
Challenges in
Verifying Arithmetic Circuits Using Computer Algebra

Armin Biere
joint work with Daniela Ritirc and Manuel Kauers

SYNASC’17
19th International Symposium on

Symbolic and Numeric Algorithms for
Scientific Computing

Timişoara, Romania
September 28, 2017

Equivalence Checking
ICCAD’93

Verification of Large Synthesized Designs

Daniel Brand

Abstract

G

F

compare low-level optimized
versus high-level golden circuit

reasons:

complex synthesis tool flow

engineering change order
(manual optimizations)

considered first successful
industrial formal method

since mid 90’ties

BDD sweepping

SAT sweeping

combinational & sequential

co-NP versus PSPACE

Binary Multiplication

1 1 1 1 · 1 1 0 1
1 1 0 1

1 1 0 1
1 1 0 1

1 1 0 11 2 2 2 1 0 0

1 1 0 0 0 0 1 1

15 · 13 = 195

Multipliers

HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p11p20p21p30p31

p02p12p22p32

p03p13p23p33

HAFAFAHA

HAFAFAFA

HAFAFAFA

s7 s6 s5 s4 s3 s2 s1 s0

p00p01p10p02p11p20p12p21p30p22p31

p03p13p23p32

p33

Commutativity of Bit-Vector Multiplication
(set-logic QF_BV)
(declare-fun x () (_ BitVec 12))
(declare-fun y () (_ BitVec 12))
(assert (distinct (bvmul x y) (bvmul y x)))
(check-sat)

12 core
1 core 1 core cube-and-conquer 12 core

bits Glucose Lingeling March|iLingeling Treengeling

01 0.00 0.00 0.00 0.01
02 0.00 0.00 0.00 0.01
03 0.00 0.00 0.00 0.01
04 0.00 0.00 0.02 0.03
05 0.00 0.01 0.05 0.13
06 0.02 0.03 0.36 0.31
07 0.14 0.27 0.63 0.72
08 1.18 1.98 1.38 2.47
09 7.85 10.98 2.63 4.65
10 37.16 41.49 5.02 10.86
11 147.62 214.98 15.72 21.96
12 833.62 649.49 56.57 61.48
13 -- -- 238.10 263.44

limit of 900 seconds wall clock time

http://fmv.jku.at/datapath

http://fmv.jku.at/datapath

Related Work

1. Y.-A. Chen and R.E. Bryant. Verification of arithmetic circuits with binary moment
diagrams. In DAC, pages 535–541, 1995.

2. O. Wienand, M. Wedler, D. Stoffel, W. Kunz, and G.-M. Greuel. An algebraic approach
for proving data correctness in arithmetic data paths. In CAV, volume 5123 of LNCS,
pages 473–486. Springer, 2008.

3. C. Yu, W. Brown, D. Liu, A. Rossi, and M. Ciesielski. Formal verification of arithmetic
circuits by function extraction. IEEE TCAD, 35(12):2131–2142, 2016.

4. A.A.R. Sayed-Ahmed, D. Große, U. Kühne, M. Soeken, and R. Drechsler. Formal
verification of integer multipliers by combining Gröbner basis with logic reduction. In
DATE, pages 1048–1053. IEEE, 2016.

5. P. Beame and V. Liew. Towards verifying nonlinear integer arithmetic. In CAV, volume
10427 of LNCS, pages 238–258. Springer, 2017.

