarrow y) \land (\overline{y} \rightarrow x) \]
\[\iff (\overline{x} \lor \overline{y}) \land (y \lor \overline{x}) \]

Disjunction: \[x \leftrightarrow (y \lor z) \iff (y \rightarrow x) \land (z \rightarrow x) \land (x \rightarrow (y \lor z)) \]
\[\iff (\overline{y} \lor x) \land (\overline{z} \lor x) \land (\overline{x} \lor y \lor z) \]

Conjunction: \[x \leftrightarrow (y \land z) \iff (x \rightarrow y) \land (x \rightarrow z) \land ((y \land z) \rightarrow x) \]
\[\iff (\overline{x} \lor y) \land (\overline{x} \lor z) \land ((\overline{y} \lor z) \lor x) \]
\[\iff (\overline{x} \lor y) \land (\overline{x} \lor z) \land (\overline{y} \lor \overline{z} \lor x) \]

Equivalence: \[x \leftrightarrow (y \leftrightarrow z) \iff (x \rightarrow (y \leftrightarrow z)) \land ((y \leftrightarrow z) \rightarrow x) \]
\[\iff (x \rightarrow ((y \rightarrow z) \land (z \rightarrow y))) \land ((y \leftrightarrow z) \rightarrow x) \]
\[\iff (x \rightarrow (y \rightarrow z)) \land (x \rightarrow (z \rightarrow y)) \land ((y \leftrightarrow z) \rightarrow x) \]
\[\iff (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land ((y \land z) \lor (z \land y) \lor x) \]
\[\iff (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land ((y \land z) \lor (\overline{y} \lor \overline{z}) \lor x) \]
\[\iff (\overline{x} \lor \overline{y} \lor z) \land (\overline{x} \lor \overline{z} \lor y) \land (\overline{y} \lor \overline{z} \lor x) \land (y \lor z \lor x) \]
Bit-Blasting of Bit-Vector Addition

addition of 4-bit numbers x, y with result s also 4-bit: $s = x + y$

$$[s_3, s_2, s_1, s_0]_4 = [x_3, x_2, x_1, x_0]_4 + [y_3, y_2, y_1, y_0]_4$$

$$[s_3, c_2]_2 = \text{FullAdder}(x_3, y_3, c_2)$$
$$[s_2, c_2]_2 = \text{FullAdder}(x_2, y_2, c_1)$$
$$[s_1, c_1]_2 = \text{FullAdder}(x_1, y_1, c_0)$$
$$[s_0, c_0]_2 = \text{FullAdder}(x_0, y_0, false)$$

where

$$[s, o]_2 = \text{FullAdder}(x, y, i) \quad \text{with}$$

$s = x \text{ xor} y \text{ xor} i$

$o = (x \land y) \lor (x \land i) \lor (y \land i) = ((x + y + i) \geq 2)$
Boolector Architecture

O1 = bottom up simplification
O2 = global but almost linear
O3 = normalizing (often non-linear) [default]

Lingeling / PicoSAT / MiniSAT / CaDiCaL

SAT Solver -> CNF -> encode

Expr -> subst O2
AIG Vector -> optimize

scan norm O3 -> O3

rewrite O1

BTOR
SMT
Intermediate Representations

- encoding directly into CNF is hard, so we use intermediate levels:
 1. application level
 2. bit-precise semantics world-level operations (bit-vectors)
 3. bit-level representations such as And-Inverter Graphs (AIGs)
 4. conjunctive normal form (CNF)
- encoding “logical” constraints is another story
XOR as AIG

\[x \oplus y \equiv (\overline{x} \land y) \lor (x \land \overline{y}) \equiv (\overline{x} \land y) \land (\overline{x} \land \overline{y}) \]

negation/sign are edge attributes
not part of node
4-bit adder

8-bit adder
bit-vector of length 16 shifted by bit-vector of length 4
Encoding Logical Constraints

- Tseitin construction suitable for most kinds of “model constraints”
 - assuming simple operational semantics: encode an interpreter
 - small domains: one-hot encoding large domains: binary encoding

- harder to encode properties or additional constraints
 - temporal logic / fix-points
 - environment constraints

- example for fix-points / recursive equations: \[x = (a \lor y), \quad y = (b \lor x) \]
 - has unique least fix-point \[x = y = (a \lor b) \]
 - and unique largest fix-point \[x = y = \text{true} \] but unfortunately . . .

