
Offline SMT for Arrays

Robert Brummayer and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

Alpine Verification Meeting 2008
Semmering, Austria

May 19th, 2008

Satisfiability Modulo Theories (SMT)
R. Brummayer, FMV, JKU Linz

1/14

• Generalization of the Boolean Satisfiability Problem (SAT)

• Satisfiability with respect to background theories

• Software and Hardware verification

• SMT Solvers

– Z3, CVC3, STP, Barcelogic, Boolector, MathSAT, Spear, ...

• Theories

– Fragments of first-order logic (typically decidable)

– For example fixed-size Bit-vectors , extensional Arrays

Software Verification Example “next-power-of-two”
R. Brummayer, FMV, JKU Linz

2/14

int next_power_of_two (int x)

{

int i;

x--;

for (i = 1; i < sizeof (int) * 8; i = i * 2)

x = x | (x >> i)

return x + 1;

}

• next power of two (5) = 8, next power of two (8) = 8, ...

• From the book “Hacker’s Delight” [Warren02]

• Do you trust this algorithm?

Verification instance for bit-width = 4
R. Brummayer, FMV, JKU Linz

3/14

co
n

st

0001

const

0
01

0

co
nst

01
00

con
st

100
0

x4
ad

d

1
2

ad
d

1
2

co
nst

01

slice

3
 3

srl

1
2

srl

1
2

cond

1
3

2

and

1
2

const

1
0

slice

3
 3

srl

1
2

srl

1
2

con
d

1
3

2

and

1
2

const

1
1

slice

3
 3

srl

1
2

srl

1
2

cond

1
3

2

and

1
2

add

1
2

con
st

0
eq1

2

and

1
2

eq1
2

an
d

1
2

eq1
2

and

1
2

eq

1
2

and
1

2

u
lt

2
1 an

d

1
2

srl

2
1

slice

3
 3

slice

3 3

slice

2 0

slice

2
 0

u
lt

1
2

an
d1

2

and

1
2

and

1
2

and

1
2

and

1
2

and

1
2

and

1
2

and
1

2

slice

3
 3

slice

2 0

ult
1

2

and

1
2

and
1

2

an
d

12

and

1
2

an
d

1
2

and

1
2

and

1
2

an
d

1
2

Arrays
R. Brummayer, FMV, JKU Linz

4/14

• Theory of Arrays [McCarthy62]

(A1) a = b ∧ i = j ⇒ read(a, i) = read(b, j)
(A2) i = j ⇒ read(write(a, i,e), j) = e
(A3) i 6= j ⇒ read(write(a, i,e), j) = read(a, j)

• With (A1) to (A3) we cannot handle array inequalities

• We need additional axiom of extensionality (A4) resp. (A4′)

(A4) a = b ⇐ ∀i(read(a, i) = read(b, i))

(A4′) a 6= b ⇒ ∃λ(read(a,λ) 6= read(b,λ))

Verification of Selection Sort for bit-width = 32 and size = 4
R. Brummayer, FMV, JKU Linz

5/14

const

00

const

01

const

10

const

1
1

array

32 2

index

2

read
12

read2
1

read
2

1

u
lt

2
1

cond

3
2

1

cond

3
2

1

read
2

1

ult

2
1

cond3
21

cond

2
3

1

read

2
1

ult

2
1

cond2
3

1

read

1
2

w
rite

2 1
3

w
rite

3

2
1

read2
1

read2

1 u
lt

2
1

cond

3
2

1

cond

3
2

1

read

2
1

ult

2
1 cond

2
3

1

read

1
2

w
rite

2
1

3

w
rite

3
21

read

2
1

read

2
1

ult2
1 cond3

2
1 read

1
2 w
rite2

1

3 w
rite

3
2

1

con
st

1

read
2

1
read

2
1

u
lt

2
1

and

1
2

read

2
1

ult

2
1

and
1

2

read
2

1

ult

2
1

and

1
2

eq
1

2

and

1
2

eq
1

2

and

1
2

eq

1
2

and1
2

eq1
2

and

1
2

and

1
2

Lemmas on demand (LOD) [DeMoura02]
R. Brummayer, FMV, JKU Linz

6/14

• Do not translate the whole formula to SAT

• Let SAT solver “guess” solution

– If SAT solver cannot find a solution, terminate with unsatisfiable

• Explicitly check constraints that were not translated to SAT

• If check succeeds then terminate with satisfiable

• If check fails

– Add lemma to refine formula

– Let SAT solver “guess” a new solution

LOD for the non-extensional Theory of Arrays with Bit-vectors
R. Brummayer, FMV, JKU Linz

