Lingeling Essentials

Design and Implementation Aspects

Armin Biere
Johannes Kepler University
Linz, Austria

POS 2014
5th Workshop on Pragmatics of SAT 2014

SAT 2014 / FLoC 2014
Vienna Summer of Logic

Vienna, Austria

Sunday, 13 July, 2014

Lingeling successor of PrecoSAT (Inprocessing)
lightweight (compact), beautiful written in C

Butterfly

Farfalla

il
—

Schmetterling

my 3 year old daughter used Lingeling instead of Schmetterling

Maximum Memory Usage Glucose (3.0) vs Lingeling (aqv) in 1000 seconds

1000
)
=
£
o

= 100
&
o)
=
3

10

Glucose (in MB)

[+]
A + T]
[H]
[g
s + o+ -
_ e _

A
R ' +ﬁ/ ++ A

s

T
_ e _
[+]

,.""+
+
3 ‘ ;
L L L L L1l I L L L L L L1l I L L L L L 1.1 I L L L L L L
10 100 1000

Benchmarks from Application Track SAT Competition 2013

Compact Data Structures for CDCL 3/25

m focus on conflict-driven clause learning (CDCL)
= similar arguments apply to look-ahead or local search solvers

= preprocessing / inprocessing have to be considered as well

® memory usage dominated by clause data base
= memory layout of individual clauses

= occurrence lists of references to (watched) clauses

® cache friendliness
= keep data compact (maximize what fits in a cache line)

= minimize pointer dereferences (mems)

= |ow-level parallelization not considered here
® watching clauses (sparse mode) versus full occurrence lists (dense mode)

® special treatment of short clauses: binary and ternary

ZChaff Occurrence Stacks

Literals

start
top
end

Stack

start
top
end

Y

Clauses

start
top
end

.

—De

start
top
end

—2e

4/25

Limmat / FunEx Occurrence Stacks 5/25

g} start e

end o

|
\
\ 1 -2 |7 -8 A

-2 |3 -5 | B

- | Watcher of B

CompSAT / MiniSAT Occurrence Stacks 6/25

) start
top X

/
end *§ - -8 |-2 |7 1

invariant: first two literals are watched

MChaff / PicoSAT Occurrence Lists 7/25

-2 head l

~ 2 |3 |-5
/ T

invariant: first two literals are watched

Occurrence Stacks for Binary Clauses

Additional Binary Clause Watcher Stack

start
top
end

(N

an

8/25

Blocking Literals 9/25

watch -7
start ——>— 1 | & ¢
top —7| e > 2 | =7| =-3| -1
end 3 | e
I — _5| 2 3
—= !
watch 2

® observation: often the other watched literal satisfies the clause
= 50 cache these literals in watch list to avoid pointer dereference

® for binary clause no need to store clause at all
® never has to access the actual clause data

= needs special treatment of binary clauses during conflict analysis

= reasons are either references to clauses or “other” literals of binary clauses

® can easily be adjusted for ternary clauses
= with full occurrence lists (all three literals are watched)

= aternary reason consists of the “other two” literals

Lingeling Occurrence Lists 10/25

two 32-bit integer stacks

literal
offset
offset >
1 ount Block of
Occurrences / Watches
offset for Literal 1
-1 count
o
(|
o
‘count’ can be increased if non-zero
H

offset + count last allocated field if zero

Lingeling Occurrence Lists 11/25

® gssumes number of watches much smaller than 232
= actually closer to 2 billion, but still very reasonable in practice

" the count field is needed for fast “pushing of watches”

® 8 bytes for offset/count entry per literal
= plus 4 bytes for sentinel on the actual watches stack

= MiniSAT / Glucose / STL Stack need 3 pointers (24 bytes on 64-bit machine)

® contiguous occurrences / watches stack needs explicit memory management
= without contiguous memory need pointer instead of offset (so 64 bit)

= if occurrence / watch pushed and (blue) block full for this literal reallocate
= maintain free lists of free blocks

= might need to reallocate (with realloc) whole stack of blocks
which in turn might move addresses of the (blue) blocks

so pushing watches while iterating (blue) blocks dangerous

= periodical defragmentation of blocks to keep overhead small

Literal Stacks 12/25

® actual clause data stored on literal stacks (only clauses with at least 4 literals)
= first two literals are watched

= integer literals separated by zero sentinels (think DIMACS format)
= |earned clauses have an additional 32-bit activity counter (before the actual literals)