- . . . only largest fix-point can be (directly) encoded in SAT
 - otherwise need stable models / logical programming / ASP
Example of Logical Constraints: Cardinality Constraints

- given a set of literals \(\{l_1, \ldots l_n\} \)
 - constraint the number of literals assigned to \(true \)
 - \(l_1 + \cdots + l_n \geq k \) or \(l_1 + \cdots + l_n \leq k \) or \(l_1 + \cdots + l_n = k \)
 - combined make up exactly all fully symmetric boolean functions

- multiple encodings of cardinality constraints
 - naïve encoding exponential: at-most-one quadratic, at-most-two cubic, etc.
 - quadratic \(O(k \cdot n) \) encoding goes back to Shannon
 - linear \(O(n) \) parallel counter encoding [Sinz’05]

- many variants even for at-most-one constraints
 - for an \(O(n \cdot \log n) \) encoding see Prestwich’s chapter in Handbook of SAT

- Pseudo-Boolean constraints (PB) or 0/1 ILP constraints have many encodings too

\[
2 \cdot a + b + c + d + 2 \cdot e \geq 3
\]

actually used to handle MaxSAT in SAT4J for configuration in Eclipse
BDD-Based Encoding of Cardinality Constraints

$$2 \leq l_1 + \cdots + l_9 \leq 3$$

If-Then-Else gates (MUX) with “then” edge downward, dashed “else” edge to the right
Tseitin Encoding of If-Then-Else Gate

\[
x \leftrightarrow (c \, ? \, t : e) \iff (x \rightarrow (c \rightarrow t)) \land (x \rightarrow (\lnot c \rightarrow e)) \land (\bar{x} \rightarrow (c \rightarrow \bar{t})) \land (\bar{x} \rightarrow (\lnot c \rightarrow \bar{e})) \\
\iff (\bar{x} \lor \lnot c \lor t) \land (\bar{x} \lor c \lor e) \land (x \lor \lnot c \lor \bar{t}) \land (x \lor c \lor \bar{e})
\]

minimal but not arc consistent:

- if \(t \) and \(e \) have the same value then \(x \) needs to have that too
- possible additional clauses

\[
(\bar{t} \land \lnot \bar{e} \rightarrow \bar{x}) \equiv (t \lor e \lor \bar{x}) \quad (t \land e \rightarrow x) \equiv (\bar{t} \lor \lnot e \lor x)
\]

- but can be learned or derived through preprocessing (ternary resolution)
 keeping those clauses redundant is better in practice
DIMACS Format

$ cat example.cnf
c comments start with 'c' and extend until the end of the line
c
c variables are encoded as integers:
c
c 'tie' becomes '1'
c 'shirt' becomes '2'
c
c header 'p cnf <variables> <clauses>'
c
p cnf 2 3
-1 2 0 c !tie or shirt
1 2 0 c tie or shirt
-1 -2 0 c !tie or !shirt

$ picosat example.cnf
s SATISFIABLE
v -1 2 0
SAT Application Programmatic Interface (API)

- incremental usage of SAT solvers
 - add facts such as clauses incrementally
 - call SAT solver and get satisfying assignments
 - optionally retract facts

- retracting facts
 - remove clauses explicitly: complex to implement
 - push / pop: stack like activation, no sharing of learned facts
 - MiniSAT assumptions [EénSörensson’03]

- assumptions
 - unit assumptions: assumed for the next SAT call
 - easy to implement: force SAT solver to decide on assumptions first
 - shares learned clauses across SAT calls

- IPASIR: Reentrant Incremental SAT API
 - used in the SAT competition / race since 2015 [BalyoBierelserSinz’16]
IPASIR Model

- **UNKNOWN**
 - Add/Assume
 - Solve
 - Interrupted

- **SAT**
 - Solve

- **SOLVING**
 - Solve
 - Failed

- **UNSAT**
 - Add/Assume
 - Val
```c
#include "ipasir.h"
#include <assert.h>
#include <stdio.h>
#define ADD(LIT) ipasir_add (solver, LIT)
#define PRINT(LIT) printf (ipasir_val (solver, LIT) < 0 ? " -" #LIT : " " #LIT)

int main () {
    void * solver = ipasir_init ();
    enum { tie = 1, shirt = 2 };
    ADD (-tie); ADD ( shirt); ADD (0);
    ADD ( tie); ADD ( shirt); ADD (0);
    ADD (-tie); ADD (-shirt); ADD (0);
    int res = ipasir_solve (solver);
    assert (res == 10);
    printf ("satisfiable:"); PRINT (shirt); PRINT (tie); printf ("\n");
    printf ("assuming now: tie shirt\n");
    ipasir_assume (solver, tie); ipasir_assume (solver, shirt);
    res = ipasir_solve (solver);
    assert (res == 20);
    printf ("unsatisfiable, failed:");
    if (ipasir_failed (solver, tie)) printf (" tie");
    if (ipasir_failed (solver, shirt)) printf (" shirt");
    printf ("\n");
    ipasir_release (solver);
    return res;
}
```

```
$ ./example
satisfiable: shirt -tie
assuming now: tie shirt
unsatisfiable, failed: tie
```
```cpp
#include "cadical.hpp"
#include <cassert>
#include <iostream>
using namespace std;

#define ADD(LIT) solver.add (LIT)
#define PRINT(LIT) \
    (solver.val (LIT) < 0 ? " -" #LIT : " " #LIT)

int main () {
    CaDiCaL::Solver solver; solver.set ("quiet", 1);
    enum { tie = 1, shirt = 2 };
    ADD (-tie), ADD ( shirt), ADD (0);
    ADD ( tie), ADD ( shirt), ADD (0);
    ADD (-tie), ADD (-shirt), ADD (0);
    int res = solver.solve ();
    assert (res == 10);
    cout << "satisfiable:" << PRINT (shirt) << PRINT (tie) << endl;
    cout << "assuming now: tie shirt" << endl;
    solver.assume (tie), solver.assume (shirt);
    res = solver.solve ();
    assert (res == 20);
    cout << "unsatisfiable, failed:";
    if (solver.failed (tie)) cout << " tie";
    if (solver.failed (shirt)) cout << " shirt";
    cout << endl;
    return res;
}
```