6. D. Ritirc, A. Biere, M. Kauers. Column-Wise Verification of Multipliers Using Computer
Algebra. in FMCAD. IEEE, 2017.

Full-Adder and Half-Adder Gate Polynomials

a

b
c

g0

g2

g1

s

o

a

b

s

o

g0 = a ⊕ b
g1 = a ∧ b
g2 = c ∧ g0

s = c ⊕ g0 s = a ⊕ b
o = g1 ∨ g2 o = a ∧ b

−g0 + a+b−2ab
−g1 + ab
−g2 + cg0
−s + c+g0−2cg0 −s + a+b−2ab
−o + g1+g2−g1g2 −o + ab

−2o− s + a+b+ c −2o− s + a+b

Definition 1. Let C be an acyclic circuit with an n-bit multiplier signature, e.g.,

inputs a0, . . . ,an−1,b0, . . . ,bn−1, outputs s0, . . . ,s2n−1, internal gates g1, . . . ,gk

X = a0, . . . ,an−1, b0, . . . ,bn−1, g1, . . . ,gk, s0, . . . ,s2n−1

polynomial p ∈Q[X] is a polynomial circuit constraint (PCC) for C if for all

(a0, . . . ,an−1,b0, . . . ,bn−1) ∈ {0,1}2n

and resulting values g1, . . . ,gk,s0, . . . ,s2n−1 implied by gates of C substitution of these
values into p gives zero.

The set of all PCCs for C is denoted by I(C).

Definition 2. Let G be the set of gate polynomials of C (as in the example) joined with the
set of input field polynomials x(x−1) for inputs x.

Fix a topological order over X , with gate outputs larger than gate inputs. Let J(C) = 〈G〉.

Theorem 1. G is a Gröbner basis.

Theorem 2 (Soundness and Completness). J(C) = I(C).

Multiplier Specification and a First Non-Incremental Algorithm

Definition 3. A circuit C as in Def. 1 is called a multiplier if

2n−1

∑
i=0

2isi−
(n−1

∑
i=0

2iai

)(n−1

∑
i=0

2ibi

)
∈ I(C).

Algorithm 1.

Reduce polynomial in Def. 3 with G, then C is a multiplier iff remainder vanishes.

ring R = 0, (

s(3),

s(2),

Xor_2_2,

And_2_1,

And_2_0,

s(1),

Xor_1_3,

And_1_2,

And_1_1,

And_1_0,

s(0),

And_0_0,

b(1),

b(0),

a(1),

a(0)

), lp;

ideal I0 =

-And_0_0 + a(0) * b(0),

-s(0) + And_0_0

;

ideal I1 =

-And_1_0 + b(0) * a(1),

-And_1_1 + a(0) * b(1),

-And_1_2 + And_1_0 * And_1_1,

-Xor_1_3 + And_1_0 + And_1_1 - 2 * And_1_0 * And_1_1,

-s(1) + Xor_1_3

;

ideal I2 =

-And_2_0 + a(1) * b(1),

-And_2_1 + And_1_2 * And_2_0,

-Xor_2_2 + And_1_2 + And_2_0 - 2 * And_1_2 * And_2_0,

-s(2) + Xor_2_2

;

ideal I3 =

-s(3) + And_2_1

;

ideal F =

-a(0) + a(0)ˆ2, -a(1) + a(1)ˆ2,

-b(0) + b(0)ˆ2, -b(1) + b(1)ˆ2

;

poly spec =

(a(0) + 2*a(1)) * (b(0) + 2*b(1))

-

(s(0) + 2*s(1) + 4*s(2) + 8*s(3))

;

reduce (spec, F + I0 + I1 + I2 + I3);

quit;

$ diff correct.singular incorrect.singular

< -And_2_1 + And_1_2 * And_2_0,

> -And_2_1 + And_1_2 + And_2_0 - And_1_2 + And_2_0,

$ singular correct.singular

SINGULAR

...

0

Auf Wiedersehen.

$ singular incorrect.singular

...

8*b(1)*b(0)*a(1)*a(0) - 8*b(1)*a(1)

...

