LEARNING TO INSTANTIATE QUANTIFIERS

Armin Biere¹ joint work with Mathias Preiner¹,², Aina Niemetz¹,²
TACAS’17, SMT’17, PhD Thesis Mathias Preiner in 2017

¹ Johannes Kepler University Linz ² Stanford University

Verification Seminar
Department of Computer Science
University of Oxford
18th December 2017
Introduction

- **Counterexample-Guided**
 Combine counterexample-guided quantifier instantiation with . . .

- **Synthesis**
 . . . syntax-guided synthesis to synthesize . . .

- **Model**
 . . . interpretations for Skolem functions.

- **Quantified Bit-Vectors**
Fixed-Size Bit-Vectors

Bit-Vector: vector of bits of a fixed size

- **Constant values**: 0011, 00000011, 3\[8], ...
- **Variables**: \(x[16], y[9], \ldots\)
- **Operators**:
 - *bitwise*: \(\sim, \&, |, \oplus, <<, >>, \ldots\)
 - *arithmetic*: +, −, ∗, /, ...
 - *predicates*: =, <, ≤, ...
 - *string operations*: concat, extract, extension, ...

Example with Quantifiers
\[\forall x[4] \exists y[4]. (x \& 1100) + y = 0000 \]
Quantified Bit-Vectors

State-of-the-Art

- **Z3**: Model-based quantifier instantiation (MBQI) [de Moura’09]
 - combined with E-matching, symbolic quantifier instantiation

- **CVC4**: Counterexample-guided quantifier instantiation (CEGQI) [Reynolds’15]
 - concrete models and counterexamples only

- **Q3B**: BDD-based approach [Strejcek’16]
 - relies on simplifications, approximation techniques, variable ordering

Our approach

Counterexample-Guided Model Synthesis (CEGMS)

- Combines synthesis with variant of CEGQI
Counterexample-Guided Model Synthesis

Example \(\varphi := \forall x_{[32]} \exists y_{[32]} . x + y = 0 \)

Skolem \(\varphi_S := \forall x_{[32]} . x + f(x) = 0 \)

Ground Instances of \(\varphi_S \)

<table>
<thead>
<tr>
<th>x</th>
<th>x + f(x) = 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 + f(0) = 0</td>
</tr>
<tr>
<td>1</td>
<td>1 + f(1) = 0</td>
</tr>
<tr>
<td>2</td>
<td>2 + f(2) = 0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>(2^{32}-1)</td>
<td>...</td>
</tr>
</tbody>
</table>
Counterexample-Guided Model Synthesis

Example \(\varphi := \forall x_{[32]} \exists y_{[32]} \cdot x + y = 0 \)

Skolem \(\varphi_S := \forall x_{[32]} \cdot x + f(x) = 0 \)

<table>
<thead>
<tr>
<th>Ground Instances of (\varphi_S)</th>
<th>(x)</th>
<th>(x + f(x) = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0 + f(0) = 0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1 + f(1) = 0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2 + f(2) = 0</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(2^{32} - 1)</td>
<td>(2^{32} - 1)</td>
<td>(\vdots)</td>
</tr>
</tbody>
</table>

Function Table \(f \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(2^{32} - 1)</td>
<td>(-(2^{32} - 1))</td>
</tr>
</tbody>
</table>
Counterexample-Guided Model Synthesis

Example \(\varphi := \forall x_{[32]} \exists y_{[32]} . x + y = 0 \)

Skolem \(\varphi_S := \forall x_{[32]} . x + f(x) = 0 \)

Ground Instances of \(\varphi_S \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(x + f(x) = 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0 + f(0) = 0)</td>
</tr>
<tr>
<td>1</td>
<td>(1 + f(1) = 0)</td>
</tr>
<tr>
<td>2</td>
<td>(2 + f(2) = 0)</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(2^{32} - 1)</td>
<td>(\ldots)</td>
</tr>
</tbody>
</table>

Function Table \(f \)

<table>
<thead>
<tr>
<th>(x)</th>
<th>(f(x))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>-2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(2^{32} - 1)</td>
<td>(-(2^{32} - 1))</td>
</tr>
</tbody>
</table>

Goal

\[f := \lambda x. -x \]

\[\forall x_{[32]} . x - x = 0 \checkmark \]

How?

