
Random Test Case Generation
and

Delta Debugging for Bit­Vector Logic with Arrays

MASTERARBEIT

zur Erlangung des akademischen Grades

Diplom­Ingenieur

im Masterstudium

INFORMATIK

Eingereicht von:
Andreas Vida Bakk. techn., 0155987

Angefertigt am:
Institut für Formale Modelle und Verifikation

Betreuung:
Prof. Armin Biere

Mitbetreuung:
Dipl.­Ing. Robert Brummayer

Linz, Oktober 2008

Abstract

Random test case generation paired with Delta Debugging provides the programmer

with an efficient way of finding and fixing code defects during software development.

In this work existing and new Delta Debugging algorithms are applied to BTOR files.

BTOR is the input format of Boolector, an SMT solver for bit-vector logic with arrays.

To improve the quality of Boolector we developed a random DAG (directed acyclic

graph) generator for the BTOR format. When the generator finds a failure inducing

input, this input can be minimized with little effort using one of our implemented Delta

Debugging algorithms. The defect in the source code can then be located by using the

small input file in a debugging session. The input file can be appended to the set of

regression tests.

This text describes a new algorithm for generating random DAGs. The algorithm has

several input parameters. The most important one (maximum node count) affects the

size of the generated files. In an experiment we varied this parameter to find out which

setting must be used in order to find the highest portion of failure inducing inputs while

spending as little running time as possible in the Boolector executable.

In another experiment we show how tweaking the algorithm’s parameters influences

the running time of Boolector and the satisfiability of the resulting formulas.

We show how existing Delta Debugging algorithms must be modified in order to be

applied to BTOR files. After experimenting with the algorithms from the literature we

discovered that an improvement is necessary that considers BTOR’s specific DAG struc-

ture. We propose two new algorithms which handle cases better when failure inducing

parts of the DAG are located in great depths and where the failure inducing part is very

small compared to the entire size of the input file.

Keywords: Delta Debugging, Random test case generation, Random DAG gener-

ation, Random testing, Fuzz testing, Adaptive random testing, SMT, Bit-vector logic

with arrays, Boolector, BTOR format, Minimization of DAGs

Contents

1 Motivation for Delta Debugging and random test case generation 7

1.1 Application on bit-vector logic with arrays 8

1.2 Development of the Boolector Debugger 8

1.3 Text overview . 9

2 Random test case generation for Boolector 10

2.1 Boolector’s BTOR format . 10

2.1.1 Node type overview . 11

2.1.2 BTOR example . 11

2.2 Requirements for the test case generator 13

2.3 Algorithm for generating random DAGs 14

2.3.1 Algorithm parameters . 16

2.3.2 Influencing the satisfiability using CNFs 16

3 Experiments with the generator 18

3.1 Setup of experiments . 18

3.1.1 Varying the graph size . 19

3.1.2 Toggling CNF generation . 25

3.2 Conclusions from generator experiments 26

4 Delta Debugging 27

4.1 Existing algorithms . 27

4.1.1 The ddmin algorithm . 27

4.1.2 Hierarchical Delta Debugging . 32

4.1.3 The HDD+ algorithm . 33

4.1.4 The HDD* algorithm . 33

4.2 deltabtor’s algorithm . 34

4.3 New proposed algorithms . 34

4.3.1 BFS algorithm . 35

3

4.3.2 LW algorithm . 36

4.3.3 changeref algorithm . 38

4.3.4 Improving the changeref algorithm 39

4.4 Combining algorithms . 40

5 Implemented Delta Debugging algorithms in comparison 43

6 Future work 49

7 Summary 50

A The Boolector Debugger application 53

A.1 Installation . 53

A.2 User interface of Boolector Debugger . 54

A.2.1 Graphical versus plain text view 54

A.2.2 Generating BTOR files . 56

A.2.3 Running a Delta Debugging algorithm 56

A.2.4 Bug search mode . 57

A.3 Minimized BTOR files . 57

List of Figures

1.1 BTOR format evolution . 9

2.1 Boolector DAG example . 12

2.2 Schema of a randomly generated DAG 15

3.1 Generator experiment 1 part 1 . 20

3.2 Generator experiment 1 part 2 . 21

3.3 Generator experiment 2 - Bug search efficiency 23

3.4 Generator experiment 2 - New and larger files 24

3.5 Generator experiment 3 - DAGs with CNF 25

4.1 ddmin: example with a quadratic number of tests 29

4.2 Operator simplification rules . 30

4.3 deltabtor partitioning scheme . 35

4.4 changeref algorithm . 39

4.5 changeref algorithm - worst case example 41

A.1 The main window. 54

A.2 The options dialog window. 55

A.3 The “call executable” function . 55

A.4 Main window: graphical view of a BTOR file 56

5

List of Tables

2.1 Operators of Boolector . 13

5.1 DD-algorithms: number of calls . 44

5.2 DD-algorithms: number of calls, no simplification 44

5.3 DD-algorithms: final node count . 45

5.4 DD-algorithms: final node count, no simplification 46

5.5 DD-algorithms: reduction in percent per call 47

5.6 DD-algorithms: reduction in percent per call, no simplification 47

5.7 DD-algorithms: overall performance . 48

6

1. Motivation for Delta Debugging and random test case generation

1 Motivation for Delta Debugging and

random test case generation

Large software projects usually allow users to submit bug reports. A bug report contains

the steps that need to be followed to reproduce a bug.

For example: User X of a media player submits a video file in his bug report which

crashes the player. The size of the video file is 100 MB.

A smaller input file would make it a lot easier for the programmer to locate defects in

the source code. Additionally the smaller file would take less space in the bug tracking

system and so could be added to the program’s source code in form of a regression test.

Finally duplicate bugs could be identified easier if the corresponding input files were

small enough. Ideally there should be a procedure to automatically reduce the size of all

submitted input files. Fortunately a procedure exists and it is called Delta Debugging.

In the early stages of software development the programmer often lacks a sufficient

amount of input files for testing, especially when the program introduces a new input

format. Writing tests is a tedious task and these tests can at most cover all cases the

programmer has thought of.

It is not easy to achieve complete path coverage with manually written tests, since the

number of paths grows exponentially with the number of branches. As a consequence

code that has to deal with complex input file formats will more likely contain paths that

are not covered by unit or regression tests. A way to improve a software system’s path

coverage is random test case generation, also called fuzz testing.

Writing the generator is a one time effort for the programmer, but the amount of

work put into the generator should pay off rather quickly, considering the large number

of test cases a program can generate in very little time. The more test cases the generator

creates, the higher is the possibility that corner cases will also be covered. The generator

program doesn’t have to be highly sophisticated in order to be able to generate complex

output. Random test generation not only makes sense for large programs but also for

small projects where often the programmer is also the tester.

7

1. Motivation for Delta Debugging and random test case generation
1.1 Application on bit-vector logic with arrays

1.1 Application on bit-vector logic with arrays

There are two main subjects in this work. On the one hand we will discuss a Delta

Debugger for the SMT solver Boolector. Boolector decides the satisfiability of bit-vector

logic formulas with arrays[1].

Previous works about Delta Debugging techniques mainly focused on syntax trees

(GCC) and XML data files (Mozilla Browser)[3][4]. In order to apply these techniques

to BTOR files, the algorithms involved had to be modified and 2 new Delta Debugging

algorithms were invented in the progress.

The second part of this work is a random test case generator, which was designed

specifically for the BTOR format. A new algorithm had to be thought up because there

was no other program available before this project that could randomly generate BTOR

files i.e. bit-vector logic with arrays including array conditionals and extensionality.

In the course of this project the two aspects random generation and Delta Debugging

were unified in a graphical user interface for presentation purposes. This program will

be referred to as the Boolector Debugger.

Moreover the generator and Delta Debugging algorithms can also be used from the

command line for better scripting and automation.

1.2 Development of the Boolector Debugger

At the beginning of the project a very basic implementation of a Delta debugger (deltabtor

by Armin Biere) already existed in form of a C program.

The generator and Delta Debugging algorithms were all implemented in Java from

scratch. Boolector Debugger was developed to incorporate both aspects. It can graphi-

cally visualize BTOR files and it offers a bug search mode, which repeatedly generates

random BTOR files and writes them to the standard input of a newly generated pro-

cess using a pipe. The standard output and standard error streams of this process are

searched for the strings“segmentation”and“assertion”, as these usually indicate a failure.

The executable name and arguments can be freely chosen, it doesn’t necessarily have to

be a Boolector executable. Boolector Debugger uses pipes during Delta Debugging too.

Additionally a few shell scripts were written to perform experiments with the new and

modified algorithms. One of them produces gnuplot output files for visualization. Other

scripts perform cross checks with results from Z3[13] using Wine[14].

The generator, Delta Debugging algorithms and Boolector were all developed in par-

8

1. Motivation for Delta Debugging and random test case generation
1.3 Text overview

allel. Every time the BTOR format changed, the other programs had to be modified

too.

1. Original version of BTOR

2. Support for array conditionals and array equality (extensionality) added.

3. nego no longer allowed. Array node declarations always contain width and length
of the array. acond needs to be used for array conditions instead of cond.

4. New nodes: next and anext. These are not supported by the Delta Debugger and
generator, because development was already finished when next and anext were
introduced.

