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• Generalization of the Boolean Satisfiability Problem (SAT)

• Satisfiability with respect to background theories

• Software and Hardware verification

• SMT Solvers

– Z3, CVC3, STP, Barcelogic, Boolector, MathSAT, Spear, ...

• Theories

– Fragments of first-order logic (typically decidable)

– For example fixed-size Bit-vectors , extensional Arrays
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int next_power_of_two (int x)

{

int i;

x--;

for (i = 1; i < sizeof (int) * 8; i = i * 2)

x = x | (x >> i)

return x + 1;

}

• next power of two (5) = 8, next power of two (8) = 8, ...

• From the book “Hacker’s Delight” [Warren02]

• Do you trust this algorithm?
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• Theory of Arrays [McCarthy62]

(A1) a = b ∧ i = j ⇒ read(a, i) = read(b, j)
(A2) i = j ⇒ read(write(a, i,e), j) = e
(A3) i 6= j ⇒ read(write(a, i,e), j) = read(a, j)

• With (A1) to (A3) we cannot handle array inequalities

• We need additional axiom of extensionality (A4) resp. (A4′)

(A4) a = b ⇐ ∀i(read(a, i) = read(b, i))

(A4′) a 6= b ⇒ ∃λ(read(a,λ) 6= read(b,λ))



Verification of Selection Sort for bit-width = 32 and size = 4
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Lemmas on demand (LOD) [DeMoura02]
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• Do not translate the whole formula to SAT

• Let SAT solver “guess” solution

– If SAT solver cannot find a solution, terminate with unsatisfiable

• Explicitly check constraints that were not translated to SAT

• If check succeeds then terminate with satisfiable

• If check fails

– Add lemma to refine formula

– Let SAT solver “guess” a new solution



LOD for the non-extensional Theory of Arrays with Bit-vectors
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• Translate bit-vector but not array part of the formula

• Let SAT solver “guess” solution

– If SAT solver cannot find a solution, terminate with unsatisfiable

• Explicitly check Array Axioms A1 to A3

• If check succeeds then terminate with satisfiable

• If check fails

– Add lemma to refine formula

– Let SAT solver “guess” a new solution



Checking Array Axioms
R. Brummayer, FMV, JKU Linz

8/14

• Propagation-based algorithm

– Direct application of (A1) to (A3)

• Annotate every array expression with its set of reads ρ

• For every read read(b, i) ∈ ρ(write(a, j,e))

– (A2): If current assignment σ(i) = σ( j), check if σ(read(b, i)) = σ(e)

– (A3): If current assignment σ(i) 6= σ( j), add read to ρ(a)

• Check read congruence (A1) on all array expressions

• Propagation only downwards and can be implemented with DFS or BFS
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σ(i) = σ( j), σ(r1) 6= σ(r2), σ(i) 6= σ(l1), σ( j) 6= σ(l2), σ(k) = σ(l2), σ(r3) 6= σ(e2)
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• We have found two inconsistent reads r1 and r2

• We collect all assignments that has been responsible for propagation

• We add a lemma of the following kind:

– i 6= l1 ∧ j 6= l2 ∧ . . . ∧ i = j ⇒ r1 = r2

• Lemma for inconsistency of r1 and r2 in example 1

– i 6= l1 ∧ j 6= l2 ∧ i = j ⇒ r1 = r2

• Lemma for inconsistency of r3 and right write in example 1

– k = l2 ⇒ r3 = e2
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• For every array equality a = b

– Introduce fresh Tseitin variable ea,b

– Introduce two virtual reads read(a,λ), read(b,λ), for a fresh λ

– Virtual reads are used as witness for array inequality

– Encode ēa,b ⇒ read(a,λ) 6= read(b,λ)

• If σ(ea,b) = 1, propagate reads over array equalities

– Ensures read congruence over equal arrays

– Propagation can now be cyclic, e.g. a = b ∧ b = c ∧ c = a

– We need fix-point algorithm
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• We must ensure congruence on write values for equal writes

• For example write(a, i,e1) = write(a, i,e2) implies that e1 = e2

• We can treat every write(a, i,e) as read(a, i), where read(a, i) = e

• Propagate writes as reads

• In order to reach every array equality

– We must also propagate upwards with respect to (A2) and (A3)

– Only propagate upwards if value has not been overwritten
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write(a, i,e1) = write(b, j,e2) ∧ i 6= k ∧ j 6= k ∧ read(a,k) 6= read(b,k)
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• SMT

• Lemmas on demand for Extensional Theory of Arrays

– In our examples with Bit-vectors, but approach is more general

– SAT solver is used offline as black box

• Algorithm based on propagation and direct application of array axioms

– Non-extensional algorithm with DFS or BFS

– Introducing equality on arrays requires fix-point algorithm

– Virtual reads as witnesses for array inequalities

• Algorithm implemented in our SMT solver Boolector


