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What is Practical SAT Solving? 2

simplifying
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inprocessing

reencoding?

search



SAT Competition / Race Winners on SC 2009 Application Benchmarks 3
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Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
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ZChaff, MiniSAT, My Solvers 4
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Formal Methods and Satisfiability (SAT) 5
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SAT as Core Technology 6
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Dress Code of a Summer Shool Speaker 7

• propositional logic:

– variables tie shirt

– negation ¬ (not)

– disjunction ∨ disjunction (or)

– conjunction ∧ conjunction (and)

• three conditions / clauses:

– clearly one should not wear a tie without a shirt ¬tie∨shirt

– not wearing a tie nor a shirt is impolite tie∨shirt

– wearing a tie and a shirt is overkill ¬(tie∧shirt) ≡ ¬tie∨¬shirt

• is the formula (¬tie∨shirt)∧ (tie∨shirt)∧ (¬tie∨¬shirt) satisfiable?



What is SAT? 8

• a class of rather low-level kind of problems:

– propositional variables only, e.g. either hold (true) or not (false)

– logic operators ¬, ∨, ∧, actually restricted to conjunctive normal form (CNF)

– but no quantifiers such as “for all such things”, or “there is one such thing”

– can we find an assignment of the variables to true or false, such that

a set of clauses is satisfied simultaneously

• theory: it is the standard NP complete problem [Cook’70]

• encoding: how to get your problem into CNF

• simplifying: how can the problem or the CNF be simplified (preprocessing)

• solving: how to implement fast solvers



Short SAT Solver History 9

• Davis and Putnam procedure

– DP: elimination procedure [DavisPutnam’60]

– DPLL: splitting [DavisLogemannLoveland’62]

• modern SAT solvers are mostly based on DPLL, actually CDCL
CDCL = Conflict Driven Clause Learning

– learning: GRASP [MarquesSilvaSakallah’96], RelSAT [BayardoSchrag’97]

– watched literals, VSIDS: [mz]Chaff [MoskewiczMadiganZhaoZhangMalik-DAC’01]

– improved heuristics: MiniSAT [EénSörensson-SAT’03] actually version from 2005

• preprocessing is still a hot topic:

– most practical solvers use SatELite style preprocessing [EénBiere’05] DP

– Inprocessing in PrecoSAT, Lingeling, CryptoMiniSAT, . . . [JärvisaloHeuleBiere’12]



What is Satisfiability Modulo Theory (SMT)? 10

• satisfiability solving for first order formulae

– extension of SAT but interpreted over fixed theories

– originally without quantifiers but quantifiers are important

– fully automatic decision procedures which also can provide models

• theories of interest

– equality, uninterpreted functions

– real / integer arithmetic

– bit-vectors, arrays

• particularly important are bit-vectors with and without arrays for HW/SW verification

– our SMT solver Boolector ranked #1 in these categories (SMT 2008/2009/2012)



Applications of SAT and SMT 11

• bounded model checking in electronic design automation (EDA)

– routinely used for falsification in all major design houses

– unbounded extensions also use SAT, e.g. sequential equivalence checking

• SAT as working horse in static software verification

• static device driver verification at Microsoft (SLAM, SDV)

– predicate abstraction with SMT solvers

– spurious counter example checking

• software configuration, e.g. Eclipse IDE ships with SAT4J MaxSAT

• cryptanalysis and other combinatorial problems (bio-informatics)



What are Quantified Boolean Formulas (QBF)? 12

• QBF can be seen as extension to SAT:

– existentially quantified variables as in SAT

– but some variables can be universally quantified

• QBF is the the classical PSPACE complete problem

– as SAT is the NP-complete problem

– two other important PSPACE complete problems:

∗ (Propositional) Linear Temporal Logic (LTL) satisfiability

∗ symbolic model checking / symbolic reachability

∀tie[∃shirt[
tie6=shirt︷ ︸︸ ︷

(tie∨shirt)∧ (¬tie∨¬shirt)]] 6≡ ∃tie[∀shirt[
tie 6=shirt︷ ︸︸ ︷

(tie∨shirt)∧ (¬tie∨¬shirt)]]
satisfiable unsatisfiable



QBF Semantics and State-of-the-Art 13

• semantics given as expansion of quantifiers

∃x[ f ] ≡ f [0/x]∨ f [1/x] ∀x[ f ] ≡ f [0/x]∧ f [1/x]

• expansion as translation from SAT to QBF is exponential

– SAT problems have only existential quantifiers

– expansion of universal quantifier can double formula size

• large number of different approaches to solve QBF versus “mono-culture” in SAT

– scalability for practically interesting problem still an issue

– nevertheless first real applications appear, e.g. black-box equivalence checking

– steady progress: currently fastest solvers DepQBF and Qube



Tic-Tac-Toe encoding 14
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No Winning Strategy for Tic-Tac-Toe encoding 15

6|= ∀s0[empty(s0)→

∃x1[circle(s0,x1,s1)∧ xi,yi plays (4 bits each)

∀y2[cross(s1,y2,s2)→

∃x3[circle(s2,x3,s3)∧

∀y4[cross(s3,y4,s4)→

∃x5[circle(s4,x5,s5)∧

∀y6[cross(s5,y6,s6)→

si configurations ∃x7[circle(s6,x7,s7)∧

(9×3 bits each) ∀y8[cross(s7,y8,s8)→

∃x9[circle(s8,x9,s9)∧wincircle(s9)]]]]]]]]]



Example: Equivalence Checking If-then-else Chains encoding 16

original code optimized code

if(!a && !b) h(); if(a) f();
else if(!a) g(); else if(b) g();
else f(); else h();

⇓ ⇑

if(!a) { if(a) f();
if(!b) h(); ⇒ else {
else g(); if(!b) h();
} else f(); else g(); }

How to check that these two versions are equivalent?