Figure 1.1: BTOR format evolution

Before the development of the Delta Debugger a problem specific to Boolector had

to be solved. The already existing Delta Debugging algorithms from the literature

cannot be applied to the BTOR format directly because sub-graphs of a Boolector DAG

(directed acyclic graph) cannot just be truncated. Instead other ways had to be found

to prune them in a similar fashion.

The existing algorithms didn’t always result in a satisfying file size reduction. Because

of this two new algorithms are proposed in this text. The first is called changeref

algorithm. Although this algorithm produces small results in a reasonable amount of

time, its worst case performance of O(n2) is not really satisfying. As a consequence

an extended version of the algorithm was invented. Let’s call it the changeref+ binary

search algorithm.

1.3 Text overview

The following chapter will deal with random test case generation for Boolector. For

this reason the BTOR format will be discussed briefly. The next chapter sums up the

experiments performed with the generator. One chapter is dedicated to Delta Debugging.

There we explain Delta Debugging in general, algorithms from the literature and our

new approaches. Another chapter thoroughly analyzes the performance of each Delta

Debugging algorithm. Appendix A contains information how to install and use the

presented tools of this work.

9

2. Random test case generation for Boolector

2 Random test case generation for

Boolector

The generator in Boolector Debugger is used to automatically create random BTOR

files. The program has evolved with the BTOR format and supports versions 2 (default)

and 3 (with option -newformat) from figure 1.1. Its main goal is to find segmentation

faults and assertion failures. It can also handle endless loops. This can be achieved by

running Boolector with a given timeout. Unfortunately the generator cannot make a

precise statement about the satisfiability of a generated formula. This disadvantage can

be partially compensated by cross-checking:

1. Run Boolector several times, each time with different command line arguments

2. Run other SMT solvers using the same input

3. Compare the results

2.1 Boolector’s BTOR format

Before we discuss the generator’s algorithm we take a look at the format we want to

generate. The summary here contains only definitions important to our generator. For a

complete overview see [2]. The input language of Boolector was designed with simplicity

in mind, so that a parser can be written easily. The format is plain text with each line

describing exactly one node of the graph. Comments starting with a “;” character tell

the parser to ignore the rest of the line. Every line of the file follows this pattern: Node

number, node type, width in bits of the node, constant value/name of a variable node/

number of child nodes. A minus sign in front of a child node number indicates negation

of this child. A node has to be defined before it can be referenced by another one. The

two most basic nodes are variable (var) and array nodes (arr). Variables have a fixed

bit-width. Arrays have a fixed size 2n (with n ∈ N) with each element having the same

given bit-width.

10

2. Random test case generation for Boolector 2.1 Boolector’s BTOR format

Typically a BTOR file describes a DAG with exactly one root node of bit-width one.

Although the BTOR format allows multi-rooted files, Boolector Debugger can only han-

dle files with a single root.

Leaf nodes of the DAG can be variables, arrays and constants. Constant values (const)

can be encoded in base 2, 10 or 16 with 2 being the default. The other bases are indicated

by suffixes (constd and consth).

There are arithmetic, logic and shift operators. An if-then-else operator (cond) exists

for both bit-vectors and array nodes. Slice, signed- and unsigned-extension nodes allow

changes in bit-width.

Arrays can be read from, written to and they can be compared using an equality

operator.

2.1.1 Node type overview

Table 2.1 shows input and output path counts for all node types known to the generator.

Additionally note that:

• The prefixes s and u indicate signed and unsigned operators.

• The suffix o stands for overflow.

• A slice node needs two integer arguments: The indices of the higher and lower

border bit. Its resulting bit-vector is cut out of the input vector with border bits

inclusive.

• sext and uext both need one integer argument: The bit-width of the resulting

vector.

2.1.2 BTOR example

Let a and b be bit-vectors of length 4 and let us assume that a ≥ 0010 and b ≥ 0010.

Suppose we want to know whether the following theorem holds:

ab ≥ a + b

If the formula is a tautology then its negation must be a contradiction. We negate

the formula and write it down as a BTOR file (figure 2.1). A call to Boolector yields

the result unsatisfiable. Therefore we have proven the theorem.

11

2. Random test case generation for Boolector 2.1 Boolector’s BTOR format

1 var 4
2 var 4
3 zero 12
4 constd 16 2
5 concat 16 3 1
6 concat 16 3 2
7 add 16 5 4
8 add 16 6 4
9 add 16 7 8
10 mul 16 7 8
11 ugt 1 9 10
12 root 1 11

(a) Plain text representation (b) Graphical representation

Figure 2.1: Example BTOR DAG. Graphical representation was created using Boolector
Debugger

12

2. Random test case generation for Boolector
2.2 Requirements for the test case generator

Operator name inputs width of width of
inputs output

udiv, sdiv, add, 2 n n
sub, urem, srem,

smod, mul
usubo, ssubo, sdivo, 2 n 1

uaddo, saddo, smulo,
umulo, nego

ulte, slte, ult, slt, 2 n 1
ugt, sgt, eq, ne,

ugte, sgte
or, implies, iff, xor, 2 1 1

xnor, and, nand, nor
slice 1 n 1 <= x < n

uext, sext 1 n x > n
sll, srl, sra, rol, ror 2 2n, n 2n

const, consth, constd, zero 0 0 n
read 2 m, n m
write 3 m, n, m m

redxor, redand, redor 1 n 1
not, neg 1 n n
concat 1 m, n m + n
cond 3 1, n, n n
root 1 1 0

array, var 0 0 n

Table 2.1: Operators of Boolector

2.2 Requirements for the test case generator

The generator should be able to discover bugs that are hard to find using conventional

unit tests. Without performing experiments it’s hard to tell whether a lot of small

generated examples contain more bugs than fewer more complex ones. Keeping this in

mind the size of the DAG produced by the generator should be configurable.

The results should be reproducible. In other words given the same random seed and

input parameters the generator should always produce exactly the same output file.

An exhaustive generation of all DAGs given certain input parameters is not our goal

for now, as it would be hard to achieve even if we would fix the bit-width for all nodes

and arrays. The generator should be fast enough to produce lots of random samples so

that we can cover important cases with a high probability.

13

2. Random test case generation for Boolector
2.3 Algorithm for generating random DAGs

2.3 Algorithm for generating random DAGs

The BTOR format knows around 60 (depending on the format version) different node

types. Each node type has a fixed number of input parameters. The bit-widths of each

parameter depend on the node type. The generator has to consider the rules of each

node type in order to generate a syntactically correct graph.

The implemented algorithm uses bottom up generation, as with this approach a DAG

structure can more easily be created. Using top down generation one would need 2

steps. The first steps generates a tree and in the second step references would need to

be changed in order to create a DAG.

The algorithm starts with an empty data structure and then adds a fixed number of

variable and array nodes.

A loop adds nodes one by one until the maximum graph depth or the maximum node

count are reached. The node type and its bit-width are randomly chosen.

Depending on the node type several parameters have to be determined. For a slice

node low and high values are determined. These define which part of the bit-vector will

be cut out. Node types uext and sext also need a numeric parameter, which defines the

bit-width of the result. This number is stored in the low field of the node. When a value

has been chosen for the width of the first child, this can also affect the width of other

inputs or the output. For example choosing the width of the first child for an add node

would imply the width of the other input and the output. To keep the algorithm simple

all node types were grouped considering the relevant properties for the generator. For

example: add and mul are in the same groups because the same constraints apply to

the bit-widths of their inputs and their output. This way of handling the different node

types resulted in 16 different groups (see rows of table 2.1)

For each array type node the array width is randomly chosen using the pool of existing

array nodes.

When the node’s type and its children’s bit-widths have been determined child nodes

can be selected one by one.

In order to accomplish this we check if there are matching nodes considering bit-width

and array type. Depending on the setting of DAG tendency nodes without a parent are

considered to have priority. If nodes with matching array type and bit-width are found,

one of them is chosen randomly avoiding slice, uext and sext nodes. If no matching

nodes were found then one is chosen randomly anyway, but a node of type slice, uext or

sext is selected and inserted between it and the child to match the bit-width.

14

2. Random test case generation for Boolector
2.3 Algorithm for generating random DAGs

Figure 2.2: Schema of a randomly generated DAG

Each node has a flag which remembers if it already has a parent.

This flag is important for the last phase of the algorithm when all the generated

sub-graphs are merged.

Before merging we have to get rid of array type nodes. Each array type node is

provided with a new read node as its parent. The address of the read is chosen from

the existing nodes. A new variable is introduced if there is no node with a matching

bit-width.

The root node must have bit-width one. Because of this a reduction layer is generated

above the read node layer. This is done by connecting reduction type nodes (operators

prefixed “red”) to each fatherless node with bit-width larger than one.

Finally all sub-graphs are merged using a minimum number of logical operators. The

root node is connected to the last remaining node without a parent. Figure 2.2 shows

the parts of a DAG generated with our algorithm.

15

2. Random test case generation for Boolector
2.3 Algorithm for generating random DAGs

2.3.1 Algorithm parameters

Maximum graph depth, maximum node count These are only approximate values.

They tell the generator when to start merging the generated sub-graphs. Merg-

ing starts when either the maximum node count or the maximum graph depth is

reached. The default values are 9999 and 100.

Start variable count This value tells the generator how many variable nodes should be

generated in the beginning. Note that this is not necessarily the maximum count

of variables in the resulting graph. For the generation of the read layer we need

address nodes and if there are no nodes with a matching bit-width the algorithm

introduces additional variable nodes. The default value is 10.

