
Modern SAT Solvers

Part B
Vienna Winter School on Verification

9 February 2012

TU Vienna, Austria

Armin Biere
Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria

http://fmv.jku.at

http://fmv.jku.at

Restarts 2

• for satisfiable instances the solver may get stuck in the unsatisfiable part

– even if the search space contains a large satisfiable part

• often it is a good strategy to abandon the current search and restart

– restart after the number of decisions reached a restart limit

• avoid to run into the same dead end

– by randomization (either on the decision variable or its phase)

– and/or just keep all the learned clauses

• for completeness dynamically increase restart limit

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Inner/Outer Restart Intervals 3

378 restarts in 104408 conflicts

 0

 200

 400

 600

 800

 1000

 1200

 0 50 100 150 200 250 300 350 400

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Inner/Outer Restart Scheduling 4

int inner = 100, outer = 100;

int restarts = 0, conflicts = 0;

for (;;)

{

... // run SAT core loop for ’inner’ conflicts

restarts++;

conflicts += inner;

if (inner >= outer)

{

outer *= 1.1;

inner = 100;

}

else

inner *= 1.1;

}

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Luby’s Restart Intervals 5

70 restarts in 104448 conflicts

 0

 5

 10

 15

 20

 25

 30

 35

 0 10 20 30 40 50 60 70

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Luby Restart Scheduling 6

unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Phase Saving and Rapid Restarts 7

• phase assignment:

– assign decision variable to 0 or 1?

– only thing that matters in satisfiable instances

• “phase saving” as in RSat:

– pick phase of last assignment (if not forced to, do not toggle assignment)

– initially use statically computed phase (typically LIS)

– so can be seen to maintain a global full assignment

• rapid restarts: varying restart interval with bursts of restarts

– not ony theoretically avoids local minima

– works nicely together with phase saving

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Backjumping 8

x

y

xx

y

If y has never been used to derive a conflict, then skip y case.

Immediately jump back to the x case – assuming x was used.

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

General Implication Graph as Hyper-Graph 9

a

a cb

b

c∨∨

reason implied
assignment

original
assignments

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Optimized Implication Graph for Unit Resolution in DP 10

a

b

a cb ∨∨

c

c

implied
assignment

assignments
original

reason associated to

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

CNF for following Examples 11

-3 1 2 0

3 -1 0

3 -2 0

-4 -1 0

-4 -2 0

-3 4 0

3 -4 0

-3 5 6 0

3 -5 0

3 -6 0

4 5 6 0

We use a version of the DIMACS format.

Variables are represented as positive integers.

Integers represent literals.

Subtraction means negation.

A clause is a zero terminated list of integers.

CNF has a good cut made of variables 3 and 4
(but we are going to apply DP with learning to it)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

DP with Learning Run 1 (3 as 1st decision) 12

= 0l

= 0l

= 1l

= 0l

3

(conflict)

empty clause

(conflict)

empty clause

unit clause −3 is generated as learned clause and we backtrackt to

3

−1

−2

3 4
−3 1 2

(no unit clause originally, so no implications)

since −3 has a real unit clause as reason, an empty conflict clause is learned

−3

−6

−5

−4

4 5 6

decision

unit

1st conflict clause

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

DP with Learning Run 2 Fig. 1 (-1, 3 as decision order) 13

= 0l

= 1l

= 2l

3

−1

(conflict)

empty clause

= 1l

decision

−1

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

(using the FIRST clause)

23

4

−4 −2

since FIRST clause was used to derive 2, conflict clause is (1 −3)

backtrack to (smallest level for which conflict clause is a unit clause)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

DP with Learning Run 2 Fig. 2 (-1, 3 as decision order) 14

= 0l

= 1l

(conflict)

empty clause

= 0l

decision

−1

(no unit clause originally, so no implications)

1st conflict clause

3

−1

−3

−4

−5

−6

4 5 6

backtrack to decision level

learned conflict clause is the unit clause 1

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

DP with Learning Run 2 Fig. 3 (-1, 3 as decision order) 15

= 0l

(conflict)

empty clause

3

−1

since the learned clause is the empty clause, conclude unsatisfiability

1

unit

2nd conflict clause

−4

−3

−5

−6

4 5 6

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) 16

= 0l

= 1l

= 2l

(conflict)

empty clause

= 0l

decision

(no unit clause originally, so no implications)