SAT Example cont. encoding 17

1. represent procedures as independent boolean variables

original := optimized :=

if ¬a∧¬b then h if a then f
else if ¬a then g else if b then g
else f else h

2. compile if-then-else chains into boolean formulae

compile(if x then y else z) ≡ (x∧ y) ∨ (¬x∧ z)

3. check equivalence of boolean formulae

compile(original) ⇔ compile(optimized)



Compilation encoding 18

original ≡ if ¬a∧¬b then h else if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ if ¬a then g else f

≡ (¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f )

optimized ≡ if a then f else if b then g else h

≡ a∧ f ∨ ¬a∧ if b then g else h

≡ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)

(¬a∧¬b)∧h ∨ ¬(¬a∧¬b)∧ (¬a∧g ∨ a∧ f ) ⇔ a∧ f ∨ ¬a∧ (b∧g ∨ ¬b∧h)



How to Check (In)Equivalence? encoding 19

Reformulate it as a satisfiability (SAT) problem:

Is there an assignment to a,b, f ,g,h,
which results in different evaluations of original and optimized?

or equivalently:

Is the boolean formula compile(original) 6↔ compile(optimized) satisfiable?

such an assignment would provide an easy to understand counterexample



SAT Example: Circuit Equivalence Checking encoding 20

c

a

b

c

a

b

b ∨ a∧ c (a∨b) ∧ (b∨ c)

equivalent?

b ∨ a∧ c ⇔ (a∨b) ∧ (b∨ c)



Conjunctive Normal Form encoding 21

Definition formula in Conjunctive Normal Form (CNF) is a conjunction of clauses

C1∧C2∧ . . .∧Cn

each clause C is a disjunction of literals

C = L1∨ . . .∨Lm

and each literal is either a plain variable x or a negated variable x.

Example (a∨b∨ c)∧ (a∨b)∧ (a∨ c)

Note 1: two notions for negation: in x and ¬ as in ¬x for denoting negation.

Note 2: original SAT problem is actually formulated for CNF

Note 3: solvers (mostly) expect CNF as input



DIMACS Format Example 1 encoding 22

• common ASCII file format of SAT solvers, used by SAT competitions

• variables are represented as natural numbers, literals as integers

• header “p cnf <vars> <clauses>”, comment lines start with “c”

In order to show the validity of b ∨ a∧ c ⇐ (a∨b) ∧ (b∨ c)

negate, (b ∨ a∧ c) ∧ (a∨b) ∧ (b∨ c)

simplify and show unsatisfiability of ¬b∧ (¬a∨¬c) ∧ (a∨b) ∧ (b∨ c)

c the first two lines are comments
c ex1.cnf: a=1, b=2, c=3
p cnf 3 4
-2 0
-1 -3 0
1 2 0
2 3 0



PicoSAT API for Constructing CNFs Example 1 PicoSAT API 23

// compile with: gcc -o ex1 ex1.c picosat.o
#include "picosat.h"
#include <stdio.h>
int main () {

int res;
picosat_init ();

picosat_add (-2); picosat_add (0);
picosat_add (-1); picosat_add (-3); picosat_add (0);
picosat_add (1); picosat_add (2); picosat_add (0);
picosat_add (2); picosat_add (3); picosat_add (0);

res = picosat_sat (-1);

if (res == 10) printf ("s SATISFIABLE\n");
else if (res == 20) printf ("s UNSATISFIABLE\n");
else printf ("s UNKNOWN\n");

picosat_reset ();
return res;

}



Satisfying Assignments Example 2 Encoding 24

assume invalid equivalence resp. implication: (a∨b) ⇒ (a xor b)

its negation (a∨b) ∧ (a = b)

as CNF (a∨b) ∧ (¬a∨b)∧ (¬b∨a)

c ex2.cnf: a=1,b=2
p cnf 2 3
1 2 0
-1 2 0
-2 1 0

SAT solver then allows to extract one satisfying assignment:

$ picosat ex2.cnf
s SATISFIABLE
v 1 2 0

this is the only one since “assuming” the opposite values individually is UNSAT

$ picosat ex2.cnf -a -1; picosat ex2.cnf -a -2
s UNSATISFIABLE
s UNSATISFIABLE



Example of Tseitin Transformation: Circuit to CNF Encoding
[Tseitin’68]

25

CNF

c
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w
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w

u
o

x

y

o ∧
(x ↔ a∧ c) ∧
(y ↔ b∨ x) ∧
(u ↔ a∨b) ∧
(v ↔ b∨ c) ∧
(w↔ u∧ v) ∧
(o ↔ y⊕w)

o∧ (x→ a)∧ (x→ c)∧ (x← a∧ c)∧ . . .

o∧ (x∨a)∧ (x∨ c)∧ (x∨a∨ c)∧ . . .



Algorithmic Description of Tseitin Transformation Encoding
[Tseitin’68]

26

1. generate a new variable xs for each non input circuit signal s

2. for each gate produce complete input / output constraints as clauses

3. collect all constraints in a big conjunction

the transformation is satisfiability equivalent :

the result is satisfiable iff and only the original formula is satisfiable

not equivalent to the original formula: it has new variables

just project satisfying assignment onto the original variables



Tseitin Transformation: Input / Output Constraints Encoding 27

Negation: x↔ y ⇔ (x→ y)∧ (y→ x)
⇔ (x∨ y)∧ (y∨ x)

Disjunction: x↔ (y∨ z) ⇔ (y→ x)∧ (z→ x)∧ (x→ (y∨ z))
⇔ (y∨ x)∧ (z∨ x)∧ (x∨ y∨ z)

Conjunction: x↔ (y∧ z) ⇔ (x→ y)∧ (x→ z)∧ ((y∧ z)→ x)
⇔ (x∨ y)∧ (x∨ z)∧ ((y∧ z)∨ x)
⇔ (x∨ y)∧ (x∨ z)∧ (y∨ z∨ x)

Equivalence: x↔ (y↔ z) ⇔ (x→ (y↔ z))∧ ((y↔ z)→ x)
⇔ (x→ ((y→ z)∧ (z→ y))∧ ((y↔ z)→ x)
⇔ (x→ (y→ z))∧ (x→ (z→ y))∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y↔ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (((y∧ z)∨ (y∧ z))→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ ((y∧ z)→ x)∧ ((y∧ z)→ x)
⇔ (x∨ y∨ z)∧ (x∨ z∨ y)∧ (y∨ z∨ x)∧ (y∨ z∨ x)



Optimizations for Tseitin Transformation Encoding 28

• goal is smaller CNF less variables, less clauses, so easier to solve (?!)