® gseparate stacks for redundant (original) clauses and irredundant (learned) clauses
= we cluster learned clauses with similar glucose level (LBD) into 16 clusters

= each cluster corresponds to one “scaled glue” and has one literal stack

m references to clauses are actually offsets into these stacks
= pushing clauses while iterating through literals is dangerous

= restricts number of literals in each cluster to 232

irr -1 2340516 -490¢0
red[0] 47536 6 -3 4 7 8 2 0 4789 -6 -3 7 8 2 5 0

red[14]

B MAXGLUE = 15 clauses are actually discarded after backtracking

Lingeling Occurrence Lists 13/25

® entries in occurrence list are classified as
= binary, ternary, large watch, large occurrence (constraint types)

= redundant or irredundant clause (redundancy)

® constraint types are used for classifying reasons too
= need two additional types: unit clause, decision

= altogether 3 bits are used to encode the constraint type

® one bit is used to encoded redundancy
= binary and ternary clauses are only stored in occurrence lists

= during preprocessing it is essential to know their redundancy

® remaining 28 = 32 - 4 bits of first integer used to encode blocking literal / occurrence
= restriction on a maximum of 227 = 134 million variables

= and the same number of actual literals in irredundant clauses (including sentinels)
® ternary clauses have an additional blocking literal (wasting four bits)

® |arge watched clauses have and additional offset into literal stack
= for irredundant clauses the glucose level is stored in least significant four bits

Lingeling Occurrence Lists Example 14/25

® Dbinary clauses
= 3.0.2 (hexadecimal 0000 0032)
reference to a irredundant binary clause with other literal 3

= -2.1.2 (hexadecimal ffff ffea)
reference to a redundant binary clause with other literal -2

® ternary clauses

= 7.0.3 -1 (hexadecimal 0000 0073 ffff ffff)
reference to a irredundant ternary clause with other literals 7 and -1

® |arge watched clauses
"= 5.0.4 9 (hexadecimal 0000 0054 0000 0009)
reference to large watched irredundant clause, blocking literal 5, offset 9

" 6.1.4 12.8 (hexadecimal 0000 006b 0000 00c8)
reference to large watched redundant clause, blocking literal 6, glue 12, offset 8

= |arge occurrence

= 17.0.1 (hexadecimal 0000 0111)
reference to large clause with offset 17 in irredundant literal stack

Inprocessing: Interleaving Preprocessing and Search

PrecoSAT [Biere’09], Lingeling [Biere’10], also in CryptoMiniSAT (Mate Soos)

B preprocessing can be extremely beneficial

= most SAT competition solvers use bounded variable elimination (BVE)
[EénBiere SAT’05]

= equivalence / XOR reasoning
= various clause elimination procedures
= probing / failed literal preprocessing / hyper binary resolution

= however, even though polynomial, can not be run until completion
® simple idea to benefit from full preprocessing without penalty
= “preempt” preprocessors after some time

= resume preprocessing between restarts

= [imit preprocessing time in relation to search time

15/25

Reencoding and Inprocessing

Encoding

Reencoding

16/25

[MantheyHeuleBiere’ HVC12]

= Simplifying

Inprocessing
[JarvisaloHeuleBiere’'|lJCAR12]

-

~ Search

Inprocessors in Lingeling

Ternary Resolution

Cardinality Reasoning

Gaussian Elimination

Equivalent Literal Substitution

various literal probing algorithms

= 3 variants: Root, Simple, Tree

= + basic asymmetric tautologies (AT)
= + lazy hyper bin resolution (LHBR)
Congruence Closure

= after syntactic gate extraction
Lifting

= double look-head probing

= extract equivalences

= finds units + implications

Cliffing

= [ift units implied by literals in clause

17/25

Unhiding

= uses binary implication graph (BIG)
= randomized depth first search

= removes clauses / literals
Transitive Reduction

= explicit and on BIG only

Blocked Clause Elimination (BCE)
Covered Clause Elimination (CCE)
Bounded Variable Elimination (BVE)

= semantic: Minato’s algorithm

= gyntactic: SatELite like

= implicit BCE and (self) subsumption
Blocked Clause Addition (BCA)

= only binary clauses

some more disabled

Benefits of Inprocessing 18/25
® gpecial case incremental preprocessing:.

= preprocessing during incremental SAT solving

® allows to use costly preprocessors
= without increasing run-time “much” in the worst-case

= gtill useful for benchmarks where these costly techniques help

= good examples: probing and CCE even BVE is in general costly

® additional benefit:
= makes units / equivalences learned in search available to preprocessing

= particularly interesting if preprocessing simulates encoding optimizations
® danger of hiding “bad” implementation though ...