(no implications on this decision level either)

decision

3

3

−6

−6

4

−1

−2
−3 1 2

learn the unit clause −3 and BACKJUMP to decision level

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

DP with Learning Run 3 Fig. 1 (-6, 3 as decision order) 17

= 0l

(conflict)

empty clause

3

−6

−3

−4

−6

−5 4 5 6

finally the empty clause is derived which proves unsatisfiability

unit

1st conflict clause

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Toplevel Loop in DP with Learning 18

int

sat (Solver solver)

{

 Clause conflict;

 for (;;)

 {

 if (bcp_queue_is_empty (solver) && time_to_simplify (solver))

 simplify (solver);

 if (bcp_queue_is_empty (solver)) {

 if (all_variables_assigned (solver)) return SATISFIABLE;

 if (should_restart (solver)) restart ();

 decide (solver);

 }

 conflict = bcp (solver);

 if (conflict && !backtrack (solver, conflict)) return UNSATISFIABLE;

 }

}

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Backtracking in DP with Learning 19

int

backtrack (Solver solver, Clause conflict)

{

 Clause learned_clause; Assignment assignment; int new_level;

 if (decision_level(solver) == 0)

 return 0;

 analyze (solver, conflict);

 learned_clause = add (solver);

 assignment = drive (solver, learned_clause);

 enqueue_bcp_queue (solver, assignment);

 new_level = jump (solver, learned_clause);

 undo (solver, new_level);

 return 1;

}

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Conflict Clauses as Cuts in the Implication Graph 20

decision conflict

−2nlevel

level

level

n

n

−1

a simple cut always exists: set of roots (decisions) contributing to the conflict

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Unique Implication Points (UIP) 21

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

UIP = articulation point in graph decomposition into biconnected components
(simply a node which, if removed, would disconnect two parts of the graph)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Detection of UIPs 22

• can be found by graph traversal in the order of made assignments

• trail respects this order

• traverse reasons of variables on trail starting with conflict

• count “open paths”
(initially size of clause with only false literals)

• if all paths converged at one node, then UIP is found

• decision of current decision level is a UIP and thus a sentinel

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Backjumping and UIPs 23

decision conflict

−2

UIP

nlevel

level

level

n

n

−1

1st UIP learned clause increases chance of backjumping
(“pulls in” as few decision levels as possible)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

More Heuristics for Conflict Clauses Generation 24

• intuitively is is important to localize the search (cf cutwidth heuristics)

• cuts for learned clauses may only include UIPs of current decision level

• on lower decision levels an arbitrary cut can be chosen

• multiple alternatives

– include all the roots contributing to the conflict

– find minimal cut (heuristically)

– cut off at first literal of lower decision level (works best)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Implication Graph 25

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 h = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4 t = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Antecedents / Reasons 26

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f h = 1 @ 2 i = 1 @ 2

= 1 @ 1c

r = 1 @ 4 y = 1 @ 4

= 1 @ 4x z = 1 @ 4 κ

top−level

decision

decision

decision

unit unit

conflict

decision

d

g

s t

= 1 @ 2

= 1 @ 1

= 1 @ 4= 1 @ 4

k = 1 @ 3 = 1 @ 3l

d∧g∧ s → t ≡ (d∨g∨ s∨ t)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Conflicting Clauses 27

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2 i = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

h = 1 @ 2

t = 1 @ 4decision

¬(y∧ z) ≡ (y∨ z)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Resolving Antecedents 1st Time 28

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Resolving Antecedents 1st Time 29

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Resolvents = Cuts = Potential Learned Clauses 30

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4 s = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

top−level

decision

decision

decision

unit unit

= 1 @ 4

= 1 @ 4y

z conflictκ

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4

(h∨ i∨ t ∨ y) (y∨ z)

(h∨ i∨ t ∨ z)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Potential Learned Clause After 1 Resolution 31

d = 1 @ 1 e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f g = 1 @ 2

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4s = 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

y

(h∨ i∨ t ∨ z)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Resolving Antecedents 2nd Time 32

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

= 1 @ 4x

top−level

decision

decision

decision

unit unit

z

decision

h i

t

= 1 @ 2 = 1 @ 2

= 1 @ 4 = 1 @ 4

= 1 @ 4 κ conflict

ys

g

d = 1 @ 1

= 1 @ 2

= 1 @ 4

(d∨g∨ s∨ t) (h∨ i∨ t ∨ z)

(d∨g∨ s∨h∨ i∨ z)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Resolving Antecedents 3rd Time 33