• extract multi argument operands to remove variables for intermediate nodes

• half of AND, OR node constraints/clauses can be removed for unnegated nodes
[PlaistedGreenbaum’86]

– node occurs negated if it has an ancestor which is a negation

– half of the constraints determine parent assignment from child assignment

– those are unnecessary if node is not used negated

– those have to be carefully applied to DAG structure

• further structural circuit optimizations . . .



CNF Blocked Clause Elimination simulates many encoding / circuit optimizations
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Intermediate Representations Encoding 30

• encoding directly into CNF is hard, so we use intermediate levels:

1. application level

2. bit-precise semantics world-level operations: bit-vector theory

3. bit-level representations such as AIGs or vectors of AIGs

4. CNF

• encoding application level formulas into word-level: as generating machine code

• word-level to bit-level: bit-blasting similar to hardware synthesis

• encoding “logical” constraints is another story



Bit-Blasting of 4-Bit Addition Encoding 31

addition of 4-bit numbers x,y with result s also 4-bit: s = x+ y

[s3,s2,s1,s0]4 = [x3,x2,x1,x0]4+[y3,y2,y1,y0]4

[s3, · ]2 = FullAdder(x3,y3,c2)

[s2,c2]2 = FullAdder(x2,y2,c1)

[s1,c1]2 = FullAdder(x1,y1,c0)

[s0,c0]2 = FullAdder(x0,y0, false)

where

[ s , o ]2 = FullAdder(x,y, i) with

s = x xor y xor i

o = (x∧ y)∨ (x∧ i)∨ (y∧ i) = ((x+ y+ i)≥ 2)



And-Inverter-Graphs (AIG) Encoding 32

• widely adopted bit-level intermediate representation

– see for instance our AIGER format http://fmv.jku.at/aiger

– used in Hardware Model Checking Competition (HWMCC)

– also used in the structural track in SAT competitions

– many companies use similar techniques

• basic logical operators: conjunction and negation

• DAGs: nodes are conjunctions, negation/sign as edge attribute
bit stuffing: signs are compactly stored as LSB in pointer

• automatic sharing of isomorphic graphs, constant time (peep hole) simplifications

• or even SAT sweeping, full reduction, etc . . . see ABC system from Berkeley

http://fmv.jku.at/aiger


XOR as AIG Encoding 33

yx

negation/sign are edge attributes
not part of node

x xor y ≡ (x∧ y)∨ (x∧ y) ≡ (x∧ y)∧ (x∧ y)



Bit-Stuffing Techniques for AIGs in C Encoding 34

typedef struct AIG AIG;

struct AIG

{

  enum Tag tag;                 /* AND, VAR */

  void *data[2];

  int mark, level;              /* traversal */

  AIG *next;                    /* hash collision chain */

};

#define sign_aig(aig) (1 & (unsigned) aig)

#define not_aig(aig) ((AIG*)(1 ^ (unsigned) aig))

#define strip_aig(aig) ((AIG*)(~1 & (unsigned) aig))

#define false_aig ((AIG*) 0)

#define true_aig ((AIG*) 1)

assumption for correctness:
sizeof(unsigned) == sizeof(void*)
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Encoding Logical Constraints Encoding 38

• Tseitin’s construction suitable for most kinds of “model constraints”

– assuming simple operational semantics: encode an interpreter

– small domains: one-hot encoding large domains: binary encoding

• harder to encode properties or additional constraints

– temporal logic / fix-points

– environment constraints

• example for fix-points / recursive equations: x = (a∨ y), y = (b∨ x)

– has unique least fix-point x = y = (a∨b)

– and unique largest fix-point x = y = true but unfortunately

– only largest fix-point can be (directly) encoded in SAT otherwise need ASP



Example of Logical Constraints: Cardinality Constraints Encoding 39

• given a set of literals {l1, . . . ln}

– constraint the number of literals assigned to true

– |{l1, . . . , ln}| ≥ k or |{l1, . . . , ln}| ≤ k or |{l1, . . . , ln}|= k

• multiple encodings of cardinality constraints

– naı̈ve encoding exponential: at-most-two quadratic, at-most-three cubic, etc.

– quadratic O(k ·n) encoding goes back to Shannon

– linear O(n) parallel counter encoding [Sinz’05]

– for an O(n · logn) encoding see Prestwich’s chapter in our Handbook of SAT

• generalization Pseudo-Boolean constraints (PB), e.g. 2 ·a+b+ c+d +2 · e ≥ 3
actually used to handle MaxSAT in SAT4J for configuration in Eclipse



BDD based Encoding of Cardinality Constraints Encoding 40
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Example 2 with PicoSAT API PicoSAT API 41

// compile with: gcc -o ex2 ex2.c picosat.o

#include "picosat.h"

#include <stdio.h>

#include <assert.h>

int main () {

int res, a, b;

picosat_init ();

picosat_add (1); picosat_add (2); picosat_add (0);

picosat_add (-1); picosat_add (2); picosat_add (0);

picosat_add (-2); picosat_add (1); picosat_add (0);

assert (picosat_sat (-1) == 10); // SATISFIABLE

a = picosat_deref (1); b = picosat_deref (2);

printf ("v %d %d\n", a*1, b*2);

picosat_assume (-a*1); assert (picosat_sat (-1) == 20);//UNSAT

picosat_assume (-b*2); assert (picosat_sat (-1) == 20);//UNSAT

return res;

}



Adding a Blocking Clause to Block Current Solution PicoSAT API 42

static void block_current_solution (void) {

int max_idx = picosat_variables (), i;

