
What a Difference a Variable Makes

Marijn J.H. Heule and Armin Biere

UT Austin and JKU Linz

TACAS 2018 April 18, 2018

Proofs of Unsatisfiability

Interference-Based Proofs

Conversion Algorithms

Evaluation

Conclusions

2 / 26

Proofs of Unsatisfiability

3 / 26

Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment:

xȳz

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs

4 / 26

Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment: xȳz

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs

4 / 26

Certifying Satisfiability and Unsatisfiability

Certifying satisfiability of a formula is easy:

• Just consider a satisfying assignment: xȳz

(x ∨ y) ∧ (x̄ ∨ ȳ) ∧ (z ∨ z̄)

• We can easily check that the assignment is satisfying:

Just check for every clause if it has a satisfied literal!

Certifying unsatisfiability is not so easy:

• If a formula has n variables, there are 2n possible assignments.

å Checking whether every assignment falsifies the formula is costly.

• More compact certificates of unsatisfiability are desirable.

å Proofs

4 / 26

What Is a Proof in SAT?

A proof is a string that certifies the unsatisfiability of a formula
(in general)

• Proofs are efficiently (usually polynomial-time) checkable...

... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . ,Cm of clauses.

• Every clause is either contained in the formula or derived from
two earlier clauses via the resolution rule:

C ∨ x x̄ ∨ D
C ∨ D

• Cm is the empty clause (containing no literals), denoted by ⊥.

• There exists a resolution proof for every unsatisfiable formula.

5 / 26

What Is a Proof in SAT?

A proof is a string that certifies the unsatisfiability of a formula
(in general)

• Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . ,Cm of clauses.

• Every clause is either contained in the formula or derived from
two earlier clauses via the resolution rule:

C ∨ x x̄ ∨ D
C ∨ D

• Cm is the empty clause (containing no literals), denoted by ⊥.

• There exists a resolution proof for every unsatisfiable formula.

5 / 26

What Is a Proof in SAT?

A proof is a string that certifies the unsatisfiability of a formula
(in general)

• Proofs are efficiently (usually polynomial-time) checkable...
... but can be of exponential size with respect to a formula.

Example: Resolution proofs

• A resolution proof is a sequence C1, . . . ,Cm of clauses.

• Every clause is either contained in the formula or derived from
two earlier clauses via the resolution rule:

C ∨ x x̄ ∨ D
C ∨ D

• Cm is the empty clause (containing no literals), denoted by ⊥.

• There exists a resolution proof for every unsatisfiable formula.

5 / 26

Resolution Proofs

Example: F = (x̄ ∨ ȳ ∨ z) ∧ (z̄) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u)

Resolution proof:
(x̄ ∨ ȳ ∨ z), (z̄), (x̄ ∨ ȳ), (x ∨ ȳ), (ȳ), (ū ∨ y), (ū), (u),⊥

ū ∨ y

x̄ ∨ ȳ ∨ z z̄
x̄ ∨ ȳ x ∨ ȳ

ȳ
ū u

⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.

6 / 26

Resolution Proofs

Example: F = (x̄ ∨ ȳ ∨ z) ∧ (z̄) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u)

Resolution proof:
(x̄ ∨ ȳ ∨ z), (z̄), (x̄ ∨ ȳ), (x ∨ ȳ), (ȳ), (ū ∨ y), (ū), (u),⊥

ū ∨ y

x̄ ∨ ȳ ∨ z z̄
x̄ ∨ ȳ x ∨ ȳ

ȳ
ū u

⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.

6 / 26

Resolution Proofs

Example: F = (x̄ ∨ ȳ ∨ z) ∧ (z̄) ∧ (x ∨ ȳ) ∧ (ū ∨ y) ∧ (u)

Resolution proof:
(x̄ ∨ ȳ ∨ z), (z̄), (x̄ ∨ ȳ), (x ∨ ȳ), (ȳ), (ū ∨ y), (ū), (u),⊥

ū ∨ y

x̄ ∨ ȳ ∨ z z̄
x̄ ∨ ȳ x ∨ ȳ

ȳ
ū u

⊥

Drawbacks of resolution:

• For many seemingly simple formulas, there are only resolution
proofs of exponential size.

• State-of-the-art solving techniques are not succinctly expressible.

6 / 26

Interference-Based Proofs

7 / 26

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

8 / 26

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

8 / 26

Traditional Proofs vs. Interference-Based Proofs

In traditional proof systems, everything that is inferred, is
logically implied by the premises.

C ∨ x x̄ ∨ D (res)
C ∨ D

A A→ B (mp)
B

å Inference rules reason about the presence of facts.