Synthesize + Refine
Workflow

Preprocessing → Check Ground Instances → Synthesize Candidate Model → Check Candidate Model → CEGQI → New ground instance

- \(\varphi \) → Preprocessing
- Check Ground Instances → sat → CEGQI → sat → Check Candidate Model
- Synthesize Candidate Model → sat → Check Candidate Model
- CEGQI → Counterexample
- New ground instance → Check Candidate Model

- unsat → SAT
- unsat → UNSAT

- Skolem function Interpr.
Workflow

Preprocessing ϕ → Check Ground Instances → Synthesize Candidate Model → Check Candidate Model

- CEGQR
- SAT
- UNSAT

New ground instance

Skolem function Interpr.

Counter-example

unsat → sat → unsat
Workflow

- Preprocessing
- Check Ground Instances
- Synthesize Candidate Model
- Check Candidate Model

φ → Preprocessing → Check Ground Instances → Synthesize Candidate Model → Check Candidate Model

unsat → New ground instance → sat → CEGQI → sat → Counter-example → unsat → Skolem function Interpr.

SAT → UNSAT
Workflow

1. Preprocessing
2. Check Ground Instances
3. Synthesize Candidate Model
4. Check Candidate Model

- $\varphi \rightarrow$ Preprocessing
- New ground instance
- CEGQI
- SAT
- UNSAT

- Check Ground Instances \rightarrow sat
- Synthesize Model \rightarrow sat
- Skolem function Interpreter
- Check Candidate Model \rightarrow unsat
- Counterexample

Decision:
- SAT
- UNSAT
Workflow

1. Preprocessing
2. Check Ground Instances
3. Synthesize Candidate Model
4. Check Candidate Model
5. Skolem function Interpr.
6. CEGQI

- φ → Preprocessing → Check Ground Instances → Synthesize Candidate Model → Check Candidate Model → SAT/UNSAT
- New ground instance
- sat → Unsat
- Unsat → sat → Counter-example
- Unsat → Unsat

5/16
Synthesis of Candidate Models

Enumerative Learning [Alur’13]

- enumerate expressions based on a syntax/grammar
- check if expressions conform to some set of test cases
 - generate expression signature
 - discard expressions with same signature (pruning)
- return expression if signature matches target signature
 - candidate expressions must satisfy set of ground instances

Size	Enumerated Expressions
1 | \(x \), \(y \), \(z \), 0, 1, 2, \(\ldots \)
2 | \(\ldots \), \(x + y \), \(x + z \), \(y + z \), \(x * y \), \(\ldots \), \(x = y \), \(\ldots \)
3 | \(\ldots \), \((x + y) * x \), \((x + y) * 2 \), \(\ldots \), \(x < (x * y) \), \(y < (x * y) \), \(\ldots \)
4 | \(\ldots \), \((x + y) \& (x * y) \), \(\ldots \), \(\text{ite}(x = y, z, x) \), \(\ldots \)
\(\ldots \)
Example: Synthesis

Example: \(z = \min(x, y) \)

\[\varphi := \forall x \, y \exists z \cdot (x < y \rightarrow z = x) \land (x \geq y \rightarrow z = y) \]

\[\varphi_S := \forall x \, y \cdot (x < y \rightarrow f_z(x, y) = x) \land (x \geq y \rightarrow f_z(x, y) = y) \]

Inputs for \(f_z \) \{ \(x, y \) \}

Operators \{ =, <, \geq, \land, \rightarrow, \text{ite} \}

Ground Inst. \(G \) \{ \[f_z(0, 0) = 0, \] \[f_z(0, 1) = 0, \] \[f_z(2, 1) = 1 \] \}
Example: Synthesis cont.

Size	Enumerated Expressions
1 | \(x, y\)
2 | \(x = y, y = x, x < y, y < x, x \geq y, y \geq x\)
3 | -
4 | \((x = y \land x < y), \ldots, (x = y \rightarrow x < y), \ldots, \text{ite}(x < y, x, y)\)

Signature Computation

- substitute \(f_z\) in \(G := \{g_1, \ldots, g_n\}\) by current expression \(\lambda xy \cdot t[x, y]\)
- evaluate resulting \(g_1', \ldots, g_n'\)
- obtain vector of \(n\) Boolean values (= signature)

Signature of Candidate \(\text{ite}(x < y, x, y)\)

\[
\begin{align*}
\text{ite}(0 < 0, 0, 0) &= 0, & \text{ite}(0 < 1, 0, 1) &= 0, & \text{ite}(2 < 1, 2, 1) &= 1
\end{align*}
\]
Example: Check Candidate Model

Candidate Model
\[\{ f_z := \lambda x y . \text{ite}(x < y, x, y) \} \]