DAG tendency This parameter indicates the probability in percent of a node having

more than one parent node. For lower values more tree like structures tend to be

generated. The default value is 50.

Node type distribution The exact distribution of nodes can not be defined by the user,

because it contradicts the principle of random generation. However there is an

option that forces the generator to use all node types in the graph. Furthermore

the generation of array type nodes can be switched off. Default settings: array

generation turned on, force usage of all node types turned off.

Bit-widths A minimum and a maximum bit-width can be set. There is also a value that

limits the size of arrays. Actual bit-widths are chosen uniformly random in the

given interval. The default values are minwidth=1, maxwidth=4, arrmaxwidth=4.

2.3.2 Influencing the satisfiability using CNFs

An alternative way of merging the remaining sub-graphs is to generate a CNF. In this

way we can influence the satisfiability of the generated formula.

Using random logic operators in the last step of the algorithm the resulting formulas

tend to be satisfiable, whereas generating a CNF with lots of clauses tends to produce

unsatisfiable results.

The generator uses a parameter called clauses per variable ratio to determine how

many clauses will be generated. To keep the algorithm simple only 3 variables per

clause are used. The 3-SAT problem is NP-hard[11] and there is a heuristic connection

between the number of variables and the number of clauses in a 3-CNF (see [10]).

16

2. Random test case generation for Boolector
2.3 Algorithm for generating random DAGs

The following algorithm is used by the generator to build a 3-CNF:

1. Clauses are generated so that each variable is involved at least once. If the number

of variables cannot be divided by 3 without remainder, 1 or 2 already used variables

are chosen randomly to complete the last clause of this step.

2. Additional clauses are generated until the desired ratio of variables to clauses is

reached.

3. All remaining nodes without a parent are merged using and nodes.

In our algorithm one random number determines which variable is used in a clause

and whether it is negated or not. If there are n variables, we calculate the next random

number x with 0 ≤ x ≤ 2n − 1. In our clause we use variable number x mod n and

if x > n the variable is negated. This method ensures a uniformly distributed selection

from the set of all possible clauses.

17

3. Experiments with the generator

3 Experiments with the generator

Considering randomly generated DAGs a few open questions need to be answered:

1. How do we find bugs more efficiently: Generate

a) lots of small test cases?

b) fewer but larger test cases?

2. How do the settings of the generator influence the satisfiability of generated BTOR

files?

3. Is there a way to check the plausibility of Boolector’s results for our generated

files?

3.1 Setup of experiments

The experiments were performed using these bash scripts and tools:

generate.sh Uses the command line interface of the generator to produce input files.

All parameters except one are fixed. This way we can create lots of different test

cases easily, varying e.g. only the node size.

eval.sh Calls the Boolector executable using a given timeout. Gathers information about

running time and return code.

awk Was used to transform the data files generated by our scripts so that gnuplot could

work with them.

gnuplot Produced the diagrams.

18

3. Experiments with the generator 3.1 Setup of experiments

3.1.1 Varying the graph size

For this experiment we generated a lot of BTOR files and let different Boolector versions

evaluate them. The Boolector versions used here (named after their internal release

number) are not to be confused with any of the officially released versions. Being early

predecessors they contain code defects and were kept solely for the purpose of performing

the experiments described in this text.

It should not matter if we regulate the graph size by graph depth or by maximum

node count, so the latter was chosen. This experiment should give us an overview of how

Boolector has improved over several revisions, however the results are not as comparable

as one would wish because for each Boolector version different BTOR files had to be

used due to incompatibility among the different (legacy) BTOR formats.

For experiment 1 approximate node sizes from 10 to 5000, with steps between of 100

nodes and 4 files generated for each size were used. Version 1 (newer) of Boolector was

only tested with an upper bound of 2500, as larger problems produced only timeouts.

The two oldest Boolector versions obviously could not cope with larger problems either,

so their upper bound was set to 2000. Version 0 and the older version 1 did not yet

support array conditionals nor array equalities, consequently there were a few parse

errors. Version 0 could hardly solve any of the generated problems, so we decided to

skip its diagram. The other generator options were chosen as

-clauses=4 -d=9999 -arrays=3 -writes=5 -vars=10 -minwidth=1

-maxwidth=5 -arrmaxwidth=4 -dag=50 -cnf=false -all=false

-noarrays=false -newformat=true -cnfonly=false

For the latest Boolector version under observation the switch -newformat had to be

used. Boolector was given a maximum time of 10 seconds to evaluate each file and was

run with default settings i.e. no command line arguments. The first file was generated

with a random seed of 1, the random seed being incremented by 1 after each file.

Results are shown in figures 3.1 and 3.2. Many of the files generated caused our

Boolector versions to crash with a segmentation fault. We can say very little about the

performance of the oldest Boolector version. At least it could solve some of the problems

in very little time. Version 1 (old) shows a big improvement over version 0. Version 1

(newer) could already parse all our generated DAGs.

19

3. Experiments with the generator 3.1 Setup of experiments

Figure 3.1: Experiment 1 - Varying file sizes

20

3. Experiments with the generator 3.1 Setup of experiments

Figure 3.2: Experiment 1 - Varying file sizes

21

3. Experiments with the generator 3.1 Setup of experiments

Obviously the solving time increases with the node count in all three images which

is not surprising. Generally we can say that with these settings the major part of

the problems is satisfiable. Only a handful of green crosses can be found in all of the

diagrams. Even the latest Boolector version seems to crash regularly on inputs consisting

of more than 3000 nodes, although it could solve some of the bigger problems. It could

also solve some of the problems that suffered from timeout given 10 seconds more time.

Figures 3.1 and 3.2 do not answer the questions posed at the beginning of this chapter.

To find out which maximum graph size setting finds the highest percentage of bugs using

as little time as possible we created the plot in figure 3.3. For each node size we divided

the number of failure inducing files by the sum of all files of that size. The result was

divided by the average time it took Boolector to evaluate those files. Considering the

definition of our function, it should indicate the optimum graph size for operating the

generator with a peak. The graph in figure 3.3 has two almost equally high maxima, but

it is not yet clear whether increasing the maximum graph size even more could improve

results. As a consequence experiment 2 was repeated, with new BTOR files and an

upper bound of 10000 nodes per DAG, see figure 3.4. Starting at a DAG size of around

2500 the Boolector version under observation almost constantly produced segmentation

faults for larger graphs. All fluctuations of our function after this point are caused by

minor differences in the running time before the crash.

22

3. Experiments with the generator 3.1 Setup of experiments

Figure 3.3: Generator experiment 2 - Shown is a different visualization of the data from
experiment 1.

23

3. Experiments with the generator 3.1 Setup of experiments

Figure 3.4: Generator experiment 2 - New BTOR files were generated for this diagram.
The maximum size was increased to 10000.

24

3. Experiments with the generator 3.1 Setup of experiments

Figure 3.5: Experiment 3 - DAGs with CNF: Varying the ratio of variables to clauses in
the CNF layer

3.1.2 Toggling CNF generation

In the course of experiments 1 and 2 unsatisfiable formulas were rarely generated. In

this section we want to test our CNF generation, and observe how it changes the ratio of

unsatisfiable to satisfiable test cases. This time we let our generator produce files with a

varying node size of 100, 150 and 200. At the same time we kept the number of variable

and array nodes on which the DAGs were built fixed at 10 and 3. We varied the setting

of clauses per variable from 1 to 10, generating 100 test cases for each value.

For randomly generated 3-CNFs a value of about 4.25 clauses per variable is the point

where the ratio of satisfiable to unsatisfiable is about equal, given a large number of

variables. These problems are the hardest to solve[10]. With bit-vector logic connected

to the leafs of a CNF we would expect this number to be lower as the bit-vector logic

imposes additional constraints. As the experimental results in figure 3.5 show, the 50%

mark moves towards lower values, as we increase the ratio DAG size to initial variable

count. In other words the more bit-vector logic we build upon a fixed number of variable

25

3. Experiments with the generator 3.2 Conclusions from generator experiments

and arrays, the less likely the whole structure is satisfiable. The functions in the diagram

were smoothed using B-splines.

3.2 Conclusions from generator experiments

Unfortunately we cannot make a clear statement concerning the optimum parameters

for the generator. As our experiments with the varying graph size showed, the optimum

parameter settings depend largely on the properties of the particular bug. Concerning

the maximum DAG size we conclude that any value of around 1000 or above is probably

good enough for practical reasons as further increasing the value doesn’t significantly

improve the results regarding the efficiency of the search.

Concerning the satisfiability of the generated files we have definitely found a means

of shifting the results in the direction we want: By enabling CNF generation on top

of the DAG we can on the one hand increase the numbers of clauses per CNF variable

and the results will tend to unsatisfiable. On the other hand we can achieve the same

by fixing the number of clauses per variable and increasing the amount of bit-vector

logic in relation to the number of leaf nodes in the graph. Satisfiable examples can be

deliberately generated simply by disabling CNF generation.

Implicitly we have answered the third question from the beginning of the chapter:

Boolector’s results can be probed for plausibility by generating test cases using options

that have a high tendency towards one result. If Boolector gives an unexpected answer

we should then examine this case diligently as it could very likely point us to a bug.