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

z

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

= 1 @ 4 κ conflict

y= 1 @ 4t= 1 @ 4

= 1 @ 2

= 1 @ 1d

g

s

= 1 @ 4x

(x∨ z) (d∨g∨ s∨h∨ i∨ z)

(x∨d∨g∨ s∨h∨ i)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Resolving Antecedents 4th Time 34

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

x = 1 @ 4

= 1 @ 4

= 1 @ 4

t

z

(s∨ x) (x∨d∨g∨ s∨h∨ i)

(d∨g∨ s∨h∨ i)
self subsuming resolution

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

1st UIP Clause after 4 Resolutions 35

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

1st UIP

backjump level

(d∨g∨ s∨h∨ i)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Resolving Antecedents 5th Time 36

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

k = 1 @ 3

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

l = 1 @ 3

= 1 @ 4r

(l∨ r∨ s) (d∨g∨ s∨h∨ i)

(l∨ r∨d∨g∨h∨ i)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Decision Learned Clause 37

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

= 1 @ 1c

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

y

g

d

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

r = 1 @ 4 = 1 @ 4s

l = 1 @ 3= 1 @ 3k
backtrack

level

last UIP

(d∨g∨ l∨ r∨h∨ i)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

1st UIP Clause after 4 Resolutions 38

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

h i= 1 @ 2 = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

(d∨g∨ s∨h∨ i)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Locally Minimizing 1st UIP Clause 39

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision

i = 1 @ 2

= 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

h = 1 @ 2

(h∨ i) (d∨g∨ s∨h∨ i)

(d∨g∨ s∨h)
self subsuming resolution

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Locally Minimized Learned Clause 40

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

(d∨g∨ s∨h)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Local Minimization Algorithm 41

Two step algorithm:

1. mark all variables in 1st UIP clause

2. remove literals with all antecedent literals also marked

Correctness:

• removal of literals in step 2 are self subsuming resolution steps.

• implication graph is acyclic.

Confluence: produces a unique result.

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Minimizing Locally Minimized Learned Clause Further? 42

e = 1 @ 1

b = 1 @ 0a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

Remove ?

h = 1 @ 2

(d∨g∨ s∨6 h)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Recursively Minimizing Learned Clause 43

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
(e∨d∨g∨ s)

(b∨d∨g∨ s)

(d∨g∨ s)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Recursively Minimized Learned Clause 44

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i

unit

= 1 @ 2

= 1 @ 1

= 1 @ 0

h

e

b

(d∨g∨ s)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Recursive Minimization Algorithm 45

[MiniSAT 1.13]

Four step algorithm:

1. mark all variables in 1st UIP clause

2. for each candidate literal: search implication graph

3. start at antecedents of candidate literals

4. if search always terminates at marked literals remove candidate

Correctness and Confluence as in local version!!!

Optimization: terminate early with failure if new decision level is “pulled in”

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

ZChaff Occurrence Stacks 46

start

top

end

−2

start

top

end

2

−2 3 −5

−87

−8

3

−2

−21

1

1

start

top

end

start

top

end

1

−3

Literals

ClausesStack

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Average Number Clauses Visited Per Propagation 47

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Average Learned Clause Length 48

 0

 100

 200

 300

 400

 500

 600

 0 10 20 30 40 50 60 70 80

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Percentage Visited Clauses With Other Watched Literal True 49

 40

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 0 10 20 30 40 50 60 70 80

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Limmat / FunEx Occurrence Stacks 50

start

top

end

−2

−2 3 −5

−87−21

Watcher of B

A

B

Watcher of A

−8

3

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

CompSAT / MiniSAT Occurrence Stacks 51

start

top

end

−2

−2 3 −5

7

−8

3

−2

−2

1

1

−8 1

invariant: first two literals are watched

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Average Number Literals Traversed Per Visited Clause 52

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 3

 3.2

 3.4

 0 10 20 30 40 50 60 70 80

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

MChaff / PicoSAT Occurrence Lists 53

−21

−2 3 −5

7−2

head

−8 1

−2

1

invariant: first two literals are watched

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Occurrence Stacks for Binary Clauses 54

start

top

end

1

−2
−3

−2 1

−3 −2

Additional Binary Clause Watcher Stack

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Caching Potential Satisfied Literals (Blocked Literals) 55

start

top

end

1

−7 2 −7 −1−3

2 3−5

3

watch 2

watch −7

observation: often the other watched literal satisfies the clause

so cache this literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Failed Literal Probing simplifying 56
we are still working on tracking down the origin before [Freeman’95] [LeBerre’01]

