Adaptive Restart Strategies for Conflict Driven SAT Solvers

Armin Biere

Institute for Formal Models and Verification Johannes Kepler University Linz, Austria

Eleventh International Conference on Theory and Applications of Satisfiability Testing

SAT 2008

Guangzhou, P. R. China

Monday, May 12, 2008

Solver	Score	#SAT	#Uns
Rsat 2007-02-08	55452	63	76
picosat 535	51639	72	67
minisat SAT-2007	50398	53	79
TiniSatELite 2007-02-08	49560	55	75
CMUSAT 2007-02-08	41197	46	77
MXC 2007-02-08	38004	47	69
MiraXT v3	37700	52	74
SATzilla CRAFTED	31439	47	67
SAT7 2007-02-08	27607	51	63

Solver	Score	#SAT	#Uns
SATzilla CRAFTED	74469	27	67
minisat SAT-2007	63371	26	72
MXC 2007-02-08	39848	20	57
MiraXT v3	34236	24	54
CMUSAT 2007-02-08	26461	21	45
Rsat 2007-02-08	19532	15	40
picosat 535	19081	22	38

SAT'08 – 12th May 2008 – Guangzhou – P. R. China

(consider only one variable)

feedback / punishment / I in PID: 0 < f < 1

s old score s' new score

 $s' = \begin{cases} s \cdot f + (1 - f) & \text{if variable is involved in current conflict} \\ s \cdot f & \text{if variable is NOT involved} \end{cases}$

MiniSAT, RSAT: $f = 0.95 \approx 1/1.05$ (1 - f) = 0.05PicoSAT: $f = 1/1.1 \approx 0.91$ (1 - f) = 0.09

Armin Biere - FMV - JKU Linz - Austria

Exponential VSIDS (EVSIDS) as in MiniSAT

(consider only one variable)

$$\delta_k = \begin{cases} 1 & \text{if involved in } k \text{-th conflict} \\ 0 & \text{otherwise} \end{cases}$$

$$i_k = (1-f) \cdot \delta_k$$

$$s_{n} = (\dots (i_{1} \cdot f + i_{2}) \cdot f + i_{3}) \cdot f \dots) \cdot f + i_{n} = \sum_{k=1}^{n} i_{k} \cdot f^{n-k} = (1-f) \cdot \sum_{k=1}^{n} \delta_{k} \cdot f^{n-k} \quad (NVSIDS)$$

$$S_{n} = \frac{f^{-n}}{(1-f)} \cdot s_{n} = \frac{f^{-n}}{(1-f)} \cdot (1-f) \cdot \sum_{k=1}^{n} \delta_{k} \cdot f^{n-k} = \sum_{k=1}^{n} \delta_{k} \cdot f^{-k}$$
(EVSIDS)

SAT'08 - 12th May 2008 - Guangzhou - P. R. China

Armin Biere – FMV – JKU Linz – Austria

- phase saving of assigned variables [RSAT]
 - initially pick phase according to number of occurrences
 - afterwards always pick last saved phase for decision variables
 - rapid restarts [TiniSAT] empirically [RSAT, PicoSAT] work nicely with phase saving
- flipped assignment or just flip
 - is a forced assignment (no decision)
 - with different previous saved phase, e.g.
 - * last time x was assigned, it was assigned to 0
 - * because of unit propagation x is now forced to be assigned 1

Average Number Recently Flipped Assignments (ANRFA)

(consider only one variable)

feedback / punishment / I in PID: 0 < g < 1

a old agility a' new agility

PicoSAT: g = 0.9999 = 1 - 1/10000, (1 - g) = 1/10000

- high agility
 - measured in percentage of recent assignments that flipped variables
 - PicoSAT: at least 20% for inner restarts, at least 25% for outer restarts
 - then SAT solver is moving fast
 - with respect to Hamming distance
 - do not restart (actually do not backtrack but follow restart schedule)
- low agility
 - PicoSAT: less than 20% for inner restarts, less than 25% for outer restarts
 - SAT solver is somehow stuck
 - restart as usual

SAT'08 – 12th May 2008 – Guangzhou – P. R. China

time limit 900 seconds, memory limit 1.5 GB

			industrial			crafted		
		adaptive	sat	unsat	solved	sat	unsat	solved
MiniSAT	2.0	no	37	57	94	22	46	68
orig. RSAT	2.0	no	41	51	92	10	20	30
AAS-RSAT		no	45	48	93	11	21	32
AAS-RSAT	25%	yes	44	49	93	11	24	35
AAS-RSAT	30%	yes	48	48	96	12	23	35
PicoSAT	741	no	43	54	97	14	24	38
PicoSAT	741	yes	44	57	101	16	36	52
PicoPrepSAT	143	no	52	58	110	21	38	59
PicoPrepSAT	143	yes	52	64	116	21	49	70

Conclusion

- new metric ANRFA to measure agility / velocity of search
 - reformulated VSIDS as control problem (NVSIDS)
 - applied same "controller" to flipped assignments
 - came up with good magic constants: g = 0.9999 20% 25%
- prohibit restarts if SAT solver is not moving fast enough
 - are there better metrics than ANRFA?
 - does ANRFA capture velocity with respect to Hamming distance good enough?
- sofar failed to extend these ideas to other magic constants
 - average recently used learned clauses can be calculated in the same way
 - goal is to control reduce schedule resp. garbage collection schedule