26

4. Delta Debugging

4 Delta Debugging

Delta Debugging is a technique for minimizing failure inducing program input. It pre-

serves the input’s failure inducing property while minimizing the input according to a

desired criterion. This criterion will be the input size in most cases but could also reflect

the program’s running time, or a different property.

In its most general form a usual Delta Debugging technique has 3 steps:

1. Prune the current program input.

2. Run the program on the pruned input.

3. If input is minimal then stop.

If the failure persists then continue with 1.

Else revoke the last pruning step, choose a different part to prune and continue

with 1.

The performance of the algorithm can be increased by pruning with respect to the

input language. The selection method of the part to prune depends on the particular

algorithm. In order to be efficient the algorithm has to take the specific structure of the

input into account.

4.1 Existing algorithms

In this part we will discuss Delta Debugging algorithms from the literature and how

they were modified and implemented to better fit the needs of the BTOR format.

4.1.1 The ddmin algorithm

This algorithm was introduced by Zeller in 2002. We discuss the version printed in [4]. It

regards the input file as a set which can be partitioned as needed. Partitions in terms of

the algorithm are considered having roughly the same size. The empty set (no input) is

27

4. Delta Debugging 4.1 Existing algorithms

considered as passing the test by default. The algorithm performs a kind of binary search

for the smallest possible failure inducing subset of the input. Zeller defines the smallest

possible failure inducing input as being 1-minimal: removing a single character from it

would cause the failure to disappear. For each test the program under observation is

called with the current subset of the original failing test case.

The Minimizing Delta Debugging Algorithm ddmin:

1. Let count(partitions) = 2, current test case fails, empty test case passes.

2. Test each partition of current test case. If test of partitioni fails then replace test

case by partitioni and continue with 2. Test complement of each partition. If test

of complementi fails then replace test case by complementi and goto 2.

3. If number of partitions equals element count in test case then goto 4.

Else double the number of partitions. If there are more partitions than elements

in the test case use element count of test case instead. Goto 2.

4. Done. Current test case is 1-minimal.

The algorithm was written in prose for easier readability, consult [4] for the original,

more formal definition. In ideal cases, for example when a single element causes the

failure, the running time of ddmin is that of binary search. However in the worst case

ddmin needs up to n2 + 3n tests for an input file consisting of n elements. This occurs

when the failure inducing parts form a pattern at the finest (element) granularity. The

example in figure 4.1 contains only 4 elements. Element 1, 2 and 3 make the failure

appear, but only when they are all part of the test case. We suppose that the test result

is unresolved (indicated by a “?”) when the test case only contains a subset of the 3.

We assume a simple implementation which does not cache results, only in the case of

2 partitions the implementation skips the unnecessary test of the complement. With

result caching some tests would only need to be performed once.

Issues with the ddmin implementation

In implementing ddmin for the BTOR format, we came across several problems. Fortu-

nately their solution could also be applied in the algorithms that are presented next:

• BTOR files cannot be arbitrarily cut into pieces. Single characters cannot be used

as our elements. This is only a minor problem, which we solve by defining an

element to be one node of a DAG.

28

4. Delta Debugging 4.1 Existing algorithms

Test no. 1 2 3 4 result comment
1 1 2 ?
2 3 4 ? increase granularity: 4
3 1 ?
4 2 ?
5 3 ?
6 4 pass
7 2 3 4 ?
8 1 3 4 ?
9 1 2 4 ?
10 1 2 3 fail decrease granularity: 3
11 1 ?
12 2 ?
13 3 ?
14 2 3 ?
15 1 3 ?
16 1 2 ?

Result 1 2 3 needed tests: 16

Figure 4.1: ddmin: example with a quadratic number of tests

• We cannot simply remove a partition because then the BTOR file would become

syntactically incorrect. When a partition consisting of several nodes is removed,

we have to somehow adjust affected nodes which reference the removed nodes.

• We also want to apply Delta Debugging to input files which force Boolector into

an infinite loop. As a consequence our initial test case has an indeterminate result

according to Zeller’s algorithm. This conflict can be resolved by allowing only two

test case results: passed and failed. Passed means to us that the return code of

the Boolector process instance didn’t change compared to the initial return code.

Additionally our implementation uses a timeout value for handling infinite running

times. When Boolector times out on the initial test case, then the goal during Delta

Debugging is to keep this initial property in smaller test cases, i.e. the minimized

test case should also time out.

By defining an element to be one node of the DAG, we lose some granularity. We must

assume that the failing test case is not a simple parsing problem for example caused by

a misspelled keyword. This is nothing to worry about since we can assume that the

BTOR format is simple enough, that problems with the parser can all be well covered

by unit-tests. Removable partitions in Boolector are all sub-graphs of the DAG. When

29

4. Delta Debugging 4.1 Existing algorithms

and x 1 0

y x and y y 0
1 x 1 0
0 0 0 0

or x 1 0

y x or y 1 y
1 1 1 1
0 x 1 0

nand x 1 0

y x nand y -y 1
1 -x 0 1
0 1 1 1

nor x 1 0

y x nor y 0 -y
1 0 0 0
0 -x 0 1

add x 1 0

y add(x,y) add(y, 1) y
1 add(1,x) add(1, 1) 1
0 x 1 0

implies x 1 0

y y implies x 1 -y
1 x 1 0
0 1 1 1

xor x 1 0

y y xor x -y y
1 -x 0 1
0 x 1 0

eq x 1 0

y eq(y, x) eq(y,1) eq(y, 0)
1 eq(1, x) 1 0
0 eq(0, x) 0 1

not x 1 0

-x 0 1

cond(x, y, z) x = 1 x = 0

y z

Figure 4.2: Operator simplification rules - A lot more rules could have been implemented
but the goal was not make it too simple for Boolector. Note that 1 + 1 = -2 in two’s
complement. This was not used, as it does not help simplification.

these sub-graphs are removed, they are replaced by single var or zero nodes, the latter

having an optional negation sign. So for each removal of a sub-graph we test up to 3

cases, depending on which one works. zero nodes represent bit-vectors with every bit

being set to logical 0. When writing -zero we mean a negated zero node i.e. a bit-vector

consisting of logical ones only.

When a sub-graph consists of one node only, the before mentioned introduction of

additional nodes doesn’t cause a size reduction of the DAG. However we can reduce

the DAG size anyway because the newly introduced zero nodes increase the probability

that the DAG can be simplified using a predefined rule set. In our implementation the

simplification step is optional for each algorithm. We will compare results with and

without simplification in chapter 5. Figure 4.2 offers an overview on the implemented

simplification rules for bit-vectors. The vector containing only ones is denoted as 1, the

vector with only zeros as 0.

30

4. Delta Debugging 4.1 Existing algorithms

Algorithm: ddmin for BTOR

1. Parse BTOR input file. The result is a node array.

2. Traverse the DAG using DFS thereby numbering nodes ascendingly. Sort the node

array using those numbers.

3. Call Boolector on BTOR DAG to get the initial return value (which also encodes

a possible timeout)

4. Set number of partitions to 1, create a zero node for each bit-width.

5. If partitions == current DAG size then write out the DAG and exit.

partitions:= max(current DAG size, 2 * partitions), calculate partitions using cur-

rent DAG size.

6. For each partition:

a) Back up the DAG

b) Replace partition nodes by zero nodes while keeping the DAG syntactically

correct. Simplify the DAG (optional). Call Boolector.

c) If return value doesn’t equal the initial one then restore DAG.

else partitions:= 1, goto 5.

d) Replace partition nodes by -zero nodes. Simplify the DAG (optional). Call

Boolector.

e) If return value doesn’t equal the initial one then restore DAG.

else partitions:=1, goto 5.

f) Replace partition nodes by new var nodes. Simplify the DAG (optional). Call

Boolector.

g) If return value doesn’t equal the initial one then restore DAG.

else partitions:= 1, goto 5.

7. For each partition complement: perform steps a to g.

Goto 5.

31

4. Delta Debugging 4.1 Existing algorithms

Allowing only pass and fail as test results in our implementation one could conjecture

that the running time of the worst case is reduced. Let our input consist of n elements:

1 . . . n. Let the failure inducing part be caused by all even numbered elements together,

with n being even. In the first phase of the algorithm all test cases pass until granularity

n is reached. The test of the last complement on that granularity fails. Up to that

point 2(2 + 4 + 8 + . . . + n) = 2(n + n
2

+ n
4

+ . . .) = 4n tests were performed in total.

Granularity is decreased to n− 1. Then again n− 1 tests pass and the first complement

fails. The remaining subset is reduced by 1 element until it is minimal. The number of

tests performed in phase 2 are in total:

(n− 1 + 1) + (n− 2 + 1) + (n− 3 + 1) + . . .︸ ︷︷ ︸
n
2

=

n + (n− 1) + (n− 2) + . . .︸ ︷︷ ︸
n
2

=

n(n + 1)

2
−

(n
2
− 1)(n

2
− 1 + 1)

2
= 3

8
n2 + 3

4
n

This proves that our implementation of ddmin still needs O(n2) tests 1 in the worst

case.

4.1.2 Hierarchical Delta Debugging

Hierarchical Delta Debugging algorithms suit the structure of the BTOR format better

than the plain ddmin algorithm. They were specifically designed for input formats with

a tree structure and thus can be extended to work with DAGs easily. The hierarchical

algorithms and their analysis was taken from [3].