• If certain premises are present, infer the conclusion.

Different approach: Allow not only implied conclusions.

• Require only that the addition of facts preserves satisfiability.

• Reason also about the absence of facts.

å This leads to interference-based proof systems.

8 / 26

Interference-Based Proofs

Formula

≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 26

Interference-Based Proofs

Formula
≡

≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 26

Interference-Based Proofs

Formula
≡ ≡

≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 26

Interference-Based Proofs

Formula
≡ ≡ ≡

≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 26

Interference-Based Proofs

Formula
≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 26

Interference-Based Proofs

Formula
≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 26

Interference-Based Proofs

Formula
≡ ≡ ≡ ≡

⊥

⊥

Proof

Checking whether additions preserve satisfiability should be efficient.

Clauses whose addition preserves satisfiability are called redundant.

å Idea: Allow only the addition of clauses that fulfill an efficiently
checkable redundancy criterion.

9 / 26

DRAT: An Interference-Based Proof System

Popular example of an interference-based proof system: DRAT

DRAT allows the addition of so-called resolution asymmetric
tautologies (RATs) to a formula (whatever that means).

• It can be efficiently checked if a clause is a RAT.

• RATs are not necessarily implied by the formula.

• But RATs are redundant: their addition preserves satisfiability.

• A RAT check involves reasoning about the absence of facts.

I A clause is a RAT w.r.t. a formula if the formula contains no
clause such that . . .

Are there more general types of redundant clauses than RATs?

• Yes! PR (short for Propagation Redundant) clauses.

10 / 26

Bocked Clauses

clauses with x clauses with x̄ other clauses
(without x nor x̄)

... (x̄ ∨ ā)
...

(a ∨ b ∨ c ∨ x) (x̄ ∨ b̄)
...

... (x̄ ∨ c̄)
...

all resolvents of (a ∨ b ∨ c ∨ x) on x are tautological

11 / 26

Resolution Asymmetric Tautological (RAT) Clauses

clauses with x clauses with x̄ other clauses
(without x nor x̄)

... (x̄ ∨ ā) (a ∨ y)

(a ∨ b ∨ x) (x̄ ∨ b̄) (b ∨ z)
... (x̄ ∨ c̄) (c̄ ∨ ȳ ∨ x̄)

all resolvents of (a ∨ b ∨ x) on x are unit implied (written `1)

in particular the resolvent (a ∨ b ∨ c̄)

12 / 26

Propagation Redundant (PR) Clauses

Definition
Let F be a formula, C a non-empty clause, and α the smallest
assignment that falsifies C . Then, C is propagation redundant
(PR) with respect to F if there exists an assignment ω which
satisfies C , such that F |α `1 F |ω.

The clause C “prunes” all assignments that extend α.

The witness ω provides an alternative at least as satisfiable
(partial) assignment as α.

Example

Let F = (x ∨ y) ∧ (x ∨ y) ∧ (x ∨ z), C = (x), and let ω = x z be
an assignment. Then, α = x is the smallest assignment that
falsifies C . Now, consider F |α = (y) and F |ω = (y). Clearly, unit
propagation on F |α ∧ (y) derives a conflict. Thus, F |α `1 F |ω
and C is propagation redundant w.r.t. F . Notice that C is not
RAT w.r.t F as (y) = F |α 6`1 F |αx = (y)(z).

13 / 26

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

All Redundant Clauses

Adding Blocked Clauses allows exponentially smaller proofs

Same applies to adding RAT Clauses

Can PRs result in exponentially smaller proofs (w.r.t. RATs)?

14 / 26

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

Redundant ClausesResolvents

Adding Blocked Clauses allows exponentially smaller proofs

Same applies to adding RAT Clauses

Can PRs result in exponentially smaller proofs (w.r.t. RATs)?

14 / 26

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

Redundant ClausesResolventsBlocked

Adding Blocked Clauses allows exponentially smaller proofs

Same applies to adding RAT Clauses

Can PRs result in exponentially smaller proofs (w.r.t. RATs)?

14 / 26

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

Redundant ClausesResolventsBlockedRATs

Adding Blocked Clauses allows exponentially smaller proofs

Same applies to adding RAT Clauses

Can PRs result in exponentially smaller proofs (w.r.t. RATs)?

14 / 26

Redundant Clauses

Strong proof systems allow addition of many redundant clauses.

Redundant ClausesResolventsBlockedRATsPRs

Adding Blocked Clauses allows exponentially smaller proofs

Same applies to adding RAT Clauses

Can PRs result in exponentially smaller proofs (w.r.t. RATs)?