®= .. and hard(er) to debug and get right
= our “Inprocessing Rules” [JCAR’12 paper very useful to think about what is allowed

= need efficient testing techniques (see our TAP’13 paper on model based testing)

100%

80%

60%

40%

20%

Variables

after simplification round 1 ——+—
after simplification round 2 -~
after simplification round 3 ------
after simplification round 4 -
after simplification round 5

after simplification round 6

after simplification round 7 -- -®
after simplification round 8 — 2 —
after simplification round 9 -4~

X
Remaining Variables after Simplification (in percent)

0 50 100 150 200 250 300

Lingeling (ayv) on Benchmarks Application Track SAT Competition 2013

100%

80%

60%

40%

20%

Clauses

after simplification round 1 ——+—
after simplification round 2 -~
after simplification round 3 ------
after simplification round 4 -
after simplification round 5

after simplification round 6

after simplification round 7 -- -
after simplification round 8
after simplification round 9 -

X

Remaining Clauses after Simplification (in percent)

50 100 150 200 250
Lingeling (ayv) on Benchmarks Application Track SAT Competition 2013

300

Scheduling

® original version scheduled inprocessing techniques individually

= introduces restarts

= makes it difficult to understand what is going on

= hard to control inprocessing frequency / effort

m effort spent in phases is measured in “steps”

= number of visited clauses for search (approx. of mems)

= propagations for probing, resolutions for BVE etc.

= “counters” provide deterministic execution (versus using time)

® newer versions alternate simplification and search

21/25

simplification—1
preprocessing

search-1

simplification-2
inprocessing

search-2

simplification-3
inprocessing

= search phases limited by geometrically increasing conflict limit

= nprocessors steps limited relative to visited clauses during search

When to Start Next Simplification Phase? 22/25

® condensed experience of 4 years tweaking inprocessing scheduling

m default simplification schedule: 0, 20k, 40k, 80k, 160k, ... conflicts
= |ast conflict limit is default increment for next conflict limit

= increment reduced relative to maximum of removed variables and clauses
0% vars/clauses removed in preprocessing = 20k

3% vars/clauses removed in preprocessing = 6666 = 20k / (2 + 1)
9% vars/clauses removed in preprocessing = 2k =20k / (9 + 1)

= as more effective inprocessing as higher its frequency

® |arge reduction (of at least 5% vars/clauses removed)
= gmall conflict limit increment of 2k

= in this case increment independent of current conflict limit

® global limits
= hard conflict limit increment of 10 million

= soft conflict limit increment of 1 million (if at least one var / clause removed)

Which Preprocessors Should be Run? 23/25

® pbounded variable elimination (BVE) most effective
= most preprocessors “wait” until BVE completed once

= exceptions in current configuration: probing, unhiding, cardinality reasoning

= similar waiting for blocked clause elimination (BCE)
= for instance there is no point in doing CCE before BCE completed once

= same exceptions as for BVE in current configuration

® some preprocessors can decide formula on their own
= BVE, Gaussian elimination, cardinality reasoning, simple probing, etc.

= those are “boosted” the first time they are run (given more time)

= for instance BVE is boosted by a factor of 40x initially

® execution of an “unsuccessful” preprocessor leads to “delay” its next execution
= for instance if BVE could not delete a variable skip it next time

= this “delay” is increased with every unsuccessful attempt

Preprocessor Effort Spent in Simplification Phase 24/25

® steps (resolutions etc.) limited linearly in relation to search time (visited clauses)
= Limit = f-Visits (f different for each preprocessor)

= each preprocessor has its own “steps counter” Steps

= requires monitoring of actual time in preprocessors (during development)
® each preprocessor has hard step limits too (like 800 million resolutions/steps in BVE)

® taking size of formula into account
= some preprocessor require dense mode (linear in whole formula)

= then steps limit will have size of formula as lower bound

® penalty scheme
= unsuccessful runs increase preprocessor specific penalty P

= large formulas size increase penalty P

= actual steps limit divided by 2*

® jncrease preprocessor internal limits for later simplifications
= for instance limits on the number of occurrences in BVE

Undiscussed Features 25/25

® OTFS, LMTF, minimization, etc.

® internal versus external variable indices
= incremental interface: freezing, melting
= Treengeling, Plingeling

® model based testing

m callbacks, cloning

® 336 options