The basic HDD algorithm:

procedure HDD(i n p u t t r e e)

l e v e l := 0

nodes := TAGNODES(input t r e e , l e v e l)

while nodes <> 0 do

minconf ig = DDMIN(nodes)

PRUNE(input t r e e , l e v e l , minconf ig)

1Actually we perform each test three times (replace with zero, -zero and var). This is not shown in
the calculation, as it does not affect the asymptotic running time.

32

4. Delta Debugging 4.1 Existing algorithms

l e v e l := l e v e l + 1

nodes := TAGNODES(input t r e e , l e v e l)

end while

end procedure

As we can see HDD applies ddmin to each tree level. It starts at the root level. The

nodes of the current level are tagged. Then a minimum configuration of these nodes

is determined. The tree is pruned and the algorithm increases the level by one. The

performance of the algorithm depends on the shape of the tree, more balanced trees take

less running time. Asymptotically HDD never performs more tests than ddmin. In the

worst case O(n2) tests are performed, n being the number of nodes in the tree.

The implementation of HDD for the BTOR format was straightforward: Using the

already implemented ddmin algorithm for BTOR we only had to replace sub-trees by

sub-graphs in the algorithm. Every time we prune the DAG, we prune an entire sub-

graph instead of only one reference to it.

4.1.3 The HDD+ algorithm

HDD+ is a simple extension of the HDD algorithm. First it performs HDD on the input,

then BFS (see 4.3.1) is used to remove each node exactly once.

procedure HDDPLUS(i n p u t t r e e)

HDD(i n p u t t r e e)

o l d s i z e := 1

new s ize := 0

while new s ize < o l d s i z e

o l d s i z e := NODECOUNT(i n p u t t r e e)

BFS(i n p u t t r e e)

new s ize := NODECOUNT(i n p u t t r e e)

end while

end procedure

4.1.4 The HDD* algorithm

This algorithm performs HDD repeatedly on the input until no more size reduction is

achieved.

procedure HDDSTAR(i n p u t t r e e)

o l d s i z e := NODECOUNT(i n p u t t r e e)

33

4. Delta Debugging 4.2 deltabtor’s algorithm

new s ize := 0

while new s ize < o l d s i z e

o l d s i z e := NODECOUNT(i n p u t t r e e)

HDD(i n p u t t r e e)

new s ize := NODECOUNT(i n p u t t r e e)

end while

end procedure

4.2 deltabtor’s algorithm

deltabtor is a C program by Armin Biere, written before the start of this project. It

is a simple yet effective Delta Debugging application and the first that could handle

BTOR files. The algorithm involved has an asymptotic running time complexity of

O(n). deltabtor is quite similar to ddmin. The main difference is that deltabtor does not

care about complements which makes it faster than ddmin. Complements are handled

implicitly.

The workings of deltabtor are illustrated in figure 4.3. It tries to remove nodes by

setting partitions to zero, -zero or var nodes. Then it simplifies the resulting DAG and

calls a given executable to find out if the new DAG still produces a failure. deltabtor

implements less simplification rules than Boolector Debugger. In the image we see how

the partitions are chosen. First deltabtor uses the whole file except the root node (1),

then continues with (2), (3) and so on. In the process smaller and smaller parts are cut

off the DAG. Every time the DAG size is reduced, the intermediate result is written to a

temporary file. In this way deltabtor can be terminated any time and continue to work

on the same file when told to. For n nodes in the input files it performs a maximum of

3(n + n
2

+ n
4

+ . . . + 1) = 6n tests.

deltabtor did not participate in the evaluation in chapter 5. As the C implementation

was already working satisfactorily when the Boolector Debugger was written there was

no need for a reimplementation.

4.3 New proposed algorithms

This section describes the BFS and LW algorithms which can both be applied to generic

hierarchical data structures as well as BTOR files. Following up are the changeref and

34

4. Delta Debugging 4.3 New proposed algorithms

Figure 4.3: deltabtor partitioning scheme

changeref+ binary search algorithms, which were both especially developed for BTOR

files with better performance in mind.

4.3.1 BFS algorithm

The BFS (breadth first search) algorithm traverses the given DAG in BFS style. For

each node we try our three replacements (zeros, ones and vars), simplify the DAG and

call Boolector. This algorithm was implemented for completeness and because it is used

by HDD+. In the worst case it calls Boolector 3n times (with n nodes in the DAG).

The recursive BFS procedure is initially called with the root node as argument 1:

procedure BFS(node , btor dag)

c h i l d r e n = GETCHILDREN(node)

for each c h i l d c in c h i l d r e n

backup := BACKUP(btor dag)

SETTOZERO(c)

SIMPLIFY(btor dag)

re turn code = CALLBOOLECTOR(btor dag)

i f r e turn code == i n i t i a l r e t u r n c o d e

cont inue

else

btor dag := backup

end i f

SETTOONE(n o d e l i s t)

SIMPLIFY(btor dag)

35

4. Delta Debugging 4.3 New proposed algorithms

r e turn code = CALLBOOLECTOR(btor dag)

i f r e turn code == i n i t i a l r e t u r n c o d e

cont inue

else

btor dag := backup

end i f

SETTOVAR(n o d e l i s t)

SIMPLIFY(btor dag)

re turn code = CALLBOOLECTOR(btor dag)

i f r e turn code == i n i t i a l r e t u r n c o d e

cont inue

else

btor dag := backup

end i f

end for

for each c h i l d c in c h i l d r e n

BFS(c , btor dag)

end for

end procedure

4.3.2 LW algorithm

LW (layerwise) is an algorithm which tries to remove complete layers of the BTOR file.

procedure LW(btor dag)

depth := 0 ;

maxdepth := 1 ;

while depth < maxdepth

n o d e l i s t := GETNODES(btor dag , depth)

i f COUNT(n o d e l i s t) == 0

return

end i f

maxdepth := MAXDEPTH(btor dag)

backup := BACKUP(btor dag)

SETTOZERO(n o d e l i s t)

SIMPLIFY(btor dag)

36

4. Delta Debugging 4.3 New proposed algorithms

r e turn code = CALLBOOLECTOR(btor dag)

i f r e turn code <> i n i t i a l r e t u r n c o d e

btor dag := backup

else

depth := depth + 1

cont inue

end i f

SETTOONE(n o d e l i s t)

SIMPLIFY(btor dag)

re turn code = CALLBOOLECTOR(btor dag)

i f r e turn code <> i n i t i a l r e t u r n c o d e

btor dag := backup

else

depth := depth + 1

cont inue

end i f

SETTOVAR(n o d e l i s t)

SIMPLIFY(btor dag)

re turn code = CALLBOOLECTOR(btor dag)

i f r e turn code <> i n i t i a l r e t u r n c o d e

btor dag := backup

else

depth := depth + 1

end i f

end while

end procedure

We define the depth of a node n in a DAG as the longest possible path from the root

node to n. The algorithm starts at depth 0 (root node) and increases the working depth

in the DAG with each iteration. This way we hope to remove as many nodes as early as

possible. At each depth we try to set the current node layer to all-zeros, all-ones vectors

or new var nodes of matching bit-width.

37

4. Delta Debugging 4.3 New proposed algorithms

4.3.3 changeref algorithm

The idea of this algorithm is to short-circuit middle parts of the DAG, which possibly

contain information irrelevant to the failure. For each node, starting with the root, we

change references to its children, so that they point to other nodes deeper in the graph.

We cannot arbitrarily connect nodes as the bit-widths must match. With array type

references also the array size has to fit. The candidate nodes are sorted according to

their graph depth. We start trying the nodes in greater depths first, so we can cut off

as many nodes as possible if the failure is located near the leaf nodes. This strategy can

also be thought of as putting a root node over each sub-graph and then probing it for

failure. An advantage of this algorithm is that it does not have to introduce new nodes

artificially, so successive simplification is not needed, although we implemented it to be

able to compare if the achieved results are different. Suppose our algorithm is working

on the DAG shown in figure 4.4 and the current node is the and node. Our options for

edge x are indicated by dotted lines. The number next to the dotted line indicates in

which order these options are tried.

The changeref algorithm:

procedure changere f (node , btor dag , depth)

i f VISITED(node)

re turn

end i f

for each c h i l d c in GETCHILDREN(node)

n o d e l i s t = GETMATCHINGNODES(c , depth+1)

backup := BACKUP(btor dag)

for node n in n o d e l i s t

c := n

return := CALLBOOLECTOR(btor dag)

i f r e turn <> i n i t i a l r e t u r n

btor dag := backup

else

break

end i f

end for

end for

38

4. Delta Debugging 4.3 New proposed algorithms

Figure 4.4: changeref algorithm: alternative positions of edge x

SETVISITED(node)

for each c h i l d c in GETCHILDREN(node)

changere f (c , btor dag , depth+1)

end for

end procedure

4.3.4 Improving the changeref algorithm

The changeref algorithm was initially developed to reduce the size of BTOR files which

could not be made smaller by other already existing algorithms. This algorithm is rather

expensive if it is used on large DAGs. Consider the case in figure 4.5. We are currently

processing the read node. The irrelevant children of the write nodes and the rest of

the DAG are not shown for clarity. Suppose the failure occurs when at least one write

is present in this part of the DAG. Our algorithm tries to set reference x to write 1,

write 2 and so on. This way it only removes one node per call to Boolector. We have

n + (n− 1) + (n− 2) + . . . + 2 + 1 calls, in sum n(n+1)
2

calls. In other words in this worst

case changeref performs O(n2) calls to the executable (Boolector in our case), with n

nodes in the DAG. This degenerate case is not unlikely to appear in practice, as long

write node chains are commonplace in BTOR files. Consequently it made sense to invest

time in the improvement of the changeref algorithm.

