
Chasing Target Phases
http://fmv.jku.at/chasing-target-phases

Armin Biere and Mathias Fleury
Pragmatics of SAT 2020, 2020/07/03

http://fmv.jku.at/chasing-target-phases


CDCL

CDCL decision heuristics:

select and focus on interesting variables (E)VSIDS, VMTF, LRB

set phase (polarity) of decision variable false, occurrences, phase saving

This talk is about:

rephasing saved phases experiments in Riss, “flipping” in StrangeNight

maximizing the trail similar in spirit to Glucose style restart blocking

which helped CaDiCaL to solve the largest number of instances at the SAT Race 2019

1/15



SAT as Optimization

Most important heuristics for SAT instances: phase heuristics

Pick any variable and set it to the “right” phase Hans van Maaren

New view for CDCL: maximize the trail
trail = current partial assigment

Objective is to maximize the size of the trail without conflict
Save maximum consistent trail as target phases
Prioritize target phases for decisions over saved phases

Intensification: target phases and best phases

Diversification: rephasing

2/15



Phase Saving



Phase Saving

first in RSat by Pipatsrisawat & Darwiche

Saving phases as soon variable is assigned save its phase

Phase heuristic set decision phase to saved phase

Initialization use arbitrary initial value false in MiniSAT

Components saves assignment of satisfied components

Rapid restarts works well with (allows) rapid restarts

3/15



Rephasing Saved Phases



Rephasing

Reset saved and target phases in increasing conflict intervals:

Original O: set phases to original value (false or true)
Inverted I: set phases to opposite of the original value
Best B: restore best assignment
Walk W: let local search maximize satisfied clauses
Random #: set phase to random value
Flipped F: flip current phase

Used policy: OI (BWOBWIBW#BWF)ω Kissat

emphasize best phases and local search phases

4/15



Rephasing

Reset saved and target phases in increasing conflict intervals:

Original O: set phases to original value (false or true)
Inverted I: set phases to opposite of the original value
Best B: restore best assignment
Walk W: let local search maximize satisfied clauses
Random #: set phase to random value
Flipped F: flip current phase

Used policy: OI (BWOBWIBW#BWF)ω Kissat

emphasize best phases and local search phases

4/15



Rephasing

Reset saved and target phases in increasing conflict intervals:

Original O: set phases to original value (false or true)
Inverted I: set phases to opposite of the original value
Best B: restore best assignment
Walk W: let local search maximize satisfied clauses
Random #: set phase to random value
Flipped F: flip current phase

Used policy: OI (BWOBWIBW#BWF)ω Kissat

emphasize best phases and local search phases

4/15



Rephasing

Reset saved and target phases in increasing conflict intervals:

Original O: set phases to original value (false or true)
Inverted I: set phases to opposite of the original value
Best B: restore best assignment
Walk W: let local search maximize satisfied clauses
Random #: set phase to random value
Flipped F: flip current phase

Used policy: OI (BWOBWIBW#BWF)ω Kissat

emphasize best phases and local search phases

4/15



Rephasing

Reset saved and target phases in increasing conflict intervals:

Original O: set phases to original value (false or true)
Inverted I: set phases to opposite of the original value
Best B: restore best assignment
Walk W: let local search maximize satisfied clauses
Random #: set phase to random value
Flipped F: flip current phase

Used policy: OI (BWOBWIBW#BWF)ω Kissat

emphasize best phases and local search phases

4/15



Rephasing

Reset saved and target phases in increasing conflict intervals:

Original O: set phases to original value (false or true)
Inverted I: set phases to opposite of the original value
Best B: restore best assignment
Walk W: let local search maximize satisfied clauses
Random #: set phase to random value
Flipped F: flip current phase

Used policy: OI (BWOBWIBW#BWF)ω Kissat

emphasize best phases and local search phases

4/15



Rephasing

Reset saved and target phases in increasing conflict intervals:

Original O: set phases to original value (false or true)
Inverted I: set phases to opposite of the original value
Best B: restore best assignment
Walk W: let local search maximize satisfied clauses
Random #: set phase to random value
Flipped F: flip current phase

Used policy: OI (BWOBWIBW#BWF)ω Kissat

emphasize best phases and local search phases

4/15



Really Rephase All?

If formula falls apart into several disconnected components:

focus on one component at a time bumping heuristic

solve components one by one unless one component is UNSAT

phase saving also saves models of satisfied components

Rephasing forgets satisfying assignments of components!

So Kissat makes sure not to loose them: this is not in CaDiCaL

largest autarky of saved phases fixpoint algorithm by Kullmann

clauses satisfied by autarky eliminated
pushed on the reconstruction stack

5/15



Really Rephase All?

If formula falls apart into several disconnected components:

focus on one component at a time bumping heuristic

solve components one by one unless one component is UNSAT

phase saving also saves models of satisfied components

Rephasing forgets satisfying assignments of components!

