SAT in Formal Hardware Verification

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Invited Talk SAT’05

St. Andrews, Scotland
20. June 2005
Overview

• Hardware Verification Problems
 – Model Checking
 – Equivalence Checking

• Circuit vs. SAT Simplification Techniques
 – redundancy removal with D-algorithm vs. variable instantiation

• QBF for Verification
Model Checking

- explicit model checking [ClarkeEmerson’82], [Holzmann’91]
 - program presented symbolically (no transition matrix)
 - traversed state space represented explicitly
 - e.g. reached states are explicitly saved bit for bit in hash table
 ⇒ State Explosion Problem (state space exponential in program size)

- symbolic model checking [McMillan Thesis’93], [CoudertMadre’89]
 - use symbolic representations for sets of states
 - originally with Binary Decision Diagrams [Bryant’86]
 - Bounded Model Checking using SAT [BiereCimattiClarkeZhu’99]
Forward Fixpoint Algorithm: Initial and Bad States
Forward Fixpoint Algorithm: Step 1
Forward Fixpoint Algorithm: Step 2
Forward Fixpoint Algorithm: Step 3
Forward Fixpoint Algorithm: Bad State Reached
Forward Fixpoint Algorithm: Termination, No Bad State Reachable
Forward Least Fixpoint Algorithm for Model Checking Safety

initial states I, transition relation T, bad states B

$\text{model-check}^\mu_{\text{forward}} (I, T, B)$

$S_C = \emptyset; S_N = I;$

while $S_C \neq S_N$ do

$S_C = S_N;$

if $B \cap S_C \neq \emptyset$ then

return “found error trace to bad states”;

$S_N = S_C \cup \text{Img}(S_C);$

done;

return “no bad state reachable”;

symbolic model checking represents set of states in this BFS symbolically
BDDs as Symbolic Representation

- BDDs are canonical representation for boolean functions
 - states encoded as bit vectors $\in \mathbb{IB}^n$
 - set of states $S \subseteq \mathbb{IB}^n$ as BDDs for characteristic function $f_S: \mathbb{IB}^n \rightarrow \mathbb{IB}$
 $$f_S(s) = 1 \iff s \in S$$

- for all set operations there are linear BDD operations
 - except for Img which is exponential (often also in practice)
 $$s \in \text{Img}(f) \iff \exists t \in \mathbb{IB}^n[f(s) \land T(s,t)]$$

- variable ordering has strong influence on size of BDDs

- conjunctive partitioning of transition relation is a must
Termination Check in Symbolic Reachability is in QBF

- checking $S_C = S_N$ in 2nd iteration results in QBF decision problem

 $$\forall s_0, s_1, s_2[I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \rightarrow I(s_2) \lor \exists t_0[I(t_0) \land T(t_0, s_2)]$$

- not eliminating quantifiers results in QBF with one alternation
 - note: number of necessary iterations bounded by 2^n

- circuit reachability is PSPACE complete \[Savitch’70\]

 $$T^{2_i}(s, t) \equiv \exists m[\forall c[\exists l, r[(c \rightarrow (l, r) = (s, m)) \land (\bar{c} \rightarrow (l, r) = (m, t))] \land T^i(l, r)]$$

- so why not forget about termination and concentrate on bug finding?

 \[\Rightarrow\] Bounded Model Checking
Bounded Model Checking (BMC)
[BiereCimattiClarkeZhu TACAS’99]

- look only for counter example made of k states (the bound)

- simple for safety properties $G p$ (e.g. $p = \neg B$)

$$I(s_0) \land \left(\bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \right) \land \bigvee_{i=0}^{k} \neg p(s_i)$$

- harder for liveness properties $F p$

$$I(s_0) \land \left(\bigwedge_{i=0}^{k-1} T(s_i, s_{i+1}) \right) \land \left(\bigvee_{l=0}^{k} T(s_k, s_l) \right) \land \bigwedge_{i=0}^{k} \neg p(s_i)$$
Bounded Model Checking State-of-the-Art