$./example
satisfiable: shirt -tie
assuming now: tie shirt
unsatisfiable, failed: tie
const char * ipasir_signature ();

void * ipasir_init ();

void ipasir_release (void * solver);

void ipasir_add (void * solver, int lit_or_zero);

void ipasir_assume (void * solver, int lit);

int ipasir_solve (void * solver);

int ipasir_val (void * solver, int lit);

int ipasir_failed (void * solver, int lit);

void ipasir_set_terminate (void * solver, void * state,
 int (*terminate)(void * state));
DP / DPLL

- dates back to the 50’ies:
 - 1st version DP is resolution based ⇒ preprocessing
 - 2nd version D(P)LL splits space for time ⇒ CDCL

- ideas:
 - 1st version: eliminate the two cases of assigning a variable in space or
 - 2nd version: case analysis in time, e.g. try $x = 0, 1$ in turn and recurse

- most successful SAT solvers are based on variant (CDCL) of the second version
 - works for very large instances

- recent (≤ 25 years) optimizations:
 - backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures
 - (we will have a look at each of them)
DP Procedure

forever

if $F = \top$ return satisfiable

if $\bot \in F$ return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and $\neg x$

⇒ Bounded Variable Elimination
Bounded Variable Elimination

[EénBiere-SAT’05]

Replace

\[
\begin{align*}
& (\bar{x} \lor a) \quad (\bar{x} \lor c) \\
& (\bar{x} \lor b) \\
& (x \lor \bar{a} \lor \bar{b})
\end{align*}
\]

by

\[
\begin{align*}
& (a \lor \bar{a} \lor \bar{b}) \\
& (b \lor \bar{a} \lor \bar{b}) \\
& (c \lor \bar{a} \lor \bar{b})
\end{align*}
\]

- number of clauses not increasing
- strengthen and remove subsumbed clauses too
- most important and most effective preprocessing we have

Bounded Variable Addition

[MantheyHeuleBiere-HVC’12]

Replace

\[
\begin{align*}
& (a \lor d) \\
& (b \lor d) \\
& (c \lor d)
\end{align*}
\]

by

\[
\begin{align*}
& (\bar{x} \lor a) \\
& (\bar{x} \lor b) \\
& (\bar{x} \lor c)
\end{align*}
\]

- number of clauses has to decrease strictly
- reencodes for instance naive at-most-one constraint encodings
DPLL Procedure

\[DPLL(F) \]

\[F := BCP(F) \]

if \(F = \top \) return **satisfiable**

if \(\bot \in F \) return **unsatisfiable**

pick remaining variable \(x \) and literal \(l \in \{x, \neg x\} \)

if \(DPLL(F \land \{l\}) \) returns **satisfiable** return **satisfiable**

return \(DPLL(F \land \{\neg l\}) \)

⇒ CDCL
DPLL Example

\[a \lor b \lor c \]

Decision tree with BCP (Backward Check Point) and clauses:

- \(a = 1 \)
- \(b = 1 \)
- \(c = 0 \)

Clauses:

\[\neg a \lor \neg b \lor c \]
\[\neg a \lor \neg b \lor \neg c \]
\[a \lor \neg b \lor c \]
\[a \lor b \lor \neg c \]
\[a \lor b \lor c \]
Conflict Driven Clause Learning (CDCL)

[MarqueSilvaSakallah’96]

- first implemented in the context of GRASP SAT solver
 - name given later to distinguish it from DPLL
 - not recursive anymore
- essential for SMT
- learning clauses as no-goods
- notion of implication graph
- (first) unique implication points
Conflict Driven Clause Learning (CDCL)

\[a = 1 \]
\[b = 1 \]
\[c = 0 \]

\[\neg a \lor \neg b \lor \neg c \]
\[\neg a \lor \neg b \lor \neg c \]
\[\neg a \lor b \lor \neg c \]
\[a \lor \neg b \lor \neg c \]
\[a \lor \neg b \lor \neg c \]
\[a \lor b \lor \neg c \]
\[a \lor b \lor c \]

\[\neg a \lor \neg b \]

clauses

learn
Conflict Driven Clause Learning (CDCL)