So Kissat makes sure not to loose them: this is not in CaDiCaL

largest autarky of saved phases fixpoint algorithm by Kullmann

clauses satisfied by autarky eliminated
pushed on the reconstruction stack

5/15



Really Rephase All?

If formula falls apart into several disconnected components:

focus on one component at a time bumping heuristic

solve components one by one unless one component is UNSAT

phase saving also saves models of satisfied components

Rephasing forgets satisfying assignments of components!

So Kissat makes sure not to loose them: this is not in CaDiCaL

largest autarky of saved phases fixpoint algorithm by Kullmann

clauses satisfied by autarky eliminated
pushed on the reconstruction stack

5/15



Target Phases



Maximize the Trail

Passive optimization in Glucose:
Block restarts if trail shows steady size increase
Using moving averages of trail size

Active optimization using target phases:
Use maximum consistent trail assignment for future decisions
Save target/best trail during backtracking only

6/15



Example: Kissat on ph06.cnf

conflict at the bottom mismatch saved/target at the bottom 7/15



Demo: Kissat stable / focused mode

8/15



Demo: Kissat rephase scheduling

9/15



Implementation



Scheduling

Alternation between SAT/UNSAT mode: Chanseok Oh

Stable mode slow changes Luby restarts, smooth bumping, target phases

Focused mode agile Glucose-style restarts, aggressive bumping, phase saving (only)

scheduled in geometrically increasing conflict intervals CaDiCaL

Rephasing scheduled in arithmetically increasing intervals
1000 conflicts base interval

Rephasing frequency in SAT/UNSAT interval steadly increasing

10/15



Implementation

Kissat



Kissat, SAT Race 2019

Kissat in Finnish or Keep it simple (and clean) SAT solver

http://fmv.jku.at/kissat
to make it easier to find

11/15

http://fmv.jku.at/kissat


Kissat, SAT Race 2019

If you liked CaDiCaL, you will love Kissat

Port to C removed redundant computation
Less memory (I) no binary clauses in the arena
Less memory (II) compact watcher data structures Lingeling

Less memory (III) support for 228 − 1 variables

p cnf 268435455 0 nearly no memory usage

Compact code faster compile time and no comments ,

11/15



Kissat, SAT Race 2019, satisfiable only

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●

●●●
●●●
●●●

●●●●●
●●●

●●●●
●●●●●

●●●
●● ● ●●●

●● ●● ● ● ●● ●● ●●● ●●●● ● ●● ● ● ● ●

● always−target
default
no−rephase
always−target−no−rephase
no−target
no−target−no−rephase
no−phase−saving

11/15



Kissat, SAT Race 2019, all

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●

●●●●
●●●●
●●●●

●●●●
●●●●

●●●●●●●
●●●●●●●●

●●●●
●●● ●●● ●●●●

●●●●
●●●●●●●

●●●●● ● ●●●●●●●●
●● ●●●●

●●●●●●●●● ● ● ●●●●
●● ● ●● ● ● ● ● ●

●

default
no−rephase
always−target
no−target
always−target−no−rephase
no−target−no−rephase
no−phase−saving

11/15



Implementation

CaDiCaL



CaDiCaL

More variables INT_MAX variables requires a lot of memory though

Simpler rephasing no autarky calculation when rephasing

Fewer mode switches O(2n) vs. O(n · log3n) conflict intervals

Kissat conflict intervals:
O(log n)
restart

< O(n/ log n)
reduce

< O(n)
rephase

< O(n · log n)
probing

< O(n · log2 n)
elimination

< O(n · log3 n
SAT/UNSAT mode

)

release/competition version of KissatO(n2)

12/15



CaDiCaL, SAT Race 2019, satisfiable only

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●
●●
●●

●●
●●
●●●
●●
●●
●●
●●
●●

●●
●●
●●
●●
●●
●●
●●

● ●●
●●

●●
●● ● ●●

●●●●●
●●

●●
●●●

●● ● ● ● ● ● ●

●

default
always−target
no−target−no−rephase
no−target
no−phase−saving
always−target−no−rephase
no−rephase

12/15



CaDiCaL, SAT Race 2019, all

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●●●●●
●●●●● ●●●●

●●●●●●●●●● ●●●●●●●●
●●●●● ●● ●●●●

●●●●● ●●● ●●● ● ●●●●
● ●●● ● ●●●●●●● ●● ● ● ●

●

default
always−target
no−target−no−rephase
no−target
no−rephase
no−phase−saving
always−target−no−rephase

12/15



Implementation

Glucose



Glucose

Stable mode low variable decay no chronological backtracking

Focus mode high variable decay VSIDS = poor man’s VMTF

Bumping of reasons turned out to be important not for normal Glucose

13/15



Glucose, SAT Race 2019, satisfiable only

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0
12

0
14

0

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●

●●●
●●
●●

●●
●●

●●●●
●●
● ●●

●● ●●●●
●●
●●

● ●●
●●

●●
● ●●

●●
● ● ● ●● ● ● ● ● ● ● ●

● default
always−target
always−target−no−rephase
no−target−no−rephase
no−target
no−phase−saving
original−with−bumping
original