Implications

1. J(C) is a radical ideal thus no radical membership necessary.

2. We can add the set F of all field polynomials x(x−1) of all variables x.

3. Leading coefficient −1 of all gate polynomials, thus computation stays in Z.

4. Still can use rational coefficients Q (important for Singular).

5. Ideal membership in Q[X] is co-NP hard even if Gröbner basis is given.

6. Completeness proof allows to derive concrete input assignment if C is incorrect.

Rows and Columns

FA

FA

FA

b1 b0a0a1a2 b2

s 0s 1s 2s 3s 4s 5 124832 16

a0

FA FA

a0

FA

a2

a2

a0

FA

a2

FA

a1

0bb0b0

FA

a1 b1 b1b1

b2b2 b2

FA

FA

FA

b1 b0a0a1a2 b2

s 0s 1s 2s 3s 4s 5 124832 16

a0

FA FA

a0

FA

a2

a2

a0

FA

a2

FA

a1

0bb0b0

FA

a1 b1 b1b1

b2b2 b2

0

0

0

0

224 1+ +4 1+))((+

0 0 a1

*

+ + + + +

0

0

0

0

224 1+ +4 1+))((+

0 0 a1

*

+ + + + +

FA

FA

FA

a0

FA FA

a0

FA

a2

a2

a0

FA

a2

FA

a1

0bb0b0

FA

a1 b1 b1b1

b2b2 b2

b1 b0a0a1a2 b2 224 1+ +4 1+))((+ *

I 5

0

0

0

0

0 0 a1

+ + + + + s 0ss 24 2 18 s 316 s 432 s 5

I I

I

1

I

4 3

I 2

1

0

Slices

For each output bit si we determine its input cone

Ii := {gate g | g is in input cone of output si}

We define slices Si as the difference of consecutive cones Ii:

S0 := I0 Si+1 := Ii+1 \
i⋃

j=0
S j

Definition 4 (Sliced Gröbner Bases).

Let Gi be the set of polynomial representations of the gates in slice Si.

Definition 5 (Partial Products). Let Pk = ∑
k= i+ j

aib j.

New Column-Wise Incremental Multiplier Checking Algorithm

Algorithm 2.

input: Circuit C with sliced Gröbner bases Gi
output: Determine whether C is a multiplier

C2n ← 0

for i← 2n−1 to 0

Ci← Remainder (2Ci+1+ si−Pi, Gi∪F)

return C0 = 0

Results

mult n
Mathematica Singular

+inc -inc +inc -inc
col row col row

btor 16 4 12 12 1 2 2
btor 32 35 531 491 16 53 58
btor 64 409 MO MO MO MO MO
btor 128 TO TO TO EE EE EE

sp-ar-rc 16 7 TO TO 1 TO TO
sp-ar-rc 32 67 TO TO 39 TO TO
sp-ar-rc 64 841 MO MO MO MO MO

Optimizations

common rewriting

auto-reduce G by gates with one parent

only if parent is in the same slice

vanishing constraints

add simplifying relations among carry variables

for instance a∧b∧ (a⊕b) = 0

pattern match meta gates

XOR rewriting

full- and half-adder rewriting

shrinking support of “carry polynomials”

merge single parent gates of children in lower slice to that slice

promote non-carry parent gates to slice of childen if children are carries

Open Problems Column-Wise Verification of Multipliers
Using Computer Algebra
Daniela Ritirc Armin Biere Manuel Kauers

Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria
daniela.ritirc@jku.at armin.biere@jku.at manuel.kauers@jku.at

Abstract—Verifying arithmetic circuits, and most prominently
multipliers, is an important problem but in practice still requires
substantial manual effort. Recent work tries to solve this issue
using techniques from computer algebra. The most effective
approach uses polynomial reasoning over pseudo boolean poly-
nomials. In this paper we give a rigorous formalization of this
approach and present a new column-wise verification technique
for the correctness of gate-level multipliers which does not require
the reduction of a full word-level specification. We formally
prove soundness and completeness of our technique, making
use of our precise formalization. Our experiments show that
simple multipliers can be verified efficiently by using off-the-
shelf computer algebra tools, while more complex and optimized
multipliers require more sophisticated techniques. Further, our
paper independently confirms the effectiveness of previous related
work. We make all benchmarks and tools publicly available.