Decision: a
- $a = 1$
- $b = 0$
- $c = 0$

Clauses
- $\neg a \lor b \lor c$
- $\neg a \lor b \lor \neg c$
- $\neg a \lor b$
- $\neg a \lor \neg b$
- $\neg a$

Learned clauses
- $\neg a$
Conflict Driven Clause Learning (CDCL)

\[\neg a \quad \neg c \quad \text{decision} \]

\[\neg a \quad \text{BCP} \]

\[\neg b \quad \text{BCP} \]

\[a = 1\]

\[b = 0\]

\[c = 0\]

clauses

\[\neg a \lor \neg b \lor \neg c\]

\[\neg a \lor \neg b \lor c\]

\[\neg a \lor b \lor \neg c\]

\[\neg a \lor b \lor c\]

\[a \lor \neg b \lor \neg c\]

\[a \lor b \lor \neg c\]

\[a \lor \neg b \lor c\]

\[\neg a \lor \neg b\]

\[\neg a\]

\[c\]
Conflict Driven Clause Learning (CDCL)

\[a = 1 \]
\[b = 0 \]
\[c = 0 \]
Implication Graph

d = 1 \oplus 1
e = 1 \oplus 1
b = 1 \oplus 0
a = 1 \oplus 0
f \oplus g = 1 \oplus 2
h = 1 \oplus 2
i = 1 \oplus 2
l = 1 \oplus 3
c = 1 \oplus 1
d = 1 \oplus 1
e = 1 \oplus 1
f = 1 \oplus 2
g = 1 \oplus 2
h = 1 \oplus 2
i = 1 \oplus 2
k = 1 \oplus 3
l = 1 \oplus 3
r = 1 \oplus 4
s = 1 \oplus 4
t = 1 \oplus 4
y = 1 \oplus 4
x = 1 \oplus 4
z = 1 \oplus 4
κ = 1 \oplus 4

Unit: decision

Top-level decision
Conflict

d = 1 @ 1
e = 1 @ 1
b = 1 @ 0
a = 1 @ 0

f = 1 @ 2
g = 1 @ 2
h = 1 @ 2
i = 1 @ 2

k = 1 @ 3
l = 1 @ 3

r = 1 @ 4
s = 1 @ 4
t = 1 @ 4

x = 1 @ 4
z = 1 @ 4
κ conflict
Antecedents / Reasons

\[d \land g \land s \rightarrow t \equiv (\overline{d} \lor \overline{g} \lor \overline{s} \lor t) \]
Conflicting Clauses

\[\neg (y \land z) \equiv (\bar{y} \lor \bar{z}) \]
Resolving Antecedents 1st Time

\begin{align*}
\text{top–level} & \quad \text{unit} \quad a = 1 @ 0 \quad \text{unit} \quad b = 1 @ 0 \\
\text{decision} \quad c = 1 @ 1 & \quad \quad d = 1 @ 1 & \quad \quad e = 1 @ 1 \\
\text{decision} \quad f = 1 @ 2 & \quad \quad g = 1 @ 2 & \quad \quad h = 1 @ 2 & \quad \quad i = 1 @ 2 \\
\text{decision} \quad k = 1 @ 3 & \quad \quad l = 1 @ 3 \\
\text{decision} \quad r = 1 @ 4 & \quad \quad s = 1 @ 4 & \quad \quad t = 1 @ 4 & \quad \quad y = 1 @ 4 \\
\text{decision} \quad x = 1 @ 4 & \quad \quad z = 1 @ 4 & \quad \quad k \quad \text{conflict} \\
\end{align*}

\[(\overline{h} \vee \overline{i} \vee \overline{t} \vee y) \quad (\overline{y} \vee \overline{z})\]
Resolving Antecedents 1^{st} Time

\[(\overline{h} \lor i \lor \overline{i} \lor y) (y \lor z)\]

\[(\overline{h} \lor i \lor \overline{i} \lor z)\]
Resolvents = Cuts = Potential Learned Clauses

\[(\overline{h} \lor i \lor \overline{t} \lor y) (\overline{y} \lor \overline{z}) \quad (\overline{h} \lor i \lor \overline{t} \lor z)\]
Potential Learned Clause After 1 Resolution

\[(\bar{h} \lor \bar{i} \lor \bar{t} \lor \bar{z})\]
Resolving Antecedents 2nd Time

\begin{align*}
\text{top–level} & \quad \text{unit} & a = 1 @ 0 & \quad \text{unit} & b = 1 @ 0 \\
& \quad \text{decision} & c = 1 @ 1 & \quad d = 1 @ 1 & \quad e = 1 @ 1 \\
& \quad \text{decision} & f = 1 @ 2 & \quad g = 1 @ 2 & \quad h = 1 @ 2 & \quad i = 1 @ 2 \\
& \quad \text{decision} & k = 1 @ 3 & \quad l = 1 @ 3 \\
& \quad \text{decision} & r = 1 @ 4 & \quad s = 1 @ 4 & \quad t = 1 @ 4 & \quad y = 1 @ 4 \\
& \quad & x = 1 @ 4 & \quad z = 1 @ 4 & \quad k \quad \text{conflict} \\
\end{align*}