Our worst case scenario shows us that it is not always necessary to try all matching

39

4. Delta Debugging 4.4 Combining algorithms

nodes deeper in the graph. The idea is to leave out certain nodes in the search systemat-

ically. We decided to use a kind of binary search approach, hence the name changeref+

binary search:

1. The candidate nodes are sorted by graph depth ascendingly.

2. Try the node near the middle of the depth interval first.

3. If the last node did not work then divide the interval closer to the root into halves.

Again try the node between those halves.

. . .

Using this approach our possible choices shrink from n to log n. So in the worst case

the number of performed tests is:

log2(n) + log2(n− 1) + log2(n− 2) + . . . + 2 =

log2(n) + log2(n− 1) + log2(n− 2) + . . . + log2(1) =

log2(n(n− 1)(n− 2) . . . (n− n + 1)) = log2(n!)

From theory we know that log2(n!) is also the upper bound of comparisons for the best

sorting algorithms [12], so log2(n!) is of O(n log n). We can conclude that the changeref+

algorithm performs much better in the worst case than the original changeref algorithm.

The drawback is that not all possible combinations are tried. One could combine the

two changeref algorithms into one by first performing the binary search version and then

using changeref on the presumably smaller file.

4.4 Combining algorithms

In reality when there is a failure inducing input file we need not settle on one particular

algorithm to reduce the size of the file. We simply choose the algorithm which works best

on the given file and call it repeatedly if necessary. This is where the Boolector Debugger

(see chapter A) comes in handy. If one algorithm doesn’t succeed in reducing the size

sufficiently, we can try another algorithm on the already reduced file. If one algorithm

can cut off only a little piece maybe another algorithm can again make progress and so

on.

A little experimenting is always needed because none of our algorithms can give us a

guarantee to succeed in making the given input smaller. Modifying the algorithms to

40

4. Delta Debugging 4.4 Combining algorithms

Figure 4.5: changeref algorithm - worst case example

work with the BTOR format involves a trade-off: We lost the deterministic running time

of the original algorithms by making them work with the BTOR format. The running

time of our algorithms is depending heavily on the specific DAG structure. Additionally

the effect of simplification on the running time is hard to calculate.

In our last experiment we tried to reduce some of our input files as much as possible

using all of the algorithms. The strategy was to apply one algorithm as long as it can

reduce the size of the file, then move on to the next algorithm. HDD+ and HDD* were

left out as HDD+ is just HDD* followed by BFS, and HDD* is just repeated use of

HDD. We used 3 seconds as timeout and simplification was turned on.

For our files ex1 to ex5 the node size developed as follows:

ex1 : 732
DDMIN−−−−−→ 72

HDD−−−→ 30
BFS−−−→ 30

LW−−→ 30
CHANGEREF+−−−−−−−−−−→ 22

CHANGEREF−−−−−−−−−→ 17

ex2 : 992
DDMIN−−−−−→ 85

HDD−−−→ 57
BFS−−−→ 54

LW−−→ 54
CHANGEREF+−−−−−−−−−−→ 29

CHANGEREF−−−−−−−−−→ 28

ex3 : 1687
DDMIN−−−−−→ 44

HDD−−−→ 25
BFS−−−→ 20

LW−−→ 20
CHANGEREF+−−−−−−−−−−→ 17

CHANGEREF−−−−−−−−−→ 17

ex4 : 1850
DDMIN−−−−−→ 53

HDD−−−→ 27
BFS−−−→ 27

LW−−→ 27
CHANGEREF+−−−−−−−−−−→ 22

CHANGEREF−−−−−−−−−→ 21

ex5 : 1853
DDMIN−−−−−→ 72

HDD−−−→ 38
BFS−−−→ 38

LW−−→ 38
CHANGEREF+−−−−−−−−−−→ 19

CHANGEREF−−−−−−−−−→ 19

The order in which we used the algorithms was deliberately chosen: From our exper-

41

4. Delta Debugging 4.4 Combining algorithms

iments we knew that ddmin is the most effective algorithm so we started with it. Then

we tried our hierarchical alternative HDD. We finished with changeref+ and changeref.

We also tried to continue the loop over these algorithms but starting again with ddmin

did not improve any of the results. The content of these 5 minimized BTOR files can

be found in chapter A.3.

42

5. Implemented Delta Debugging algorithms in comparison

5 Implemented Delta Debugging

algorithms in comparison

In this section we compare the performance of the implemented Delta Debugging algo-

rithms on practical examples. From the experiments with the generator we arbitrarily

chose 10 example BTOR files in the most recent BTOR format which caused Boolec-

tor (internal release version 2.907) to fail. The Delta Debugger was instructed to kill

Boolector if it didn’t succeed within 8 seconds. Further it was told to check every 100ms

if the Boolector process is still running. Boolector was run with its default settings, no

command line arguments specified. All experiments were done twice with simplification

turned on and off. The comparison doesn’t contain the actual running times. We rather

show how often the Boolector executable was called while Delta Debugging a certain

file. This measure is independent of the hardware.

The first two tables (5.1, 5.2) summarize the executable calls performed by each algo-

rithm. Here changeref and HDD* performed the most calls with and without simplifica-

tion. On average changeref+ performed less calls than changeref and HDD* needed more

calls than HDD+. LW and ddmin were best with respect to number of calls. Turning

off simplification reduced the number of calls for every algorithm, especially for HDD

and HDD+, whereas changeref+ was not affected much by this.

Tables 5.3 and 5.4 show the initial versus final sizes of the files in nodes. The table

rows are sorted ascendingly by average final node count. The best three algorithms in

this category were HDD*, changeref and HDD+. With simplification turned on BFS

produced smaller results than changeref+, whereas without simplification their order

was reversed. The order of the other algorithms was not affected much by simplification,

although with simplification the best algorithm was changeref rather than HDD*. Also

with simplification on HDD*, BFS, changeref+ and HDD found smaller input configu-

rations on average.

Another possibility of comparing the different algorithms is shown in tables 5.5 and

5.6. For each example file we calculated 100 × (1 − sizefinal

sizeinitial
) and divided the result by

43

5. Implemented Delta Debugging algorithms in comparison

Algorithm ex1 ex2 ex3 ex4 ex5
1
10

∑10
i=1 exi

LW 59 65 57 51 54 57.9
DDMIN 394 138 64 65 166 128.2
BFS 267 319 247 359 640 399
CHANGEREF+ 243 489 261 358 690 537
HDD 2972 214 172 493 4292 946
HDD+ 3226 339 346 669 4553 1171
HDD* 4038 499 758 1184 4742 1487.4
CHANGEREF 2610 2331 1942 2767 2626 3397.3

ex6 ex7 ex8 ex9 ex10

LW 55 68 53 58 59
DDMIN 116 92 96 57 94
BFS 210 468 358 437 685
CHANGEREF+ 470 1199 641 339 680
HDD 178 188 280 331 340
HDD+ 317 468 421 481 890
HDD* 482 556 842 948 825
CHANGEREF 2149 6181 1563 6170 5634

Table 5.1: Algorithms compared by number of calls to executable. Simplification on.

Algorithm ex1 ex2 ex3 ex4 ex5
1
10

∑10
i=1 exi

LW 59 65 57 51 54 57.9
DDMIN 74 149 80 72 148 90.2
HDD 199 399 196 431 488 291.2
BFS 192 488 256 668 379 379.3
HDD+ 335 630 335 542 671 476.3
CHANGEREF+ 438 357 418 558 629 521.9
HDD* 892 2224 1010 686 1566 1275.3
CHANGEREF 2116 1696 1951 3724 2869 2900.4

ex6 ex7 ex8 ex9 ex10

LW 55 68 53 58 59
DDMIN 81 63 88 52 95
HDD 221 218 137 314 309
BFS 193 389 504 320 404
HDD+ 382 459 261 637 511
CHANGEREF+ 199 1566 535 286 233
HDD* 802 1338 765 1593 1877
CHANGEREF 2163 5487 2070 2183 4745

Table 5.2: Algorithms compared by number of calls to executable. Simplification off.

44

5. Implemented Delta Debugging algorithms in comparison

Algorithm ex1 ex2 ex3 ex4 ex5
1
10

∑10
i=1 exi

732 992 1687 1850 1853
HDD* 57 34 31 30 26 33.6
CHANGEREF 61 37 28 32 41 41.9
HDD+ 60 33 37 37 62 48.2
BFS 51 66 49 69 125 72.2
CHANGEREF+ 47 39 44 65 88 78.7
HDD 240 78 184 229 950 256.3
DDMIN 593 519 982 671 1414 952
LW 731 977 1576 1685 1761 1632.3

ex6 ex7 ex8 ex9 ex10

1881 1981 2118 2219 2278
HDD* 29 39 33 27 30
CHANGEREF 25 52 33 64 46
HDD+ 30 42 32 28 121
BFS 33 78 77 73 101
CHANGEREF+ 78 166 111 51 98
HDD 147 108 260 154 213
DDMIN 1049 1496 634 819 1343
LW 1648 1975 1801 2111 2058

Table 5.3: Algorithms compared by final node count. Row 2 contains the initial sizes of
the examples before Delta Debugging. Simplification on.