- increase in efficiency of SAT solvers (i.e. zChaff) helped a lot

- SAT more robust than BDDs in bug finding
 (shallow bugs are easily reached by explicit model checking or testing)

- better unbounded but still SAT based model checking algorithms
 – see for instance invited talk by Ken McMillan at SAT’04 in Vancouver

- 3rd Intl. Workshop on Bounded Model Checking (BMC’05)
 (in exactly 3 weeks, almost same place)

- other logics and better encodings
Original Translation for LTL and Lasso Witnesses
[BiereCimattiClarkeZhu TACAS’99]

on 1st look seems exponential
(in formula size $|f|$)

on 2nd look cubic
(in k and linear in $|f|$)

on 3rd look quadratic
(associativity)

on 4th look linear
(adhoc simplifications)

but binary operators U, R
make it at least quadratic again

\[
\begin{align*}
l[p]^i_k & := p(s_i) \\
l[\neg p]^i_k & := \neg p(s_i) \\
l[f \land g]^i_k & := l[f]^i_k \land l[g]^i_k \\
l[X f]^i_k & := l[f]^{\text{next}(i)}_k \\
l[G f]^i_k & := \bigwedge_{j=\min(l,i)}^k l[f]^j_k \\
l[F f]^i_k & := \bigvee_{j=\min(l,i)}^k l[f]^j_k \\
\end{align*}
\]

with

\[
\text{next}(i) := \begin{cases}
i + 1 & \text{if } i < k \\
l & \text{else} \end{cases}
\]
Linear Circuit for Counterexample to Infinitely Often

original translation of FG_p after applying associativity and sharing

$p(s_3)$
$p(s_2)$
$p(s_1)$
$p(s_0)$

L_1
L_2
L_3
L_4

(could be further simplified)
Simple and Linear Translation for LTL
[LatvalaBiereHeljankoJunttila FMCAD’04]

evaluate semantics on loop in two iterations

\[
\langle \rangle = \text{1st iteration} \quad [] = \text{2nd iteration}
\]

<table>
<thead>
<tr>
<th>:=</th>
<th>(i < k)</th>
<th>(i = k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>([p]_i)</td>
<td>(p(s_i))</td>
<td>(p(s_k))</td>
</tr>
<tr>
<td>([\neg p]_i)</td>
<td>(\neg p(s_i))</td>
<td>(\neg p(s_k))</td>
</tr>
<tr>
<td>([Xf]_i)</td>
<td>([f]_{i+1})</td>
<td>(\lor_{l=0}^{k} (T(s_k,s_l) \land [f]_l))</td>
</tr>
<tr>
<td>([Gf]_i)</td>
<td>([f]i \land [Gf]{i+1})</td>
<td>(\lor_{l=0}^{k} (T(s_k,s_l) \land \langle Gf \rangle_l))</td>
</tr>
<tr>
<td>([Ff]_i)</td>
<td>([f]i \lor [Ff]{i+1})</td>
<td>(\lor_{l=0}^{k} (T(s_k,s_l) \land \langle Ff \rangle_l))</td>
</tr>
<tr>
<td>(\langle Gf \rangle_i)</td>
<td>([f]i \land \langle Gf \rangle{i+1})</td>
<td>([f]_k)</td>
</tr>
<tr>
<td>(\langle Ff \rangle_i)</td>
<td>([f]i \lor \langle Ff \rangle{i+1})</td>
<td>([f]_k)</td>
</tr>
</tbody>
</table>
Simple and Linear Translation for LTL cont.