I. INTRODUCTION

Formal verification of arithmetic circuits is motivated by
the necessity to avoid issues like the famous Pentium FDIV
bug, which is reported to have cost Intel almost half a billion
dollar. There have been many attempts since then to verify
such circuits, but even today verifying designs with arithmetic
parts is not considered to be fully automated. For instance,
a common approach is to black-box multipliers and then
verify them separately. This might also require insight into
the multiplier design, which has to be communicated to the
verification tool. Commercial tools can not fully automatically
handle full-sized multipliers [24] or huge multipliers occurring
in cryptographic circuits. In this paper we will focus, as a first
step, on the simplest but also most important arithmetic circuit
verification problem of verifying multipliers.

This lack of automation was a common conclusion in three
plenary talks at the joint FMCAD’15 and SAT’15 conferences
in Austin in 2015, by Anna Slobodova on formal verification
of processors, Aaron Tomb on verifying cryptographic circuits,
and, from the academic side, Priyank Kalla on methods for
data path verification. In order to stimulate research into this
direction, particularly the development of fast SAT solving
techniques for arithmetic circuit verification, we collected a
large set of such benchmarks, generated and submitted CNF
encodings of these problems to the SAT 2016 competition
and made them publicly available [4]. The competition results
confirmed that miters of even small multipliers pose a real
challenge to SAT solvers.

Supported by Austrian Science Fund (FWF), NFN S11408-N23 (RiSE),
Y464-N18, SFB F5004.

The weak performance of SAT solvers on these benchmarks
lead to the conjecture that verifying miters of multipliers and
other ring properties after encoding them into CNF needs
exponential sized resolution proofs [5], which would imply
exponential run-time of CDCL SAT solvers. Surprisingly,
however, this conjecture was recently answered negatively [2].
Such ring properties do admit polynomial resolution proofs.
However, proof search is non-deterministic. Thus this theo-
retical result still needs to be transferred into practical SAT
solving. The complexity bounds on proof size given in [2]
involve polynomials of high degree too.

The first technique which was shown to be able to have
prevented the Pentium bug was based on decision diagrams,
precisely on binary moment diagrams (BMDs) [10] and vari-
ants [11]. While common (gate-level) BDDs are exponential
in size for multipliers [6], BMDs remain linear in the number
of the input bits of a multiplier (using edge weights). However,
the BMD approach is not robust, in the sense that it still
requires structural knowledge of the multipliers to determine
the order in which BMDs are built, which has tremendous
influence on performance. Actually only a row-wise back-
ward substitution approach seems to be feasibly [9], which
in addition assumes a simple carry-save-adder (CSA) design.

Recent algebraically inspired techniques [12], [28] based
on so-called function-extraction also fail for even slightly op-
timized multiplier designs. On the positive side, this technique
is able to handle very large clean multipliers.

In even more recent work [24] substantial progress was
made. The authors use a dedicated polynomial reduction
engine and also gave various optimizations (discussed further
down), which made their algebraic technique scale to large
non-trivial multiplier designs of various architectures [16]
(called AOKI benchmarks in the following) even with and
without Booth reencoding. It is still unclear however, whether
their technique is robust under synthesis or technology map-
ping. Their arguments for soundness and completeness are
rather imprecise. Their tool is not available, nor details about
the experiments. Benchmarks have not been published either.

There is a substantial amount of previous work for arith-
metic circuit verification. We focus on comparing our approach
to the currently most successful techniques for verifying
multipliers, which all are using some form of algebraic rea-
soning [28], [24]. For an up-to-date discussion of related work
and a more comprehensive list see the recent article [28].

more complex multipliers

wallace trees

booth encoding

synthesis

equivalence checking

other arithmetic circuits

modular multipliers

shift, division, . . .

floating point operators

complexity results

proofs