7/14

• Translate bit-vector but not array part of the formula

• Let SAT solver “guess” solution

– If SAT solver cannot find a solution, terminate with unsatisfiable

• Explicitly check Array Axioms A1 to A3

• If check succeeds then terminate with satisfiable

• If check fails

– Add lemma to refine formula

– Let SAT solver “guess” a new solution

Checking Array Axioms
R. Brummayer, FMV, JKU Linz

8/14

• Propagation-based algorithm

– Direct application of (A1) to (A3)

• Annotate every array expression with its set of reads ρ

• For every read read(b, i) ∈ ρ(write(a, j,e))

– (A2): If current assignment σ(i) = σ(j), check if σ(read(b, i)) = σ(e)

– (A3): If current assignment σ(i) 6= σ(j), add read to ρ(a)

• Check read congruence (A1) on all array expressions

• Propagation only downwards and can be implemented with DFS or BFS

Example 1
R. Brummayer, FMV, JKU Linz

9/14

array

8 32

i

32

j

32

k

32

l1

32

l2

32

e1

32

e2

32

write

12
3

write

1
2 3

r1

2 1

r2

2 1

r3

21

σ(i) = σ(j), σ(r1) 6= σ(r2), σ(i) 6= σ(l1), σ(j) 6= σ(l2), σ(k) = σ(l2), σ(r3) 6= σ(e2)

Lemma construction
R. Brummayer, FMV, JKU Linz

10/14

• We have found two inconsistent reads r1 and r2

• We collect all assignments that has been responsible for propagation

• We add a lemma of the following kind:

– i 6= l1 ∧ j 6= l2 ∧ . . . ∧ i = j ⇒ r1 = r2

• Lemma for inconsistency of r1 and r2 in example 1

– i 6= l1 ∧ j 6= l2 ∧ i = j ⇒ r1 = r2

• Lemma for inconsistency of r3 and right write in example 1

– k = l2 ⇒ r3 = e2

Adding equalities on arrays (1/2)
R. Brummayer, FMV, JKU Linz

11/14

• For every array equality a = b

– Introduce fresh Tseitin variable ea,b

– Introduce two virtual reads read(a,λ), read(b,λ), for a fresh λ

– Virtual reads are used as witness for array inequality

– Encode ēa,b ⇒ read(a,λ) 6= read(b,λ)

• If σ(ea,b) = 1, propagate reads over array equalities

– Ensures read congruence over equal arrays

– Propagation can now be cyclic, e.g. a = b ∧ b = c ∧ c = a

– We need fix-point algorithm

Adding equalities on arrays (2/2)
R. Brummayer, FMV, JKU Linz

12/14

• We must ensure congruence on write values for equal writes

• For example write(a, i,e1) = write(a, i,e2) implies that e1 = e2

• We can treat every write(a, i,e) as read(a, i), where read(a, i) = e

• Propagate writes as reads

• In order to reach every array equality

– We must also propagate upwards with respect to (A2) and (A3)

– Only propagate upwards if value has not been overwritten

Example 2
R. Brummayer, FMV, JKU Linz

13/14

array

8 32

array

8 32

i

32

var

8

j

32

var

8

k

32

write

123

write
1

2 3

ne

1 2

ne

1
2

read

1 2

read

12

ne

1 2

eq
1 2

write(a, i,e1) = write(b, j,e2) ∧ i 6= k ∧ j 6= k ∧ read(a,k) 6= read(b,k)

Conclusion
R. Brummayer, FMV, JKU Linz

14/14

• SMT

• Lemmas on demand for Extensional Theory of Arrays

– In our examples with Bit-vectors, but approach is more general

– SAT solver is used offline as black box

• Algorithm based on propagation and direct application of array axioms

– Non-extensional algorithm with DFS or BFS

– Introducing equality on arrays requires fix-point algorithm

– Virtual reads as witnesses for array inequalities

• Algorithm implemented in our SMT solver Boolector