\[
(d \lor g \lor s \lor t) \quad \overline{(h \lor \overline{i} \lor \overline{t} \lor z)}
\]

\[
(d \lor g \lor s \lor \overline{h} \lor \overline{i} \lor \overline{z})
\]
Resolving Antecedents 3rd Time

\[(\bar{x} \lor z) \land ((d \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor i \lor z) \land ((x \lor d \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor i \lor \bar{z}) \land (x \lor d \lor \bar{g} \lor \bar{s} \lor \bar{h} \lor i \lor \bar{z}))) \]
Resolving Antecedents 4th Time

\[(\overline{s} \lor x) (\overline{x} \lor \overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i}) \]
\[
(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i})
\]
self subsuming resolution
1st UIP Clause after 4 Resolutions

UIP = unique implication point dominates conflict on the last level
If \(y \) has never been used to derive a conflict, then skip \(\overline{y} \) case.

Immediately jump back to the \(\overline{x} \) case – assuming \(x \) was used.
Resolving Antecedents 5th Time

\[
(\overline{l} \lor r \lor s) (\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h} \lor \overline{i})
\]
Decision Learned Clause

\[
(d \lor \overline{g} \lor \overline{i} \lor \overline{r} \lor \overline{h} \lor \overline{i})
\]
1st UIP Clause after 4 Resolutions

\[(d \vee g \vee s \vee h \vee i)\]
Locally Minimizing 1st UIP Clause

\[(h \lor i) \quad (d \lor \neg g \lor \neg s \lor \neg h \lor i) \quad \frac{\quad (d \lor \neg g \lor \neg s \lor \neg h)}{\quad \text{self subsuming resolution}} \]
Locally Minimized Learned Clause

\[(\overline{d} \lor g \lor s \lor \overline{h}) \]
Minimizing Locally Minimized Learned Clause Further?

\[(\overline{d} \lor \overline{g} \lor s \lor \overline{h})\]
Recursively Minimizing Learned Clause

\[a = 1 @ 0 \]
\[f = 1 @ 3 \]
\[c = 1 @ 1 \]
\[d = 1 @ 1 \]
\[l = 1 @ 3 \]
\[g = 1 @ 2 \]
\[e = 1 @ 1 \]
\[h = 1 @ 2 \]
\[k = 1 @ 3 \]
\[r = 1 @ 4 \]
\[s = 1 @ 4 \]
\[t = 1 @ 4 \]
\[y = 1 @ 4 \]
\[x = 1 @ 4 \]
\[z = 1 @ 4 \]
\[k \text{ conflict} \]

\[(\overline{e} \lor \overline{g} \lor h) \]
\[(\overline{d} \lor \overline{g} \lor \overline{s} \lor \overline{h}) \]
\[(\overline{d} \lor \overline{b} \lor e) \]
\[(\overline{e} \lor \overline{d} \lor \overline{g} \lor s) \]
\[(\overline{b} \lor \overline{d} \lor \overline{g} \lor \overline{s}) \]
\[(d \lor \overline{g} \lor \overline{s}) \]
Recursively Minimized Learned Clause

\[(d \lor g \lor s) \]
Decision Heuristics

- number of variable occurrences in (remaining unsatisfied) clauses (LIS)
 - eagerly satisfy many clauses
 - many variations were studied in the 90ies
 - actually expensive to compute

- dynamic heuristics
 - focus on variables which were useful recently in deriving learned clauses
 - can be interpreted as reinforcement learning
 - started with the VSIDS heuristic [MoskewiczMadiganZhaoZhangMalik’01]
 - most solvers rely on the exponential variant in MiniSAT (EVSIDS)
 - recently showed VMTF as effective as VSIDS [BiereFröhlich-SAT’15] survey

- look-ahead
 - spent more time in selecting good variables (and simplification)
 - related to our Cube & Conquer paper [HeuleKullmanWieringaBiere-HVC’11]
 - “The Science of Brute Force” [Heule & Kullman CACM August 2017]
Variable Scoring Schemes

[BiereFröhlich-SAT'15]

<table>
<thead>
<tr>
<th></th>
<th>bumped</th>
<th>not-bumped</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>INC</td>
<td>$s + 1$</td>
<td>s</td>
</tr>
<tr>
<td>SUM</td>
<td>$s + i$</td>
<td>s</td>
</tr>
<tr>
<td>VSIDS</td>
<td>$h_i^{256} \cdot s + 1$</td>
<td>$h_i^{256} \cdot s$</td>
</tr>
<tr>
<td>NVSIDS</td>
<td>$f \cdot s + (1 - f)$</td>
<td>$f \cdot s$</td>
</tr>
<tr>
<td>EVSIDS</td>
<td>$s + g^i$</td>
<td>s</td>
</tr>
<tr>
<td>ACIDS</td>
<td>$(s + i)/2$</td>
<td>s</td>
</tr>
<tr>
<td>VMTF</td>
<td>i</td>
<td>s</td>
</tr>
<tr>
<td>VMTF’</td>
<td>b</td>
<td>s</td>
</tr>
</tbody>
</table>