45

5. Implemented Delta Debugging algorithms in comparison

Algorithm ex1 ex2 ex3 ex4 ex5
1
10

∑10
i=1 exi

732 992 1687 1850 1853
CHANGEREF 38 44 28 33 41 38.2
HDD* 25 61 41 23 43 38.8
HDD+ 32 52 35 26 50 43.1
CHANGEREF+ 77 63 64 85 95 80.3
BFS 49 107 67 162 92 90
HDD 163 332 234 384 391 266.3
DDMIN 531 784 1175 691 1113 944.1
LW 731 977 1576 1685 1761 1632.3

ex6 ex7 ex8 ex9 ex10

1881 1981 2118 2219 2278
CHANGEREF 26 61 28 54 29
HDD* 20 42 33 54 46
HDD+ 35 44 32 77 48
CHANGEREF+ 33 196 91 58 41
BFS 46 93 110 73 101
HDD 201 201 207 307 243
DDMIN 1137 1040 692 925 1353
LW 1648 1975 1801 2111 2058

Table 5.4: Algorithms compared by final node count. Row 2 contains the initial sizes of
the examples before Delta Debugging. Simplification off.

46

5. Implemented Delta Debugging algorithms in comparison

Algorithm ex1 ex2 ex3 ex4 ex5 100− 10

√∏10
i=1(100− exi)

DDMIN 0.048 0.346 0.653 0.980 0.143 0.508
HDD 0.023 0.431 0.518 0.178 0.011 0.304
BFS 0.348 0.293 0.393 0.268 0.146 0.275
CHANGEREF+ 0.385 0.196 0.373 0.270 0.138 0.222
HDD+ 0.028 0.285 0.283 0.146 0.021 0.183
HDD* 0.023 0.194 0.130 0.083 0.021 0.117
LW 0.002 0.023 0.115 0.175 0.092 0.111
CHANGEREF 0.035 0.041 0.051 0.036 0.037 0.036

ex6 ex7 ex8 ex9 ex10

DDMIN 0.363 0.266 0.730 1.107 0.437
HDD 0.516 0.503 0.313 0.281 0.267
BFS 0.468 0.205 0.269 0.221 0.140
CHANGEREF+ 0.204 0.076 0.148 0.288 0.141
HDD+ 0.310 0.209 0.234 0.205 0.106
HDD* 0.204 0.176 0.117 0.104 0.120
LW 0.164 0.004 0.282 0.084 0.164
CHANGEREF 0.046 0.016 0.063 0.016 0.017

Table 5.5: Algorithms compared using the quality measure reduction[%]
call

. Simplify on.

Algorithm ex1 ex2 ex3 ex4 ex5 100− 10

√∏10
i=1(100− exi)

DDMIN 0.371 0.141 0.379 0.870 0.270 0.556
HDD 0.391 0.167 0.439 0.184 0.162 0.338
BFS 0.486 0.183 0.375 0.137 0.251 0.291
CHANGEREF+ 0.204 0.262 0.230 0.171 0.151 0.251
HDD+ 0.285 0.150 0.292 0.182 0.145 0.225
LW 0.002 0.023 0.115 0.175 0.092 0.111
HDD* 0.108 0.042 0.097 0.144 0.062 0.089
CHANGEREF 0.045 0.056 0.050 0.026 0.034 0.039

ex6 ex7 ex8 ex9 ex10

DDMIN 0.459 0.754 0.765 1.121 0.427
HDD 0.402 0.412 0.659 0.274 0.289
BFS 0.505 0.245 0.188 0.302 0.237
CHANGEREF+ 0.493 0.058 0.179 0.341 0.421
HDD+ 0.257 0.213 0.377 0.152 0.192
LW 0.164 0.004 0.282 0.084 0.164
HDD* 0.123 0.073 0.129 0.061 0.052
CHANGEREF 0.046 0.018 0.048 0.045 0.021

Table 5.6: Algorithms compared using the quality measure reduction[%]
call

. Simplify off.

47

5. Implemented Delta Debugging algorithms in comparison

with simplification without simplification
Algorithm avg(reduced nodes) avg(calls) avg(reduced nodes) avg(calls)
LW 119.8 57.9 119.8 57.9
BFS 1679.9 399 1662.1 379.3
DDMIN 800.1 128.2 808 90.2
HDD 1495.8 945 1485.8 291.2
HDD+ 1703.9 1171 1709 476.3
HDD* 1718.5 1487.4 1713.3 1275.3
CHANGEREF 1710.2 3397.9 1713.9 2900.4
CHANGEREF+ 1673.4 537 1671.8 521.9

Table 5.7: DD-algorithms: overall performance

the number of calls performed by the algorithm. Obviously, the bigger the reduction an

algorithm achieves, the better. By weighting the reduction percentage with the number

of calls, we arrive at a single number which expresses the effectiveness of the algorithm.

When calculating the average of the 10 examples, we have to bear in mind that the

geometric mean needs to be applied, as our reduction rate is expressed in percent. The

averages are shown in the last column of the tables. According to this measure, ddmin

was the clear winner, followed by HDD and BFS.

Eventually table 5.7 sums up the overall performance of our algorithms. To choose

a unique winner we have to define our most important criterion: If it is reduction then

HDD* with simplification and changeref can be recommended. If we seek efficiency

as defined before then ddmin should be our first choice. changeref+ is a good choice

somewhere in between with a much higher reduction than ddmin, consuming only a little

more time on average.

In general we can conclude from our experiments that simplification does not signifi-

cantly change the results. Depending on the particular algorithm it may slightly improve

results.

48

6. Future work

6 Future work

Concerning random generation of bit-vector logic there are some aspects of our generator

that should be extended in future versions. These extensions could then be used as a

basis for additional experiments.

• Include better DAG shaping support in the generator. The current implementation

of the generator supports only limited ways of DAG shaping. For example imposing

a limit of nodes per layer we could produce arbitrarily shaped DAGs.

• Investigate code coverage / branching behavior of Boolector on generated files in

detail.

• Include support for model checking extensions in the generator (next and anext)

• Measure quantitatively how satisfiability is influenced by bit-vector logic, taking

into account also the shape of the DAG.

Possible improvements of the Boolector Debugger:

• Extended the Boolector Debugger so that results of tests are cached and further

calls with the same configuration can be avoided. This could be realized by storing

the already tested files in the file system, of course this would mean to accept a

slight performance penalty. The penalty could be kept small by hashing the already

tested files with SHA1.

• Find a way to decrease bit-widths in a reduced BTOR file. So far our Delta

Debugging efforts only focused on decreasing the size of the file by reducing the

number of nodes. At the end of this process we could also try to decrease the bit-

widths and array-lengths involved in the file to find a truly minimal configuration

according to the BTOR grammar. During this process we could also attempt

to remove superfluous negations. A sub-optimal procedure performing this task

could easily become very complicated as it has to preserve syntactical correctness.

If we allow syntactically incorrect inputs one would need to compensate this by

performing a significantly higher number of calls to the executable.

49

7 Summary

In this work we presented a way to generate random bit-vector logic with arrays. Our

approach is to group node types with similar constraints (bit-width and array-length in

our case) to reduce complexity. We start by generating the leaf nodes and build the

DAG on top of this layer.

We found a way to influence the satisfiability of generated files. Our solution is based

on generating a CNF on top of the bit-vector logic. By performing experiments with

the generator in connection with Boolector we could show that the probability of an

unsatisfiable case increases when more bit-vector logic is created for a fixed number of

leaf nodes.

In the second part of the text we discussed Delta Debugging, which is essentially a

search problem, which can be solved using several existing methods.

We described algorithms from the literature and proposed some new algorithms specif-

ically designed for the BTOR format, which in theory could also be applied to similar

input formats with a little effort.

Our main contribution are the changeref and changref+ algorithm, the latter having

an asymptotic running time of O(n log n) on a DAG with n nodes. In our comparison of

algorithms changeref was shown to be able to reduce bit-vector logic in size even further

than other algorithms.

Regarding Delta Debugging as a search problem, the algorithms involved have already

undergone a thorough evaluation in the past and thus there is not much left to be

improved in the most general case (on character level). However given a concrete input

format, BTOR in our case, there are still problems to be solved in order to apply the

existing general Delta Debugging solutions to the particular input format effectively.

From a practical point of view we conclude that the development of our random

generator and Delta Debugging tools for the BTOR format has paid off in the long run,

as many bugs in Boolector could be found long before the first official release.

50

Bibliography

[1] Robert Brummayer and Armin Biere Lemmas on Demand for the Extensional

Theory of Arrays SMT 2008 6th International Workshop on Satisfiability Modulo

Theories, Princeton, New Jersey, USA, 2008.

[2] Robert Brummayer, Armin Biere and Florian Lonsing BTOR: Bit-Precise Mod-

eling of Word-Level Problems for Model Checking BPR 2008 1st International

Workshop on Bit-Precise Reasoning, Princeton, New Jersey, USA, 2008.

[3] Ghassan Misherghi, Zhendong Su HDD: Hierarchical Delta Debugging In Pro-

ceedings of the 28th International Conference on Software Engineering ICSE 2006,

Shanghai, China, 2006.