// since ’picosat_add’ resets solutions

// need to store it first:

signed char * sol = malloc (max_idx + 1);

memset (sol, 0, max_idx + 1);

for (i = 1; i <= max_idx; i++)

sol[i] = (picosat_deref (i) > 0) ? 1 : -1;

for (i = 1; i <= max_idx; i++)

picosat_add ((sol[i] < 0) ? i : -i);

picosat_add (0);

free (sol);

}



Simplified PicoSAT API PicoSAT API 43

RESET

SAT UNSAT

picosat_reset

READY

picosat_deref picosat_failed_assumption

picosat_sat

picosat_add

picosat_assume

picosat_init

picosat_assume

picosat_add

picosat_set... picosat_inconsistent picosat_deref_toplevel



Failed Assumptions PicoSAT API 44

• two ways to implement incremental SAT solvers

– push / pop as in SMT solvers partial support in SATIRE, zChaff, PicoSAT

∗ clauses associated with context and pushed / popped in a stack like manner

∗ pop discards clauses of current context

– most common: assumptions [ClaessenSörensson’03] [EénSörensson’03]

∗ allows to use set of literals as assumptions

∗ force SAT solver to first pick assumption as decisions

∗ more flexible, since assumptions can be reused

∗ assumptions are only valid for the next SAT call

• failed assumptions: sub set of assumptions inconsistent with CNF



Example: Bit-Vector Under-Approximation PicoSAT API 45

• goal: reduce size of bit-vector constants in satisfying assignments

• refinement approach: for each bit-vector variable only use an “effective width”

– example: 4-bit vector [x3,x2,x1,x0] and effective width 2 use [x1,x1,x1,x0]

– either encode from scratch with x3 and x2 replaced by x1 (1)

– or add x3 = x1 and x2 = x1 after push (2)

– or add a2
x→ x3 = x1 and a2

x→ x2 = x1 and assume fresh literal a2
x (3)

• if satisfiable then a solution with small constants has been found

otherwise increase eff. width of bit-vectors where it was used to derive UNSAT

under-approximations not used then formula UNSAT “used” = “failed assumption”

• in (3) constraints are removed by forcing assumptions to the opposite value
by adding a unit clause, e.g. ¬a2

x in next iteration



Boolector: Lemmas-on-Demand + Underapproximation PicoSAT API
[BrummayerBiere’09]

46

Add lemma

SAT?

Formula is unsatisfiable

NO YES

Add under−approx. clauses C

Refine under−approx.

C used?

NO

Encode to CNF

YES

spurious?

Call SAT solver

Array formula

Formula is satisfiable

Call SAT solver

Refine over−approx.

NO

YES

Over−approximate



Clausal Cores PicoSAT API 47

• clausal core (or unsatisfiable sub set) of an unsatisfiable formula

– clauses used to derive the empty clause

– may include not only original but also learned clauses

– similar application as in previous under-approximation example

– but also useful for diagnosis of inconsistencies

• variable core

– sub set of variables occurring in clauses of a clausal core

• these cores are not unique and not necessary minimimal

• minimimal unsatisfiable sub set (MUS) = clausal core where no clause can be removed



PicoMUS PicoSAT API 48

• PicoMUS is a MUS extractor based on PicoSAT

– uses several rounds of clausal core extraction for preprocessing

– then switches to assumption based core minimization using

picosat failed assumptions

– source code serves as a good example on how to use cores / assumptions

• new MUS track in SAT 2011 competition

– with high- and low-level MUS sub tracks



Examples for Core and MUS Extraction PicoSAT API 49

c ex3.cnf $ picosat ex3.cnf -c core

p cnf 6 10 s UNSATISFIABLE

1 2 3 0 $ cat core

1 2 -3 0 p cnf 6 9

1 -2 3 0 2 3 1 0 c ex4.cnf $ picomus ex4.cnf mus

1 -2 -3 0 2 -3 1 0 p cnf 6 11 s UNSATISFIABLE

4 5 6 0 -2 3 1 0 1 2 3 0 $ cat mus

4 5 -6 0 -2 -3 1 0 1 2 -3 0 p cnf 6 6

4 -5 6 0 6 5 4 0 1 -2 3 0 1 2 3 0

4 -5 -6 0 5 -6 4 0 1 -2 -3 0 1 2 -3 0

-1 -4 0 6 4 -5 0 4 5 6 0 1 -2 3 0

1 4 0 4 -6 -5 0 4 5 -6 0 1 -2 -3 0

-1 -4 0 4 -5 6 0 -1 4 0

4 -5 -6 0 -1 -4 0

-1 -4 0

-1 4 0

-1 -4 0



Proof-Traces and TraceCheck PicoSAT API 50

• core extraction in PicoSAT is based on tracing proofs

– enabled by picosat enable trace generation

– maintains “dependency graph” of learned clauses

– kept in memory, so fast core generation

• traces can also written to disk in various formats

– RUP format by Allen Van Gelder (SAT competition)

– or format of TraceCheck tool

• TraceCheck can check traces for correctness

– orders clauses and antecedents to generate and check resolution proof

– (binary) resolution proofs can be dumped



QDIMACS Example PicoSAT API 51

same as DIMACS except that we have additional quantifiers:

c SAT c UNSAT

p cnf 3 4 p cnf 4 8

a 1 0 a 1 2 0

e 2 3 0 e 3 4 0

-1 -2 3 0 -1 -3 4 0

-1 2 -3 0 -1 3 -4 0

1 2 3 0 1 3 4 0

1 -2 -3 0 1 -3 -4 0

-2 -3 4 0

-2 3 -4 0

2 3 4 0

2 -3 -4 0



DepQBF API 52

/* Create and initialize solver instance. */
QDPLL *qdpll_create (void);

/* Delete and release all memory of solver instance. */
void qdpll_delete (QDPLL * qdpll);

/* Ensure var table size to be at least ’num’. */
void qdpll_adjust_vars (QDPLL * qdpll, VarID num);

/* Open a new scope, where variables can be added by ’qdpll_add’.
Returns nesting of new scope.
Opened scope can be closed by adding ’0’ via ’qdpll_add’.
NOTE: will fail if there is an opened scope already.