- **static decision order**
- **increment scores**
- **sum of conflict-indices**
- **original implementation in Chaff**
- **normalized variant of VSIDS**
- **exponential MiniSAT dual of NVSIDS**
- **average conflict-index decision scheme**
- **variable move-to-front**
- **variable move-to-front variant**

Scoring Formulas

\[
0 < f < 1
\quad g = \frac{1}{f}
\quad h_i^m = 0.5 \quad \text{if } m \text{ divides } i
\quad h_i^m = 1 \quad \text{otherwise}
\]

- i conflict index
- b bumped counter
int basic_cdcl_loop () {
 int res = 0;

 while (!res) {
 if (unsat) res = 20;
 else if (!propagate ()) analyze (); // analyze propagated conflict
 else if (satisfied ()) res = 10; // all variables satisfied
 else decide (); // otherwise pick next decision
 }

 return res;
}
Reducing Learned Clauses

- keeping all learned clauses slows down BCP
 - so SATO and RelSAT just kept only “short” clauses

- better periodically delete “useless” learned clauses
 - keep a certain number of learned clauses
 - if this number is reached MiniSAT reduces (deletes) half of the clauses
 - then maximum number kept learned clauses is increased geometrically

- LBD (glucose level / glue) prediction for usefulness [AudemardSimon-IJCAI’09]
 - LBD = number of decision-levels in the learned clause
 - allows arithmetic increase of number of kept learned clauses
 - keep clauses with small LBD forever (≤ 2…5)
Restarts

- often it is a good strategy to abandon what you do and restart
 - for satisfiable instances the solver may get stuck in the unsatisfiable part
 - for unsatisfiable instances focusing on one part might miss short proofs
 - restart after the number of conflicts reached a restart limit

- avoid to run into the same dead end
 - by randomization (either on the decision variable or its phase)
 - and/or just keep all the learned clauses during restart

- for completeness dynamically increase restart limit
 - arithmetically, geometrically, Luby, Inner/Outer

- Glucose restarts [AudemardSimon-CP’12]
 - short vs. large window exponential moving average (EMA) over LBD
 - if recent LBD values are larger than long time average then restart

- interleave “stabilizing” (no restarts) and “non-stabilizing” phases [Chanseok Oh]
Luby’s Restart Intervals

70 restarts in 104448 conflicts
unsigned
luby (unsigned i)
{
 unsigned k;

 for (k = 1; k < 32; k++)
 if (i == (1 << k) - 1)
 return 1 << (k - 1);

 for (k = 1;; k++)
 if ((1 << (k - 1)) <= i && i < (1 << k) - 1)
 return luby (i - (1 << (k-1)) + 1);
}

limit = 512 * luby (++restarts);
... // run SAT core loop for 'limit' conflicts
Reluctant Doubling Sequence

[Knuth’12]

\[(u_1, v_1) = (1, 1)\]

\[(u_{n+1}, v_{n+1}) = ((u_n \& -u_n \equiv v_n) \ ? (u_n + 1, 1) : (u_n, 2v_n))\]

\[(1, 1), (2, 1), (2, 2), (3, 1), (4, 1), (4, 2), (4, 4), (5, 1), \ldots\]
Restart Scheduling with Exponential Moving Averages

[BiereFröhlich-POS’15]

- LBD — fast EMA of LBD with $\alpha = 2^{-5}$
- Fast restart — slow EMA of LBD with $\alpha = 2^{-14}$ (ema-14)
- Inprocessing — CMA of LBD (average)
Phase Saving and Rapid Restarts

- **phase assignment:**
 - assign decision variable to 0 or 1?
 - “Only thing that matters in satisfiable instances” [Hans van Maaren]

- “phase saving” as in RSat [PipatsrisawatDarwiche’07]
 - pick phase of last assignment (if not forced to, do not toggle assignment)
 - initially use statically computed phase (typically LIS)
 - so can be seen to maintain a **global full assignment**

- **rapid restarts**
 - varying restart interval with bursts of restarts
 - not only theoretically avoids local minima
 - works nicely together with phase saving

- reusing the trail can reduce the cost of restarts [RamosVanDerTakHeule-JSAT’11]