13/15



Glucose, SAT Race 2019, all

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●
●●●
●●●
●●●

●●●
●●●

●●●
●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●●

●●●
●●●● ●●●

●●●●
●●●●● ●●●

●● ●●● ●● ●●● ●●● ●● ● ● ● ● ● ● ● ●● ● ● ●

● default
no−target−no−rephase
always−target
no−target
always−target−no−rephase
original
no−phase−saving
original−with−bumping

13/15



Implementation

Spass-Satt



Spass-Satt

Core of the CDCL(T ) solver Spass-Satt

Based on the ideas of Glucose 2

Has inprocessing (subsumption-resolution until fixpoint)

But: no BCE, no BVE

14/15



Spass-Satt, SAT Race 2019, satisfiable only

0 1000 2000 3000 4000 5000

0
20

40
60

80
10

0
12

0

●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●
●●●

●●
●●
●●

●●
●●
●●
●●
●●●

●●
●●

●●
●●
●●
●●
●●
●●

●●
●●
●●●

●●●●
●●●

● ●●●
●●
●●

●●
●●●

●●
● ●●

●●
●● ● ● ●● ●●

●●
● ●●

● ●●
●●

● ● ●●
●●

●●
● ● ●●

● always−target
default
no−target−no−rephase
no−rephase
no−target
original
always−target−no−rephase

14/15



Conclusion



Rephasing alone helps Kissat on SAT Comp. 2018, not 2019
somewhat fragile: bad with the wrong strategy

Target phasing with rephasing helps for satisfiable instances
key idea: Maximize trail length

Autarky and random walk have an unclear effect.

Alternation is a good compromise.

http://fmv.jku.at/chasing-target-phases

15/15

http://fmv.jku.at/chasing-target-phases


Appendix



Appendix

Detailed Results



Performance of the SAT solvers Kissat and CaDiCaL

All instances Satisfiable instances
Kissat CaDiCaL Kissat CaDiCaL

Configuration Solved PAR2 Solved PAR2 Solved PAR2 Solved PAR2
default 259 1662994 242 1857009 159 263235 146 323506
alw.-target 249 1714647 231 1921490 159 234467 144 294832
no-targetno-
rephase

236 1859306 227 1979507 138 450986 129 473741

no-target 244 1775317 226 2002909 146 366564 129 479070
no-rephase 251 1736491 225 2020048 151 341314 127 509767
no-phasesaving 225 1986220 217 2084103 134 522721 128 498526
alw.-targetno-
rephase

236 1851424 210 2165365 148 359317 128 508870



Performance of the SAT solvers Glucose and Spass-Satt

All instances Satisfiable instances
Glucose Spass-Satt Glucose Spass-Satt

Configuration Solved PAR2 Solved PAR2 Solved PAR2 Solved PAR2
default 206 2154525 159 2671578 134 368068 113 532083
alw.-target 197 2222227 168 2582440 132 383353 122 436410
no-targetno-
rephase

203 2192177 148 2741503 124 476546 101 616097

no-target 197 2259101 151 2736161 120 516055 101 626393
alw.-targetno-
rephase

194 2282175 127 2909751 129 424991 79 801110

original 195 2312300 137 2829600 112 359317 86 729944



Appendix

More Results



Kissat, SAT Competition 2018, satisfiable only

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●
●●●●●●

●●●
●●●
●●●
●●●

●●●●
●●●●●●●●

●● ● ● ● ● ●●●
●● ● ● ● ● ● ●● ●

● always−target
default
no−target
always−target−no−rephase
no−rephase
no−target−no−rephase
no−phase−saving



Kissat, SAT Competition 2018, all

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●
●●●●

●●●●
●●●●●●●

●●●●
●●●●

●●●●●●●● ●● ●● ●●●●● ●● ● ●●●●
● ●● ● ●● ● ● ● ●● ● ● ●● ●● ● ●● ● ●

●

default
no−target
always−target
no−target−no−rephase
no−rephase
always−target−no−rephase
no−phase−saving



Spass-Satt, SAT Competition 2018

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

●●●
●●●
●●●
●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●●

●●●
●●●
●●●
●●●

●●●
●●●
●●●
●●●

●●●
●●●
●●●●

●●●●●
●●●

●●●●●●
●●●
●● ●●●

●● ●●● ●●●
● ● ●● ●●●

●●●●●●
● ● ●●●●●

● ●●●●
●●●●●●

●● ●●●
● ●● ● ● ● ●● ●●●●●

●● ●● ●●●●●

● always−target
default
no−rephase
no−target
no−target−no−rephase
original
always−target−no−rephase


	Phase Saving
	Rephasing Saved Phases
	Target Phases
	Implementation
	Kissat
	CaDiCaL
	Glucose
	Spass-Satt

	Conclusion
	Appendix
	Appendix
	Detailed Results
	More Results