- semantic of LTL on single path is the same as CTL semantic
 - symbolically implement fixpoint calculation for (A)CTL
 - fixpoint computation terminates after 2 iterations (not k)
 - boolean fixpoint equations \Rightarrow boolean graphs

- easy to implement and optimize, fast
 - generalized to past time [LatvalaBiereHeljankoJunttila VMCAI’05]
 - minimal counter examples for past time [SchuppanBiere TACAS’05]
 - incremental (and complete) [LatvalaHeljankoJunttila CAV’05]
Why Not Just Try to Satisfy Boolean Equations directly?

recursive expansion \[\textbf{F}p \equiv p \lor \textbf{X}\textbf{F}p \]

checking \[\mathbf{G}\overline{p} \] implemented as search for witness for \[\textbf{F}p \]

Kripke structure: single state with self loop in which \(p \) does not hold

incorrect translation of \(\textbf{F}p \):

\[
\begin{align*}
\text{model constraints} & \quad I(s_0) \land T(s_0, s_0) \land ([\textbf{F}p] \leftrightarrow p(s_0) \lor [\textbf{F}p]) \land [\textbf{F}p] \\
\text{assumption} & \quad x \\
\text{translation} &
\end{align*}
\]

since it is satisfiable by setting \(x = 1 \) though \(p(s_0) = 0 \)

\((x \text{ fresh boolean variable introduced for } [\textbf{F}p])\)
Equivalence Checking

RTL

\[a_0 = (b_0 + c_0) \times (!b_0 + !c_0) \]

\[a_1 = \ldots \]

\[a = b + c \]

\[\ldots \]

(RTL = Register Transfer Level)

Synthesis Tool

Synthesis + Optimization

Compiler (internal Synthesis)

\[A0 = B0 \times !C0 + !B0 \times C0 \]

\[B1 = \ldots \]

\[\ldots \]

Equivalence Checker

Compare

Gate-Level

(RTL = Register Transfer Level)
Equivalence Checking in the Large

equivalent ?

common structure

shared input variables
Equivalence Checking in the Large

f

$f_{\text{optimized}}$

internal functional equivalences

shared input variables
Equivalence Checking in the Large

Shared input variables

Functional overlap

f

$f_{optimized}$
Equivalence Checking in the Large

f

$f_{\text{optimized}}$

shared input variables
Equivalence Checking in the Large

\[f \]

\[f_{\text{optimized}} \]

shared input variables
Equivalence Checking in the Large

\[f \quad \text{shared input variables} \quad f_{\text{optimized}} \]
Equivalence Checking in the Large

\[f \quad f_{\text{optimized}} \]

shared input variables
Equivalence Checking in the Large

\[f = f_{\text{optimized}} \]

shared input variables
Equivalence Checking

- **BDD-Sweeping** [KühlmannKrohm DAC’97]
 - levelized, resource driven construction of small overlapping BDDs
 - BDDs are mapped back to circuit nodes
 - circuit nodes with same BDD are functionally equivalent

- can be combined with top-down approach (e.g. backward chaining)
 - interleave BDD building with circuit based SAT solver

- recently **SAT-Sweeping** [Kühlmann ICCAD’04]
 - candidate pairs of equivalent circuit nodes through random simulation
 - more robust than BDDs, particularly when used as simplifier for BMC
Automatic Test Pattern Generation (ATPG)

- need to test chips after manufacturing
 - manufacturing process introduces faults (< 100% yield)
 - faulty chips can not be sold (should not)
 - generate all test patterns from functional logic description

- simplified failure model
 - at most one wire has a fault
 - fault results in fixing wire to a logic constant:
 - “stuck at zero fault” (s-a-0)
 - “stuck at one fault” (s-a-1)
ATPG with D-Algorithm

[Roth’66]

- adding logic constants D and \overline{D} allows to work with only one circuit

 0 represents 0 in fault free and 0 in faulty circuit
 1 represents 1 in fault free and 1 in faulty circuit
 D represents 1 in fault free and 0 in faulty circuit
 \overline{D} represents 0 in fault free and 1 in faulty circuit

- otherwise obvious algebraic rules (propagation rules)

 $1 \land D \equiv D$ \hspace{1cm} $0 \land D \equiv 0$ \hspace{1cm} $\overline{D} \land D \equiv 0$ \hspace{1cm} etc.