*/
unsigned int qdpll_new_scope (QDPLL * qdpll, QDPLLQuantifierType qtype);

/* Add variables or literals to clause or opened scope.
If scope is opened, then ’id’ is interpreted as a variable ID,
otherwise ’id’ is interpreted as a literal.
NOTE: will fail if a scope is opened and ’id’ is negative.

*/
void qdpll_add (QDPLL * qdpll, LitID id);

/* Decide formula. */
QDPLLResult qdpll_sat (QDPLL * qdpll);



DP / DPLL search 53

• dates back to the 50’ies:

1st version DP is resolution based ⇒ SatELite preprocessor [EénBiere05]

2st version D(P)LL splits space for time ⇒ CDCL

• ideas:

– 1st version: eliminate the two cases of assigning a variable in space or

– 2nd version: case analysis in time, e.g. try x = 0,1 in turn and recurse

• most successful SAT solvers are based on variant (CDCL) of the second version

works for very large instances

• recent (≤ 15 years) optimizations:

backjumping, learning, UIPs, dynamic splitting heuristics, fast data structures

(we will have a look at each of them)



DP Procedure search
[DavisPutnam’61]

54

forever

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x

add all resolvents on x

remove all clauses with x and ¬x

⇒ SatELite preprocessor [EénBiere05]



D(P)LL Procedure search
[DavisLogemannLoveland’62]

55

DPLL(F)

F := BCP(F) boolean constraint propagation

if F => return satisfiable

if ⊥ ∈ F return unsatisfiable

pick remaining variable x and literal l ∈ {x,¬x}

if DPLL(F ∧{l}) returns satisfiable return satisfiable

return DPLL(F ∧{¬l})

⇒ CDCL



DPLL Example search
[DavisLogemannLoveland’62]
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Simple Data Structures in DPLL Implementation search
[DavisLogemannLoveland’62]
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BCP Example search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Example cont. search
[DavisLogemannLoveland’62]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Conflict Driven Clause Learning (CDCL) search
Grasp [MarquesSilvaSakallah’96]
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Decision Heuristics search 69

• static heuristics:

– one linear order determined before solver is started

– usually quite fast to compute, since only calculated once

– and thus can also use more expensive algorithms

• dynamic heuristics

– typically calculated from number of occurences of literals
(in unsatisfied clauses)

– could be rather expensive, since it requires traversal of all clauses
(or more expensive updates in BCP)

– effective second order dynamic heuristics (e.g. VSIDS in Chaff)



Other popular Decision Heuristics search 70

• Dynamic Largest Individual Sum (DLIS)

– fastest dynamic first order heuristic (e.g. GRASP solver)

– choose literal (variable + phase) which occurs most often (ignore satisfied clauses)

– requires explicit traversal of CNF (or more expensive BCP)

• look-ahead heuristics (e.g. SATZ or MARCH solver) failed literals, probing

– trial assignments and BCP for all/some unassigned variables (both phases)

– if BCP leads to conflict, enforce toggled assignment of current trial decision

– optionally learn binary clauses and perform equivalent literal substitution

– decision: most balanced w.r.t. prop. assignments / sat. clauses / reduced clauses

– related to our recent Cube & Conquer paper [HeuleKullmanWieringaBiere’11]



Exponential VSIDS (EVSIDS) search 71

Chaff [MoskewiczMadiganZhaoZhangMalik’01]

• increment score of involved variables by 1

• decay score of all variables every 256’th conflict by halfing the score

• sort priority queue after decay and not at every conflict

MiniSAT uses EVSIDS [EénSörensson’03/’06]

• update score of involved variables as actually LIS would also do

• dynamically adjust increment: δ′ = δ · 1f δ typically increment by 5%−11%

• use floating point representation of score

• “rescore” to avoid overflow in regular intervals

• EVSIDS linearly related to NVSIDS



Normalized VSIDS: NVSIDS search 72

• VSIDS score can be normalized to the interval [0,1] as follows:

– pick a decay factor f per conflict: typically f = 0.9

– each variable is punished by this decay factor at every conflict

– if a variable is involved in conflict, add 1− f to score

– s old score of one fixed variable before conflict, s′ new score after conflict

s, f ≤ 1, then s′ ≤
decay in any case︷ ︸︸ ︷

s · f +1− f︸ ︷︷ ︸
increment if involved

≤ f +1− f = 1

• recomputing score of all variables at each conflict is costly

– linear in the number of variables, e.g. millions

– particularly, because number of involved variabels << number of variables



Relating EVSIDS and NVSIDS search 73

consider again only one variable with score sequence sn resp. Sn

δk =

{
1 if involved in k-th conflict

0 otherwise

ik = (1− f ) ·δk

sn = (. . .(i1 · f + i2) · f + i3) · f · · ·) · f + in =
n

∑
k=1

ik · f n−k = (1− f ) ·
n

∑
k=1

δk · f n−k (NVSIDS)

Sn =
f−n

(1− f )
· sn =

f−n

(1− f )
· (1− f ) ·

n

∑
k=1

δk · f n−k =
n

∑
k=1

δk · f−k (EVSIDS)



BerkMin’s Dynamic Second Order Heuristics search 74

[GoldbergNovikov-DATE’02]

• observation:

– recently added conflict clauses contain all the good variables of VSIDS

– the order of those clauses is not used in VSIDS

• basic idea:

– simply try to satisfy recently learned clauses first

– use VSIDS to choose the decision variable for one clause

– if all learned clauses are satisfied use other heuristics

• mixed results as other variants VMTF, CMTF (var/clause move to front)



Restarts search 75

• for satisfiable instances the solver may get stuck in the unsatisfiable part

– even if the search space contains a large satisfiable part

• often it is a good strategy to abandon the current search and restart

– restart after the number of decisions reached a restart limit

• avoid to run into the same dead end

– by randomization (either on the decision variable or its phase)