14 / 26

Stronger Proof Systems: What Are They Good For?

The new proof systems can give short proofs of formulas that are
considered hard.

We have short PR proofs for the well-known pigeon hole
formulas (linear in the size of the input).

• Pigeon hole formulas have only exponential-size resolution proofs.

• If the addition of new variables via definitions is allowed, there are
polynomial-size proofs.

I So-called extended resolution proofs.

Our proofs do not require new variables.

å Search space of possible clauses is finite.

å Makes search for such clauses easier.

15 / 26

Conversion Algorithms

16 / 26

The Plain Algorithm

We present a 5-phase algorithm to convert proofs in PR into DRAT

The algorithm is quite technical and omitted from this talk;

Please check the paper for the details.

The algorithm introduces only a single new Boolean variable

The worst-case blow-up in size is quadratic

This algorithm shows that the proofs systems are equally strong

The tool PR2DRAT implements the algorithm

17 / 26

Optimizations

Focus on refutations

The algorithm weakens many clauses;

To prove unsatisfiability these steps are trivial.

Minimize the witness

The size of the blow-up depends on the witness of a PR clause;

Hence, minimizing the witness reduces the size of DRAT proof.

From quadratic to linear blow-up in practice

Under some conditions, the conversion is linear;

These conditions appeared to occur quite frequently in practice.

18 / 26

Alternative Conversions

Limiting the number of expensive steps

The plain algorithm introduces several expensive (RAT) checks;

All but one can be replaced by multiple basic checks.

Converting DPR proofs into DRAT proofs

The algorithm focusses on conversion of proofs of unsatisfiability;

A modified algorithm converts all derivations can be converted
into DRAT.

Converting PR refutations into RAT refutations

Clause deletion in DRAT is required to use only one new variable;

Conversion into RAT requires introducing many new variables.

19 / 26

Evaluation

20 / 26

Experimental Setup

Benchmark suite of famous hard problems for resolution:

Pigeon hole formulas (holeXX);

Two-pigeons-per-hole formulas (tphXX);

Tseitin formulas by Urquhart (Urq-S5-bX).

Experiment I — Size comparison of DRAT proofs from PR proofs:

Used the smallest known DRAT proofs in the literature;

Compared the plain and optimized conversions.

Experiment II — Validate existing PR proofs using the conversion:

The optimized DRAT proofs were converted to CLRAT proofs;

Which are validated using formally-verified checker ACL2check.

21 / 26

Comparing Size (Clause Additions) of DRAT Proofs

input PR DRAT proofs (#add)
formula #var #cls #add existing plain optimized

hole20 420 4,221 2,870 49,410 94,901 26,547
hole30 930 13,981 9,455 234,195 422,101 89,827
hole40 1,640 32,841 22,140 715,030 1,241,126 213,107
hole50 2,550 63,801 42,925 1,708,915 2,893,476 416,387
tph8 136 5,457 1,156 253,958 86,216 25,204
tph12 300 27,625 3,950 1,966,472 612,108 127,296
tph16 528 87,329 9,416 — 2,490,672 401,004
tph20 820 213,241 18,450 — 7,440,692 976,376
Urq-s5-b1 106 714 620 — 30,235 28,189
Urq-s5-b2 107 742 606 — 34,535 32,574
Urq-s5-b3 121 1,116 692 — 44,117 41,230
Urq-s5-b4 114 888 636 — 40,598 37,978

22 / 26

Certification of PR proofs

hole tph Urquhart

105

106

107

108

109

20 30 40 50 8 12 16 20 1 2 3 4

PR
DRAT

CLRAT

hole tph

0.1

1

101

102

103

20 30 40 50 8 12 16 20

PR2DRAT
DRAT-trim
ACL2check

Proof sizes in bytes (left) and verification time (right).

Verification time of Urquhart instances less than a second.

23 / 26

Conclusions

24 / 26

Conclusions

PR proofs can be converted efficiently into DRAT proofs:

Requires the introduction of only a single new variable;

The size blowup is O(N2), but can be linear in practice;

This shows that strength of these proof systems is equivalent.

We implemented a tool that performs the conversion:

The tool PR2DRAT is open source;

Supports various conversion variants and optimizations;

Produces DRAT proofs that are smaller than existing ones;

Validation of PR proofs with the final step being formally verified.

25 / 26

What a Difference a Variable Makes

Marijn J.H. Heule and Armin Biere

UT Austin and JKU Linz

TACAS 2018 April 18, 2018

	Proofs of Unsatisfiability
	Interference-Based Proofs
	Conversion Algorithms
	Evaluation
	Conclusions