- target phases of largest conflict free trail / assignment [Biere-SAT-Race-2019]
int basic_cdcl_loop_with_reduce_and_restart () {

 int res = 0;

 while (!res)
 if (unsat) res = 20; // analyze propagated conflict
 else if (!propagate ()) analyze (); // analyze propagated conflict
 else if (satisfied ()) res = 10; // all variables satisfied
 else if (restarting ()) restart (); // restart by backtracking
 else if (reducing ()) reduce (); // collect useless learned clauses
 else decide (); // otherwise pick next decision

 return res;
}
```cpp
int Internal::cdcl_loop_with_inprocessing () {
  int res = 0;
  while (!res) {
    if (unsat) res = 20;
    else if (!propagate ()) analyze ();  // propagate and analyze
    else if (iterating) iterate ();      // report learned unit
    else if (satisfied ()) res = 10;    // found model
    else if (terminating ()) break;     // limit hit or async abort
    else if (restarting ()) restart ();  // restart by backtracking
    else if (rephasing ()) rephase ();   // reset variable phases
    else if (reducing ()) reduce ();     // collect useless clauses
    else if (probing ()) probe ();       // failed literal probing
    else if (subsuming ()) subsume ();   // subsumption algorithm
    else if (eliminating ()) elim ();    // variable elimination
    else if (compacting ()) compact ();  // collect variables
    else res = decide ();                // next decision
  }
  return res;
}
```

https://github.com/arminbiere/cadical
https://fmv.jku.at/cadical
Incremental Inprocessing in SAT Solving
Katalin Fazekas1(/Letter), Armin Biere1, Christoph Scholl2
1 Johannes Kepler University, Linz, Austria
katalin.fazekas@jku.at, armin.biere@jku.at
2 Albert-Ludwigs-University, Freiburg, Germany
scholl@informatik.uni-freiburg.de

Abstract. Incremental SAT is about solving a sequence of related SAT problems efficiently. It makes use of already learned information to avoid repeating redundant work. Also preprocessing and inprocessing are considered to be crucial. Our calculus uses the most general redundancy property and extends existing inprocessing rules to incremental SAT solving. It allows to automatically reverse earlier simplification steps, which are inconsistent with literals in new incrementally added clauses. Our approach to incremental SAT solving not only simplifies the use of inprocessing but also substantially improves solving time.

1 Introduction

Solving a sequence of related SAT problems incrementally [1–4] is crucial for the efficiency of SAT based model checking [5–8], and important in many domains [9–12]. Utilizing the effort already spent on a SAT problem by keeping learned information (such as variable scores and learned clauses) can significantly speed-up solving similar problems. Equally important are formula simplification techniques such as variable elimination, subsumption, self-subsuming resolution, and equivalence reasoning [13–16].

These simplifications are not only applied before the problem solving starts (preprocessing), but also periodically during the actual search (inprocessing) [17].

In this paper we focus on how to efficiently combine simplification techniques with incremental SAT solving.

Consider the SAT problem $F_0 = (a \lor b) \land (\neg a \lor \neg b)$. Both clauses are redundant and can be eliminated by the variable elimination of blocked clause elimination [14, 16]. The resulting empty set of clauses is of course satisfiable and the SAT solver could for example simply assign false to both variables as a solution. That is one of the satisficing assignment of F_0, but can be transformed into one by solution reconstruction [17, 18], taking eliminated clauses into account. As we will see later, this would set the truth value of either a or b to true.

Now consider the SAT problem $F_1 = (a \lor b) \land (\neg a \lor \neg b) \land (\neg a) \land (\neg b)$. Which is actually an extension of F_0 with the clauses $(\neg a)$ and $(\neg b)$. Simply adding them to our simplified F_0 (i.e. to the empty set of clauses) would result in a formula that again is satisficed by assigning false to each variable. However, using solution reconstruction on that assignment leads to the same solution as before, one that is of course not a satisfying assignment of F_1. That is one of the satisficing assignment of F_1, but can be transformed into one by solution reconstruction [17, 18], taking eliminated clauses into account. As we will see later, this would set the truth value of either a or b to true.

In this paper we focus on how to efficiently combine simplification techniques with incremental SAT solving. We further generalize the approach, discuss implementation details, and provide empirical evidence of its correctness, but also substantially improves solving time.

2 Backing Backtracking⋆
Sibylle Möhle and Armin Biere
Johannes Kepler University Linz, Austria

Abstract. Non-chronological backtracking was considered an important and necessary feature of conflict-driven clause learning (CDCL). However, a SAT solver combining CDCL with chronological backtracking succeeded in the main track of the SAT Competition 2018. In that solver, multiple invariants considered crucial for CDCL were violated. In particular, decision levels of literals on the trail were not necessarily increasing anymore. The corresponding paper presented at SAT 2018 described the algorithm and provided empirical evidence of its correctness, but also formalization and proofs were missing. Our contribution is to fill this gap. We further generalize the approach, discuss implementation details, and empirically confirm its effectiveness in an independent implementation.

1 Introduction

Most state-of-the-art SAT solvers are based on the CDCL framework [8,9]. The performance gain of SAT solvers achieved in the last two decades is to some extent attributed to combining conflict-driven backjumping and learning. It enables the solver to escape regions of the search space with no solution.