– and/or just keep all the learned clauses

• for completeness dynamically increase restart limit



Luby’s Restart Intervals search 76

70 restarts in 104448 conflicts
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Luby Restart Scheduling search 77

unsigned

luby (unsigned i)

{

unsigned k;

for (k = 1; k < 32; k++)

if (i == (1 << k) - 1)

return 1 << (k - 1);

for (k = 1;; k++)

if ((1 << (k - 1)) <= i && i < (1 << k) - 1)

return luby (i - (1 << (k-1)) + 1);

}

limit = 512 * luby (++restarts);

... // run SAT core loop for ’limit’ conflicts



Reluctant Doubling Sequence search 78

[Knuth’12]

(u1,v1) := (1,1)

(un+1,vn+1) := (un &−un = vn ? (un+1,1) : (un,2vn))

(1,1), (2,1), (2,2), (3,1), (4,1), (4,2), (4,4), (5,1), . . .



Phase Saving and Rapid Restarts search 79

• phase assignment / direction heuristics:

– assign decision variable to 0 or 1?

– only thing that matters in satisfiable instances

• “phase saving” as in RSat:

– pick phase of last assignment (if not forced to, do not toggle assignment)

– initially use statically computed phase (typically LIS)

– so can be seen to maintain a global full assignment

• rapid restarts: varying restart interval with bursts of restarts

– not ony theoretically avoids local minima

– empirically works nice together with phase saving



Reusing the Trail search 80

[Van Der Tak, Heule, Ramos POS’11]

• in general restarting does not much change much: since phases and scores saved

• assignment after restart can only differ if

– before restarting

– there is a decision literal d assigned on the trail

– with smaller score than the next decision n on the priority queue

• in this situation backtrack only to decision level of d

– simple to compute, particularly if decisions are saved separately

– allows to skip many redundant backtracks

– allows much higer restart frequency,
e.g. base interval 10 for reluctant doubling sequence (Luby)



Reducing Learned Clauses search 81

• keeping all learned clauses slows down BCP kind of quadratically

– so SATO and RelSAT just kept only “short” clauses

• better periodically delete “useless” learned clauses

– keep a certain number of learned clauses “search cache”

– if this number is reached MiniSAT reduces (deletes) half of the clauses

– keep most active, then shortest, then youngest (FIFO) clauses

– after reduction maximum number kept learned clauses is increased geometrically

• LBD (Glue) based (apriori!) prediction for usefullness [AudemardSimon’09]

– LBD (Glue) = number of decision-levels in the learned clause

– allows arithmetic increase of number of kept learned clauses

• freeze high PSM (dist. to phase assign.) clauses [AudemardLagniezMazureSais’11]



General Implication Graph as Hyper-Graph search
CDCL / Grasp [MarquesSilvaSakallah’96]

82

a

a cb

b

c∨∨

reason implied
assignment

original
assignments



Implication Graph Standard Notation search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Conflict Clauses as Cuts in the Implication Graph search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Implication Graph search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Antecedents / Reasons search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Conflicting Clauses search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Resolving Antecedents 1st Time search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Resolving Antecedents 1st Time search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Resolvents = Cuts = Potential Learned Clauses search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Potential Learned Clause After 1 Resolution search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Resolving Antecedents 2nd Time search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Resolving Antecedents 3rd Time search
CDCL / Grasp [MarquesSilvaSakallah’96]
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Resolving Antecedents 4th Time search
CDCL / Grasp [MarquesSilvaSakallah’96]
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(d∨g∨ s∨h∨ i)
self subsuming resolution



1st UIP Clause after 4 Resolutions search
CDCL / Grasp [MarquesSilvaSakallah’96]
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UIP = unique implication point dominates conflict on the last level



Simple Algorithm to Find First UIP Clause search
CDCL / Grasp [MarquesSilvaSakallah’96]
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• can be found by graph traversal in the reverse order of made assignments

– trail respects this order

– mark literals in conflict

– traverse reasons of marked variables on trail in reverse order

• count number unresolved variables on current decision level

– decrease counter if new reason / antecedent clause resolved

– if counter=1 (only one unresolved marked variable left) then this node is a UIP

– note, decision of current decision level is a UIP and thus a sentinel



Modern CDCL Loop search
actual Cleaneling code
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Status Solver::search (long limit) {

  long conflicts = 0; Clause * conflict; Status res = UNKNOWN;

  while (!res)

    if (empty) res = UNSATISFIABLE;

    else if ((conflict = bcp ())) analyze (conflict), conflicts++;

    else if (conflicts >= limit) break;

    else if (reducing ()) reduce ();

    else if (restarting ()) restart ();

    else if (!decide ()) res = SATISFIABLE;

  return res;

}

Status Solver::solve () {

  long conflicts = 0, steps = 1e6;

  Status res;

  for (;;)

    if ((res = search (conflicts))) break;

    else if ((res = simplify (steps))) break;

    else conflicts += 1e4, steps += 1e6;

  return res;

}



Resolving Antecedents 5th Time search 98
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Decision Learned Clause search 99
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1st UIP Clause after 4 Resolutions search 100
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Locally Minimizing 1st UIP Clause search
Sörensson’06, BiereSörensson’09
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self subsuming resolution



Locally Minimized Learned Clause search
Sörensson’06, BiereSörensson’09
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Minimizing Locally Minimized Learned Clause Further? search
Sörensson’06, BiereSörensson’09
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Recursively Minimizing Learned Clause search
Sörensson’06, BiereSörensson’09

104

a = 1 @ 0

= 1 @ 2f

l = 1 @ 3

= 1 @ 1c

k = 1 @ 3

r = 1 @ 4

top−level

decision

decision

decision

unit

decision = 1 @ 4

κ conflict

ys

g

d

= 1 @ 4

= 1 @ 2

= 1 @ 1

t

z= 1 @ 4x

= 1 @ 4

= 1 @ 4

= 1 @ 2i= 1 @ 2h

unit b

e

= 1 @ 0

= 1 @ 1

(b)
(d∨b∨ e)