• key technique in look-ahead solvers such as Satz, OKSolver, March

– failed literal probing at all search nodes

– used to find the best decision variable and phase

• simple algorithm

1. assume literal l, propagate (BCP), if this results in conflict, add unit clause ¬l

2. continue with all literals l until saturation (nothing changes)

• quadratic to cubic complexity

– BCP linear in the size of the formula 1st linear factor

– each variable needs to be tried 2nd linear factor

– and tried again if some unit has been derived 3rd linear factor

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Extensions simplifying 57

• lifting

– complete case split: literals implied in all cases become units

– similar to Stålmark’s method and Recursive Learning [PradhamKunz’94]

• asymmetric branching

– assume all but one literal of a clause to be false

– if BCP leads to conflict remove originally remaining unassigned literal

– implemented for a long time in MiniSAT but switched off by default

• generalizations:

– vivification [PietteHamadiSais ECAI’08]

– distillation [JinSomenzi’05][HanSomenzi DAC’07] probably most general (+ tries)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Other Types of Learning simplifying 58

• similar to look-ahead heuristics: polynomially bounded search

– may be recursively applied (however, is often too expensive)

• Stålmarck’s Method

– works on triplets (intermediate form of the Tseitin transformation):

x = (a∧b), y = (c∨d), z = (e⊕ f) etc.

– generalization of BCP to (in)equalities between variables

– test rule splits on the two values of a variable

• Recursive Learning (Kunz & Pradhan)

– (originally) works on circuit structure (derives implications)

– splits on different ways to justify a certain variable value

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Stålmarck’s Method simplifying 59

1. BCP over (in)equalities: x = y z = (x⊕ y)
z = 0

x = 0 z = (x∨ y)
z = y

etc.

2. structural rules: x = (a∨b) y = (a∨b)
x = y

etc.

3. test rule:

{x = 0}∪E
⇓

E0∪E

{x = 1}∪E
⇓

E1∪E
(E0∩E1)∪E

Assume x = 0, BCP and derive (in)equalities E0.

Then assume x = 1, BCP and derive (in)equalities E1.

The intersection of E0 and E1 contains the (in)equalities valid in any case.

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Stålmarck’s Method Recursively simplifying 60

x = 0

⇓

x = 1

⇓

y = 0 y = 1 y = 0 y = 1

E00 E01 E10 E11

E0 E1

⇓⇓⇓⇓

E

(we do not show the (in)equalities that do not change)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Stålmarck’s Method Summary simplifying 61

• recursive application

– depth of recursion bounded by number of variables

– complete procedures (determines satisfiability or unsatisfiability)

– for a fixed (constant) recursion depth k polynomial!

• k-saturation:

– apply split rule on recursively up to depth k on all variables

– 0-saturation: apply all rules accept test rule (just BCP: linear)

– 1-saturation: apply test rule (not recursively) for all variables
(until no new (in)equalities can be derived)

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Recursive Learning simplifying 62

• circuits
0

0
output 0 implies middle input 0 indirectly

• CNF

– for each clause c in the CNF

∗ for each literal l in the clause c

· assume l and propagate

· collect set of all implied literals (direct/indirect “implications” of l)

∗ intersect these sets of implied literals over all l in c

∗ literals in the intersection are implied without any assumption

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

(Bounded) Variable Elimination (VE) simplifying 63

[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]

• use DP to existentially quantify out variables as in [DavisPutnam60]

• only remove a variable if this does not add (too many) clauses

– do not count tautological resolvents

– detect units on-the-fly

• schedule removal attempts with a priority queue [Biere SAT’04] [EénBiere SAT’05]

– variables ordered by the number of occurrences

• strengthen and remove subsumed clauses (on-the-fly)
(SATeLite [EénBiere SAT’05] and Quantor [Biere SAT’04])

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Fast (Self) Subsumption simplifying 64

• for each (new or strengthened) clause

– traverse list of clauses of the least occuring literal in the clause

– check whether traversed clauses are subsumed or

– strengthen traversed clauses by self-subsumption [EénBiere SAT’05]

– use Bloom Filters (as in “bit-state hashing”), aka signatures

• check old clauses being subsumed by new clause: backward (self) subsumption

– new clause (self) subsumes existing clause

– new clause smaller or equal in size

• check new clause to be subsumed by existing clauses forward (self) subsumption

– can be made more efficient by one-watcher scheme [Zhang-SAT’05]

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Variable Instantiation simplifying 65

[AnderssonBjesseCookHanna DAC’02] also in Oepir SAT solver, this is our reformulation

• for all iterals l

– for all clauses c in which l occurs (with this particular phase)

∗ assume the negation of all the other literals in c, assume l

∗ if BCP does not lead to a conflict continue with next literal in outer loop

– if all clauses produced a conflict permanently assign ¬l

Correctness: Let c = l∨d, assume ¬d∧ l.