Check

\[\neg \varphi_S[\lambda x y . \text{ite}(x < y, x, y)/f_z] \]
\[\equiv \exists x y . (x < y \land \text{ite}(x < y, x, y) \neq x) \lor (x \geq y \land \text{ite}(x < y, x, y) \neq y) \]

SMT Solver Check

\[(a < b \land \text{ite}(a < b, a, b) \neq a) \lor (a \geq b \land \text{ite}(a < b, a, b) \neq b) \]

- unsat: candidate model is valid
- sat: found counterexample, refine
Example: Refinement

Assume Candidate Model \(\{ f_z := \lambda x y . x \} \)

SMT Solver Check

\[(a < b \wedge a \neq a) \lor (a \geq b \wedge a \neq b) \]

- Solver returns \textit{sat}, candidate model is invalid
- Solver produces counterexample \(\{ a = 1, b = 0 \} \)

Add New Instance of \(\varphi_S \) to \(G \)

\[G := G \cup \{ \varphi_S[1/x, 0/y] \} \]
Dual Counterexample-Guided Model Synthesis

Idea
Find instantiation for \forall-variables s.t. formula is unsatisfiable.

How
Apply CEGMS to the dual formula $\neg \varphi$

Duality
$\text{CEGMS}(\neg \varphi)$ sat \iff CEGMS(φ) unsat

$\text{CEGMS}(\neg \varphi)$ unsat \iff CEGMS(φ) sat

Original
$\varphi := \exists a \ b \ c \ \forall x . \underbrace{(a * c) + (b * c)}_{\text{unsat with } \varphi[a+b/x]} \neq \underbrace{(x * c)}_{\text{unsat with } \varphi[a+b/x]}$

Dual
$\neg \varphi := \forall a \ b \ c \ \exists x . \underbrace{(a * c) + (b * c)}_{\text{sat with } \neg \varphi[a+b/x]} = \underbrace{(x * c)}_{\text{sat with } \neg \varphi[a+b/x]}$

- Dual CEGMS finds non-ground quantifier instantiations
- CEGMS(φ) and CEGMS(\neg \varphi) can be executed in parallel
Experiments

<table>
<thead>
<tr>
<th>SMT-LIB (191)</th>
<th>New(^1) (4838)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solved</td>
<td>Sat</td>
</tr>
<tr>
<td>Boolector</td>
<td>142</td>
</tr>
<tr>
<td>Boolector+s</td>
<td>164</td>
</tr>
<tr>
<td>Boolector+d</td>
<td>162</td>
</tr>
<tr>
<td>Boolector+ds</td>
<td>172</td>
</tr>
</tbody>
</table>

Boolector . . . CEGQI only \(+s . . . \) synthesis \(+d . . . \) dual (parallel)

Limits 1200 seconds CPU time, 7GB memory

\(^1\) LIA, LRA, NIA, NRA SMT-LIB benchmarks translated to BV
Experiments

<table>
<thead>
<tr>
<th></th>
<th>SMT-LIB (191)</th>
<th>New (4838)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Solved</td>
<td>Sat</td>
</tr>
<tr>
<td>Boolector+ds</td>
<td>172</td>
<td>77</td>
</tr>
<tr>
<td>CVC4</td>
<td>145</td>
<td>64</td>
</tr>
<tr>
<td>Q3B</td>
<td>187</td>
<td>93</td>
</tr>
<tr>
<td>Z3</td>
<td>161</td>
<td>69</td>
</tr>
</tbody>
</table>

Limits 1200 seconds CPU time, 7GB memory
Experiments

Synthesis Overhead (Runtime)

- up to 75% on solved benchmarks
- up to 98% on unsolved benchmarks

Refinement Iterations

- up to 300 iterations on solved benchmarks
- up to 9400 iterations on unsolved benchmarks

Synthesized Terms

- c
- x_i
- $(x_i \text{ op } x_j)$
- $(c \text{ op } x_i)$
- $\sim(c \times x_i)$
- $(x_i + (c + \sim x_j))$

x_i ... universal variables, \hspace{1em} c ... constant value, \hspace{1em} op ... bit-vector operator
Conclusion

- **simple** approach for solving quantified bit-vectors
 - only requires two instances of ground theory solvers
 - enumerative learning algorithm straightforward to implement

- **competitive** with the state-of-the-art in solving BV
 - no simplification techniques yet
 - no E-matching or other quantifier instantiation heuristics

- **future directions**
 - improve synthesis approach
 - employ divide and conquer approach from [Alur’17]
 - employ other synthesis approaches?
 - generalize counterexamples via synthesis
 - model reconstruction from unsatisfiable dual formulas
 - useful for other theories?
References I