(e∨g∨h) (d∨g∨ s∨h)
(e∨d∨g∨ s)

(b∨d∨g∨ s)

(d∨g∨ s)



Recursively Minimized Learned Clause search
Sörensson’06, BiereSörensson’09
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algorithm of Allen Van Gelder in SAT’09 produces regular input resolution proofs directly



Two-Watched Literal Schemes search 106

• original idea from SATO [ZhangStickel’00]

– maintain the invariant: always watch two non-false literals

– if a watched literal becomes false replace it

– if no replacement can be found clause is either unit or empty

– original version used head and tail pointers on Tries

• improved variant from Chaff [MoskewiczMadiganZhaoZhangMalik’01]

– watch pointers can move arbitrarily SATO: head forward, trail backward

– no update needed during backtracking

• one watch is enough to ensure correctness but looses arc consistency

• reduces visiting clauses by 10x, particularly useful for large and many learned clauses



ZChaff Occurrence Stacks search 107
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Limmat / FunEx Occurrence Stacks search 108
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still seems to be best way for real sharing of clauses in multi-threaded solvers



CompSAT / MiniSAT Occurrence Stacks search 109
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invariant: first two literals are watched



MChaff / PicoSAT Occurrence Lists search 110
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Occurrence Stacks for Binary Clauses search 111
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Caching Potential Satisfied Literals (Blocking Literals) search
ChuHarwoodStuckey’09
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start

top

end

1

−7 2 −7 −1−3

2 3−5

3

watch 2

watch −7

observation: often the other watched literal satisfies the clause

so cache this literals in watch list to avoid pointer dereference

for binary clause no need to store clause at all

can easily be adjusted for ternary clauses (with full occurrence lists)

LINGELING uses more compact pointer-less variant



Failed Literal Probing simplify 113
we are still working on tracking down the origin before [Freeman’95] [LeBerre’01]

• key technique in look-ahead solvers such as Satz, OKSolver, March

– failed literal probing at all search nodes

– used to find the best decision variable and phase

• simple algorithm

1. assume literal l, propagate (BCP), if this results in conflict, add unit clause ¬l

2. continue with all literals l until saturation (nothing changes)

• quadratic to cubic complexity

– BCP linear in the size of the formula 1st linear factor

– each variable needs to be tried 2nd linear factor

– and tried again if some unit has been derived 3rd linear factor



Failed Literal Probing Extensions simplify 114

• lifting

– complete case split: literals implied in all cases become units

– similar to Stålmark’s method and Recursive Learning [PradhamKunz’94]

• asymmetric branching

– assume all but one literal of a clause to be false

– if BCP leads to conflict remove originally remaining unassigned literal

– implemented for a long time in MiniSAT but switched off by default

• generalizations:

– vivification [PietteHamadiSais ECAI’08]

– distillation [JinSomenzi’05][HanSomenzi DAC’07] probably most general (+ tries)



Other Types of Learning simplify 115

• similar to look-ahead heuristics: polynomially bounded search

– can be applied recursively (however, is often too expensive)

• Stålmarck’s Method

– works on triplets (intermediate form of the Tseitin transformation):

x = (a∧b), y = (c∨d), z = (e⊕ f ) etc.

– generalization of BCP to (in)equalities between variables

– test rule splits on the two values of a variable

• Recursive Learning (Kunz & Pradhan)

– (originally) works on circuit structure (derives implications)

– splits on different ways to justify a certain variable value



Bounded Variable Elimination (VE) simplify 116

[DavisPutnam60][Biere SAT’04] [SubbarayanPradhan SAT’04] [EénBiere SAT’05]

• use DP to existentially quantify out variables as in [DavisPutnam60]

• only remove a variable if this does not add (too many) clauses

– do not count tautological resolvents

– detect units on-the-fly

• schedule removal attempts with a priority queue [Biere SAT’04] [EénBiere SAT’05]

– variables ordered by the number of occurrences

• strengthen and remove subsumed clauses (on-the-fly)
(SATeLite [EénBiere SAT’05] and Quantor [Biere SAT’04])



Fast (Self) Subsumption simplify 117

• for each (new or strengthened) clause

– traverse list of clauses of the least occuring literal in the clause

– check whether traversed clauses are subsumed or

– strengthen traversed clauses by self-subsumption [EénBiere SAT’05]

– use Bloom Filters (as in “bit-state hashing”), aka signatures

• check old clauses being subsumed by new clause: backward (self) subsumption

– new clause (self) subsumes existing clause

– new clause smaller or equal in size

• check new clause to be subsumed by existing clauses forward (self) subsumption

– can be made more efficient by one-watcher scheme [Zhang-SAT’05]



Variable Instantiation simplify 118

[AnderssonBjesseCookHanna DAC’02] also in Oepir SAT solver, this is our reformulation

• for all iterals l

– for all clauses c in which l occurs (with this particular phase)

∗ assume the negation of all the other literals in c, assume l

∗ if BCP does not lead to a conflict continue with next literal in outer loop

– if all clauses produced a conflict permanently assign ¬l

Correctness: Let c = l∨d, assume ¬d∧ l.

If this leads to a conflict d∨¬l could be learned (but is not added to the CNF).

Self subsuming resolution with c results in d and c is removed.

If all such cases lead to a conflict, ¬l becomes a pure literal.



Autarkies simplify 119

Generalization of pure literals.

Given a partial assignment σ.

A clause of a CNF is “touched” by σ if it contains a literal assigned by σ.

A clause of a CNF is “satisfied” by σ if it contains a literal assigned to true by σ.

If all touched clauses are satisfied then σ is an “autarky”.

All clauses touched by an autarky can be removed.

Example: (−1 2)(−1 3)(1 −2 −3)(2 5) · · · (more clauses without 1 and 3).

Then σ = {−1,−3} is an autarky.