- new conflicts: e.g. variable/wire can not be 0 and D at the same time
Fault Injection for S-A-0 Fault

Assume opposite value 1 before fault

(both for fault free and faulty circuit)

Assume difference value D after fault
D-Algorithm Example: Fault Injection
D-Algorithm Example: Path Sensitation
D-Algorithm Example: Propagation

test vector \((c, t, e) = (1, 1, 0)\)
Justification

generate **partial** input vector to justify 1

only **backward propagation**, remaining unassigned inputs can be arbitrary
extend partial input vector to propagate D or \overline{D} to output

forward propagation of D and \overline{D}, backward propagation of 0 and 1
Dominators and Path Sensitation

- **idea:** use circuit topology for additional necessary conditions
 - assign and propagate these conditions after fault injection

- gate **dominates** fault iff every path from fault to output goes through it
 - more exactly we determine wires (input to gates) that dominate a fault

- if input dominates a fault **assign** other inputs to non-controlling value

![Diagram](image-url)
Redundancy Removal with D-Algorithm: Fault Injection
Redundancy Removal with D-Algorithm: Path Sensitation
Redundancy Removal with D-Algorithm: 1st Propagation
Redundancy Removal with D-Algorithm: 2nd Propagation
Redundancy Removal with D-Algorithm: Untestable
Redundancy Removal with D-Algorithm: Assume Fault
Redundancy Removal with D-Algorithm: Simplified Circuit
Redundancy Removal for SAT

- assume CNF is generated via Tseitin transformation from formula/circuit
 - formula = model constraints + negation of property
 - CNF consists of gate input/output consistency constraints
 - plus additional unit forcing output o of whole formula to be 1

- remove redundancy in formula under assumption $o = 1$

- propagation of D or \overline{D} to o does not make much sense
 - not interested in $o = 0$
 - check simply for unsatisfiability \Rightarrow no need for D, \overline{D} (?)
Variable Instantiation

[AnderssonBjesseCookHanna DAC’02] and Oepir SAT solver

- satisfiability preserving transformation

- motivated by original pure literal rule:
 - if a literal \(l \) does not occur negatively in CNF \(f \)
 - then replace \(l \) by 1 in \(f \) (continue with \(f[l \mapsto 1] \))

- generalization to variable instantiation:
 - if \(f[l \mapsto 0] \rightarrow f[l \mapsto 1] \) is valid
 - then replace \(l \) by 1 in \(f \) (continue with \(f[l \mapsto 1] \))
Why is Variable Instantiation a Generalization of the Pure Literal Rule?

Let \(f \equiv f' \land f_0 \land f_1 \) with

\(f' \quad l \) does not occur

\(f_0 \quad l \) occurs negatively

\(f_1 \quad l \) occurs positively

further assume \((\text{assumption of pure literal rule}) \)

\(f_0 \equiv 1 \)

then

\[f[l \mapsto 0] \iff f' \land f_1[l \mapsto 0] \quad \implies \quad f' \iff f[l \mapsto 1] \]
Variable Instantiation Implementation

We have

\[f[l \mapsto 1] \iff f' \land f_1[l \mapsto 1] \land f_0[l \mapsto 1] \iff f' \land f_0[l \mapsto 1] \iff f' \land \bigwedge_{i=1}^{n} C_i \]

and since \(f[l \mapsto 0] \Rightarrow f' \) we only need show the validity of

\[f[l \mapsto 0] \rightarrow \bigwedge_{i=1}^{n} C_i \]

which is equivalent to the unsatisfiability of

\[f[l \mapsto 0] \land \overline{C_i} \text{ for } i = 1 \ldots n \]

which again is equivalent to the unsatisfiability of

\[f \land \overline{l} \land \overline{C_i} \text{ for } i = 1 \ldots n \]

This can be done directly on the CNF and needs \(n \) unsatisfiability checks.
Variable Instantiation for Tseitin Encodings

\[
\begin{align*}
(a \lor c) & \quad (c \lor \bar{e}) \\
(b \lor c) & \quad (d \lor \bar{e}) \\
(a \lor b \lor \bar{c}) & \quad (\bar{c} \lor \bar{d} \lor e)
\end{align*}
\]

\[
\begin{array}{c}
\text{requires two satisfiability checks while ATPG for } c \text{ s-a-1 needs just one run}
\end{array}
\]
Stålmarck’s Method and Recursive Learning