Non-chronological backtracking during learning enforces the lowest decision level at which the learned clause becomes unit and then is used as a reason. While backtracking to a higher level still enables propagation of a literal in the learned clause, the resulting propagations might conflict with previous assignments. Resolving these conflicts introduces additional work which is prevented by backtracking non-chronologically to the lowest level [15].

However, in some cases a significant amount of the assignments undone is repeated later in the search [10,16], and a need for methods to save redundant work has been identified. Chronological backtracking avoids redundant work by keeping assignments which otherwise would be repeated at a later stage of the search. As our experiments show, satisfiable instances benefit most from chronological backtracking. Thus this technique should probably also be seen as a method to optimize SAT solving for satisfiable instances similar to [2,14].

The combination of chronological backtracking with CDCL is challenging since invariants classically considered crucial to CDCL cease to hold. Nonetheless, taking appropriate measures preserves the solver’s correctness, and the

⋆ Supported by Austrian Science Fund (FWF) grant S11408-N23 (RiSE) and by the LIT Secure and Correct Systems Lab funded by the State of Upper Austria.
Two-Watched Literal Schemes

- original idea from SATO \([ZhangStickel'00]\)
 - invariant: always watch two non-false literals
 - if a watched literal becomes \textit{false} replace it
 - if no replacement can be found clause is either unit or empty
 - original version used head and tail pointers on Tries

- improved variant from Chaff \([MoskewiczMadiganZhaoZhangMalik'01]\)
 - watch pointers can move arbitrarily
 - no update needed during backtracking
- one watch is enough to ensure correctness
 - but loses arc consistency

- reduces visiting clauses by 10x
 - particularly useful for large and many learned clauses

- blocking literals \([ChuHarwoodStuckey'09]\)

- special treatment of short clauses (binary \([PilarskiHu'02]\) or ternary \([Ryan'04]\))

- cache start of search for replacement \([Gent-JAIR'13]\)
Proofs / RUP / DRUP

- original idea for proofs: proof traces / sequence consisting of “learned clauses”
- can be checked clause by clause through unit propagation
- reverse unit implied clauses (RUP) [GoldbergNovikov’03] [VanGelder’12]
- deletion information (DRUP): proof trace of added and deleted clauses
- RUP in SAT competition 2007, 2009, 2011, DRUP since 2013 to certify UNSAT

Blocked Clauses

[Kullman-DAM’99] [JärvisaloHeuleBiere-JAR’12]

- clause \(C = (a \lor l) \) “blocked” on \(l \) w.r.t. CNF \(F = (\overline{a} \lor b) \land (l \lor c) \land (\overline{l} \lor \overline{a}) \)
 - all resolvents of \(C \) on \(l \) with clauses \(D \) in \(F \) are tautological
- blocked clauses are “redundant” too
 - adding or removing blocked clauses does not change satisfiability status
 - however it might change the set of models
Resolution Asymmetric Tautologies (RAT)

“Inprocessing Rules” [JärvisaloHeuleBiere-IJCAR’12]

- justify complex preprocessing algorithms in Lingeling
 - examples are adding blocked clauses or variable elimination
 - interleaved with research (forgetting learned clauses = reduce)

- need more general notion of redundancy criteria
 - simply replace “resolvents are tautological” by “resolvents on \(l \) are RUP”

\[
(a \lor l) \quad \text{RAT on } l \quad \text{w.r.t.} \quad (\overline{a} \lor b) \land (l \lor c) \land \left(\overline{l} \lor b \right)
\]

- deletion information is again essential (DRAT)
- now mandatory in the main track of the last two SAT competitions
- pretty powerful: can for instance also cover symmetry breaking
Propagation Redundant (PR)

“Short Proofs Without New Variables” [HeuleKieslBiere-CADE’17] best paper

- more general than RAT: short proofs for pigeon hole formulas without new variables
- C propagation redundant (PR) if exists assignment ω satisfying C with $F \models \overline{C} \vdash_{F} F | \omega$
- Satisfaction Driven Clause Learning (SDCL) [HeuleKieslSeidlBiere-HVC’17] best paper
 - first automatically generated PR proofs
 - prune paths for which we have other at least as satisfiable paths
 - (filtered) positive reduct in SaDiCaL [HeuleKieslBiere-TACAS’19] nominated best paper
- translate PR to DRAT [HeuleBiere-TACAS’18]
 - only one additional variable needed
 - shortest proofs for pigeon hole formulas
- translate DRAT to extended resolution [KieslRebolaPardoHeule-IJCAR’18] best paper
Mutilated Chessboard

[HeuleKieslBiere-NFM’19]

CDCL

SDCL
Parallel SAT

- application level parallelism
- guiding path principle
- portfolio (with sharing)
- (concurrent) cube & conquer

⇒ Handbook of Parallel Constraint Reasoning

⇒ still many low-level programming issues left