Blocked Clause Elimination (BCE) simplify 120

fix a CNF F

one clause C ∈ F with l all clauses in F with l̄

l̄∨ ā∨ c

a∨b∨ l

l̄∨ b̄∨d

all resolvents of C on l are tautological ⇒ C can be removed

Proof assume assignment σ satisfies F\C but not C

can be extended to a satisfying assignment of F by flipping value of l



Blocked Clauses simplify
Kullmann’99

121

Definition A literal l in a clause C of a CNF F blocks C w.r.t. F if for every clause C′ ∈ F
with l̄ ∈ C′, the resolvent (C \ {l})∪ (C′ \ {l̄}) obtained from resolving C and C′ on l is a
tautology.

Definition [Blocked Clause] A clause is blocked if has a literal that blocks it.

Definition [Blocked Literal] A literal is blocked if it blocks a clause.

Example (a∨b)∧ (a∨ b̄∨ c̄)∧ (ā∨ c )

only first clause is not blocked.

second clause contains two blocked literals: a and c̄.

literal c in the last clause is blocked.

after removing either (a∨ b̄∨ c̄) or (ā∨ c), the clause (a∨b) becomes blocked
actually all clauses can be removed



Blocked Clauses and Encoding / Preprocessing Techniques simplify
JärvisaloBiereHeule’10 + JAR Article

122

COI Cone-of-Influence reduction

MIR Monontone-Input-Reduction

NSI Non-Shared Inputs reduction

PG Plaisted-Greenbaum polarity based encoding

TST standard Tseitin encoding

VE Variable-Elimination as in DP / Quantor / SATeLite

BCE Blocked-Clause-Elimination
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Inprocessing: Interleaving Preprocessing and Search simplify 124

PrecoSAT [Biere’09], Lingeling [Biere’10], now also in CryptoMiniSAT (Mate Soos)

• preprocessing can be extremely beneficial

– most SAT competition solvers use variable elimination (VE)
[EénBiere SAT’05]

– equivalence / XOR reasoning

– probing / failed literal preprocessing / hyper binary resolution

– however, even though polynomial, can not be run until completion

• simple idea to benefit from full preprocessing without penalty

– “preempt” preprocessors after some time

– resume preprocessing between restarts

– limit preprocessing time in relation to search time



Other Inprocessing / Preprocessing Techniques simplify
JärvisaloHeuleBiere’12

125

equivalent literal substitution find strongly connected components in binary implication
graph, replace equivalent literals by representatives

boolean ring reasoning extract XORs, then Gaussian elimination etc.

hyper-binary resolution focus on producing binary resolvents

hidden/asymmetric tautology elimination discover redundant clauses through probing

covered clause elimination use covered literals in probing for redundant clauses

unhiding randomized algorithm (one phase linear) for clause removal and strengthening



Benefits of Inprocessing simplify
JärvisaloHeuleBiere’12

126

• allows to use costly preprocessors

– without increasing run-time “much” in the worst-case

– still useful for benchmarks where these costly techniques help

– good examples: probing and distillation even VE can be costly

• additional benefit:

– makes units / equivalences learned in search available to preprocessing

– particularly interesting if preprocessing simulates encoding optimizations

• danger of hiding “bad” implementation though . . .

• . . . and hard(er) to get right! “Inprocessing Rules” [JärvisaloHeuleBiere’12]



Inprocessing Rules simplify
JärvisaloHeuleBiere’12
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ϕ [ρ∧C ]σ

ϕ∧C [ρ ]σ

STRENGTHEN

ϕ [ρ∧C ]σ

ϕ [ρ ]σ

FORGET

ϕ [ρ ]σ

ϕ [ρ∧C ]σ
L

LEARN

ϕ∧C [ρ ]σ

ϕ [ρ∧C ]σ, l:C
W

WEAKEN

L is that ϕ∧ρ and ϕ∧ρ∧C are satisfiability-equivalent.

W is that ϕ and ϕ∧C are satisfiability-equivalent.



RAT – Resolution Asymmetric Tautology simplify
JärvisaloHeuleBiere’12
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“resolution look-ahead ”

Clause R asymmetric tautology (AT) w.r.t. G iff G∧¬C refuted by BCP.

Given clause C ∈ F , l ∈C.

Assume all resolvents R of C on l with clauses in F are AT w.r.t. F\{C}.

Then C is called resolution asymmetric tautology (RAT) w.r.t. F on l.

In this case F is satisfiability equivalent to F\{C}.

Inprocessing Rules with RAT simulate all techniques in current SAT solvers



Clause Elimination Procedures simplify
JärvisaloHeuleBiere’12
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CC

HCC

ACCABC

HBC

BCT

HT

ATAS

HS

S

RAS

RHS

RS

logically equivalent

RAT*

satisfiability equivalent

unpublished

Asymmetric, Blocked Clause, Covered Clause,
Hidden, Resolution, Subsumed



Parallel SAT Solving parallel 130

• application level parallelism

– run multiple “properties” at the same time

– run multiple “engines” at the same time (streaming)

• portfolio solving

– predict best solver through machine learning techniques SATzilla

– run multiple solvers in parallel or sequentially (with/without “sharing”)
ManySAT, Plingeling, ppfolio . . .

• split search space

– guiding path principle [ZhangBonacinaHsiang’96]

– cube & conquer [HeuleKullmanWieringaBiere’11]

• low-level parallelsim: parellize BCP (threads, FPGA, GPU, . . .) P complete



Cube & Conquer parallel
HeuleKullmanWieringaBiere’11
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• use Look-Ahead at the top of the search tree, CDLC at the bottom

– Look-Ahead solvers provide “good” global decisions but are slow

– CDCL solvers are extremely fast based on local heuristics

• when to switch from Look-Ahead to CDCL?

– limit decision height of Look-Ahead solver, e.g. 20 maximum tree height

– avoid having too many branches closed by (slow) Look-Ahead

– Concurrent Cube & Conquer runs CDCL and Look-Ahead in parallel

• open branches = cubes ⇒ solve in parallel

• solves hard instances, which none of the other approaches can