- originally Stålmarck’s Method works on “sea of triplets” [Stålmarck’89]
 \[x = x_1 \mathrel{@} \ldots \mathrel{@} x_n \] with @ boolean operator
 - equivalence reasoning + structural hashing + \text{test rule}
 - test rule translated to CNF \(f \Rightarrow (BCP(f \land x) \cap BCP(f \land \overline{x})) \)
 add to \(f \) units that are implied by both cases \(x \) and \(\overline{x} \)

- Recursive Learning [KunzPradhan 90ties]
 - originally works on circuit structure
 - idea is to analyze all ways to justify a value, intersection is implied
 - translated to CNF \(f \) which contains clause \((l_1 \lor \ldots \lor l_n) \)
 BCP on all \(l_i \) seperately and add intersection of derived units
Further CNF Simplification Techniques

- failed literals, various forms of equivalence reasoning

- HyperBinaryResolution \[\text{[BacchusWinter]}\]
 - binary clauses obtained through hyper resolution
 - avoid adding full transitive closure of implication chains

- Variable and Clause Elimination
 - via subsumption and clause distribution, and related techniques
 see our SAT’05 paper and talk by Niklas Éen for further references
 - autarkies and blocked clauses \[\text{[Kullman]}\]
Summary Circuit based Simplification vs. CNF simplification

- circuit reasoning/simplification can use structure of circuit
 - graph structure (dominators)
 - notion of direction (forward and backward propagation)
 - partial models (some inputs do not need to be assigned)

- CNF simplification does not rely on circuit structure
 - orthogonal: can for instance remove individual clauses

- adapt ideas from circuit reasoning to SAT
 (e.g. avoid multiple SAT checks for redundancy removal in CNF)
QBF for Hardware Verification and Synthesis

- rectification problems (actually a synthesis problem)
 \[\exists p \forall i [g(i, p) = s(i)] \]
 with parameters \(p \), inputs \(i \), generic circuit \(g \), and specification \(s \)
 QBF solvers only used in [SchollBecker DAC’01] otherwise BDDs

- games, open systems, non-deterministic planning applications?

- model checking
 - termination check as in classical (BDD based) model checking
 (only one alternation)
 - acceleration as in PSPACE completeness for QBF proof
 (at most linear number of alternations in number of state bits \(n \))
Decisions Procedures for Verification using SAT

- specific workshop: Satisfiability modulo Theories (SMT’05)

- examples
 - processor verification [BurchDill CAV’94], [VelevBryant JSC’03]
 - translation validation [PnueliStrichmanSiegel’98]

- **eager** approach: translate into SAT

- **lazy** approach
 - augment SAT solver to handle non-propositional constraints
 - in each branch: SAT part satisfiable, check non-propositional theory
Examples for Using SAT in Software Verification

- [JacksonVaziri ISSTA’00] Alloy
 - bounded model checking of OO modelling language Alloy
 - checks properties of symbolic simulations with bounded heap size

- [KroeningClarkeYorav DAC03] CBMC
 - targets equivalence checking of hardware models
 - bounded model checking of C resp. Verilog programs

- [XieAiken POPL’05] Saturn
 - LINT for lock usage in large C programs (latest Linux kernel)
 - neither sound nor complete, but 179 bugs out of 300 warnings
QBF in Software Verification
[CookKröningSharygina – SMC’05]

- model: asynchronous boolean programs
 - parallel version of those used in SLAM, BLAST or MAGIC

- symbolic representation of set of states
 - related work uses BDDs, [CookKröningSharygina] boolean formulas

- termination check for reachability (partially explicit)
 - trivial with BDDs as symbolic representation
 - QBF decision procedure for boolean formulas \(\iff\) QUANTOR

- SAT/QBF version seems to scale much better than BDDs
Summary

• applications fuel interest in SAT/QBF
 – learn from specific techniques …
 – … and generalize

• SAT/QBF as core technologies for verification
 – simplified setting in SAT (CNF)
 * on one hand restricts what can be done
 * focus on generic techniques
 * efficient implementations