If this leads to a conflict d∨¬l could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, ¬l becomes a pure literal.
Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Autarkies simplifying 66

Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is “touched” by σ if it contains a literal assigned by σ.

A clause of a CNF is “satisfied” by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an “autarky”.

All clauses touched by an autarky can be removed.

Example: (−1 2)(−1 3)(1 −2 −3)(2 5) · · · (more clauses without 1 and 3).

Then σ = {−1,−3} is an autarky.

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Blocked Clause Elimination (BCE) simplifying 67

fix a CNF F

one clause C ∈ F with l all clauses in F with l̄

l̄∨ ā∨ c

a∨b∨ l

l̄∨ b̄∨d

all resolvents of C on l are tautological ⇒ C can be removed

Proof assume assignment σ satisfies F\C but not C

can be extended to a satisfying assignment of F by flipping value of l

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Blocked Clauses [Kullmann’99] simplifying 68

Definition A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause C′ ∈ F
with l̄ ∈ C′, the resolvent (C \ {l})∪ (C′ \ {l̄}) obtained from resolving C and C′ on l is a
tautology.

Definition [Blocked Clause] A clause is blocked if has a literal that blocks it.

Definition [Blocked Literal] A literal is blocked if it blocks a clause.

Example (a∨b)∧ (a∨ b̄∨ c̄)∧ (ā∨ c)

only first clause is not blocked.

second clause contains two blocked literals: a and c̄.

literal c in the last clause is blocked.

after removing either (a∨ b̄∨ c̄) or (ā∨ c), the clause (a∨b) becomes blocked
actually all clauses can be removed
Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Blocked Clauses and Encoding / Preprocessing Techniques simplifying 69

[JärvisaloBiereHeule-TACAS’10]

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Plaisted−Greenbaum encoding

C
ir
c
u
it
−

le
v
e
l
s
im

p
lif

ic
a
ti
o
n

Tseitin encoding

C
N

F
−

le
v
e
l
s
im

p
lif

ic
a
ti
o
n [BCE+VE](PG)

VE(PG) BCE(PG)

PL(PG)

PG(MIR)PG(COI)

PG

PG(NSI) COI MIR NSI

VE

BCE+VE

BCE

PL

TST

Inprocessing: Interleaving Preprocessing and Search simplifying 71

PrecoSAT [Biere’09], Lingeling [Biere’10], now also in CryptoMiniSAT (Mate Soos)

• preprocessing can be extremely beneficial

– most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

– equivalence / XOR reasoning

– probing / failed literal preprocessing / hyper binary resolution

– however, even though polynomial, can not be run until completion

• simple idea to benefit from full preprocessing without penalty

– “preempt” preprocessors after some time

– resume preprocessing between restarts

– limit preprocessing time in relation to search time

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Benefits of Inprocessing simplifying 72

• allows to use costly preprocessors

– without increasing run-time “much” in the worst-case

– still useful for benchmarks where these costly techniques help

– good examples: probing and distillation even VE can be costly

• additional benefit:

– makes units / equivalences learned in search available to preprocessing

– particularly interesting if preprocessing simulates encoding optimizations

• danger of hiding “bad” implementation though . . .

• . . . and hard(er) to debug

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

Other Inprocessing / Preprocessing Techniques simplifying 73

equivalent literal substitution find strongly connected components in binary implication
graph, replace equivalent literals by representatives

boolean ring reasoning extract XORs, then Gaussian elimination etc.

hyper-binary resolution focus on producing binary resolvents

hidden/asymmetric tautology elimination discover redundant clauses through probing

covered clause elimination use covered literals in probing for redundant clauses

unhiding randomized algorithm (one phase linear) for clause removal and strengthening

Modern SAT Solvers (Part b) — Vienna Winter School on Verification — February 2012 — Armin Biere — JKU Linz RiSE