[4] Andreas Zeller and Ralf Hildebrandt Simplifying and Isolating Failure-Inducing

Input IEEE Transactions on Software Engineering, Vol. 28(2), 2002.

[5] Andreas Zeller Isolating Cause-Effect Chains from Computer Programs In Pro-

ceedings of the 10th ACM SIGSOFT Symposium on Foundations of Software

Engineering, pages 1-10, Charleston, South Carolina, USA, 2002.

[6] Makoto Matsushita, Masayoshi Teraguchi, Katsuro Inoue Effective Testing De-

bugging Methods and Its Supporting System with Program Deltas In Proceedings

of the International Symposium on Principles of Software Evolution ISPSE 2000,

Kanazawa, Japan, 2000.

[7] Oliver Dagenais, Dwaight Deugo TODD: Test-Oriented Development and Debug-

ging In Proceedings of the Fifth International Conference on Software Engineering

Research, Management and Applications SERA 2007, Busan, Korea, 2007.

[8] Andreas Zeller Automated Debugging: Are We Close? Computer Vol. 34 Issue

11, pages 26-31, 2001.

51

[9] Andreas Zeller Why Programs Fail: A Guide to Systematic Debugging Morgan

Kaufmann, ISBN 1558608664, 2005.

[10] David Mitchell, Bart Selman, Hector Levesque Hard and Easy Distributions of

SAT Problems In Proceedings of the Tenth National Conference on Artificial

Intelligence AAAI-92, San Jose, California, USA, 1992.

[11] Stephen A. Cook The Complexity of Theorem-Proving Procedures In Proceedings

of the 3rd Annual ACM Symposium on Theory of Computing STOC 1971, pages

151-158, Ohio, USA, 1971.

[12] Donald E. Knuth The Art of Computer Programming 3. Sorting and Searching

Vol. 3, first edition, ISBN 0-201-03803-X, 1973

[13] Z3, An efficient SMT solver, Microsoft Research, http://research.microsoft.

com/projects/Z3/

[14] Wine, Wine Is Not an Emulator, http://www.winehq.org/

[15] Graphviz, Graph Visualization Software, http://www.graphviz.org/

All mentioned URLs were checked on October 5th, 2008.

52

A The Boolector Debugger application

The Boolector Debugger application is the graphical front-end of the Delta Debugger

and generator. It is written in Java and can be used to visually inspect BTOR files.

Visualization is based on dot [15].

A.1 Installation

1. Make sure your build environment works (GCC, make. . .).

If necessary install graphviz and Java6

2. Compile Boolector, Picosat

Suppose you have boolector.tgz and picosat.tgz files in your current directory:

$ tar -xzf boolector.tgz

$ tar -xzf picosat.tgz

$ cd picosat

$./configure

$./make

$ cd ../boolector

$./configure

$./make

3. Copy bd.jar file to where you want it.

4. Start bd.jar

$ java -jar bd.jar

After this call the main window should appear on the screen (see figure A.1).

53

Figure A.1: The main window.

5. Set up the options

Select settings->options... from the main menu. The options dialog window

pops up as shown in figure A.2.

a) Fill in path to the Boolector executable file

b) Fill in path to the dot executable

The settings are saved to a file called options.ini. The file is a human readable

property file. Each line contains a key = value pair. It has to be located in the

directory from which java is invoked (pwd).

A.2 User interface of Boolector Debugger

BTOR files can be opened and saved using the File->Open and File->Save menu items.

To run the selected executable on the currently opened BTOR file simply click on the

call executable button. The executable’s standard output is being written to the

console (as shown in figure A.3).

A.2.1 Graphical versus plain text view

The currently opened BTOR file is shown in the upper left corner of the main window.

It can be shown as text or as a graphic (see figure A.4). The view can be toggled by

selecting Settings->View text / view graph from the main menu.

54

Figure A.2: The options dialog window.

Figure A.3: After the “call executable” button has been clicked the console shows
the standard output of the process (Boolector in this case).

55

Figure A.4: Main window: graphical view of a BTOR file

A.2.2 Generating BTOR files

Check if your generation settings are correct in the options dialog window. Click the

generate new random DAG button. The new graph will appear shortly afterwards in

the text/graph view.

To generate BTOR files using the command line only, open a terminal and type:

$ java -cp bd.jar fmv.main.Generator -?

numeric parameters: -s -arrays -n -d -clauses -writes -vars

-minwidth -maxwidth -arrmaxwidth -arrays -dag

boolean parameters: -cnf -all -noarrays -newformat

$

The names of the possible generation options are listed. Numeric parameters need

an additional integer argument (e.g. “-n 3”), whereas boolean parameters can stand on

their own. To generate a BTOR file using the standard options simply omit the “-?”.

A.2.3 Running a Delta Debugging algorithm

Open a BTOR file. Select an algorithm by clicking on one of the radio buttons in the

Algorithm section, then click the start algorithm button.

You can stop the Delta Debugging process at any time by clicking the stop... button.

During Delta Debugging all other menu items are disabled.

Alternatively you can use the command line:

56

$ java -cp bd.jar fmv.main.DeltaDebugger -?

usage: DeltaDebugger [-timeout <nr>] [-interval <nr>]

[<algorithm>] [-exe <boolector>]

[-newformat] inputfile outputfile

<algorithm> can be one of: -lw -bfs -ddmin

-hdd -hddplus -hddstar -cref -cbref

<boolector> path of boolector executable and parameters

$

The self-explanatory text on the screen describes the usage of the Delta Debugger.

A.2.4 Bug search mode

This mode can be used to start the generator repeatedly using the current settings. The

starting random seed is taken from the options and is incremented by one after each

run of the generator. After a file has been generated, the Boolector executable is run

on it and its output is parsed for indication of a failed assertion or segmentation fault.

If Boolector fails the random seed is printed to the console. Bug search mode can be

stopped any time by simply clicking the stop button. At this point no automatic Delta

Debugging is triggered when bugs are found. This behavior should be improved in future

versions, but the same task can already be performed by simple scripts.

A.3 Minimized BTOR files

Listing A.1: ex1-allmin.btor

1 array 3 2

2 zero 2

3 zero 3

4 wr i t e 3 2 1 2 3

5 udiv 3 3 3

6 wr i t e 3 2 1 2 5

7 eq 1 4 6

8 zero 1

9 i m p l i e s 1 7 8

10 var 1

11 acond 3 2 −10 4 1

57

12 read 3 11 2

13 redxor 1 12

14 eq 1 6 1

15 xnor 1 13 14

16 nand 1 9 15

17 root 1 16

Listing A.2: ex2-allmin.btor

1 var 3

2 var 3

3 uaddo 1 −1 2

4 array 2 3

5 var 3

6 var 2

7 wr i t e 2 3 4 −5 6

8 read 2 7 1

9 redxor 1 8

10 wr i t e 2 3 4 1 6

11 read 2 10 5

12 redor 1 11

13 xor 1 9 12

14 wr i t e 2 3 7 −1 6

15 wr i t e 2 3 4 5 6

16 eq 1 14 15

17 xnor 1 13 16

18 xnor 1 3 17

19 var 1

20 wr i t e 2 3 7 2 6

21 acond 2 3 19 15 20

22 read 2 21 1

23 redxor 1 22

24 xor 1 18 23

25 read 2 4 1

26 redor 1 25

27 or 1 24 26

28 root 1 27

Listing A.3: ex3-allmin.btor

58

1 var 1

2 array 2 1

3 zero 1

4 zero 2

5 wr i t e 2 1 2 3 4

6 acond 2 1 1 2 5

7 read 2 6 3

8 redor 1 7

9 var 2

10 wr i t e 2 1 2 3 −9

11 var 1

12 wr i t e 2 1 10 −11 4

13 var 1

14 wr i t e 2 1 2 −13 4

15 eq 1 12 14

16 xor 1 8 15

17 root 1 16

Listing A.4: ex4-allmin.btor

1 var 1

2 array 4 1

3 zero 1

4 zero 4

5 wr i t e 4 1 2 3 4

6 wr i t e 4 1 5 1 4

7 acond 4 1 −1 5 6

8 var 4

9 wr i t e 4 1 2 3 −8

10 eq 1 9 2

11 read 4 7 10

12 redxor 1 11

13 var 1

14 wr i t e 4 1 2 −13 4

15 read 4 14 3

16 redxor 1 15

17 and 1 12 16

18 eq 1 2 5

19 xnor 1 18 3

59

20 nand 1 17 19

21 root 1 20

Listing A.5: ex5-allmin.btor

1 var 1

2 array 1 2

3 var 2

4 var 1

5 wr i t e 1 2 2 3 4

6 var 1

7 wr i t e 1 2 2 3 6

8 acond 1 2 1 5 7

9 read 1 8 3

10 eq 1 7 2

11 xnor 1 4 10

12 eq 1 5 2

13 zero 2

14 wr i t e 1 2 2 13 4

15 read 1 14 3

16 xnor 1 12 15

17 xor 1 11 16

18 xor 1 9 17

19 root 1 18

60

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig und

ohne fremde Hilfe verfasst, andere als die angegebenen Quellen nicht benützt und die

den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich

gemacht habe.

Linz, am 13. Oktober 2008

Andreas Vida

