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SMT solvers often used as workhorses

• verification, symbolic execution, compiler optimization, scheduling, . . .

SMT solver requirements

• correctness , robustness , efficiency, . . .

Incorrect SMT solver may lead to incorrect overall results

Crashing SMT solver may lead to crash of the overall system

Non-terminating SMT solver may lead to non-terminating overall system
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SMT solvers implement theoretically studied decision procedures

Demand for efficiency leads to error prone optimizations

Neglected topics in the SMT community

• how do we test/verify that our implementations are correct ?

• how do we make sure that our solvers are robust ?

Traditional approaches based on testing

• unit testing / regression testing

â tedious and insufficient task of generating test cases manually
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Grammar-Based Black-Box Fuzzing

• test SMT solver with random SMT formulas for specified theory

• randomness in input causes execution of untested code and corner cases

• impressingly effective black box approach

â no knowledge about implementation details needed

Formulas may be large which makes debugging hard/infeasible

Solution: Delta-debugging [Zeller] to minimize failure-inducing formulas
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Divide formula into layers

• successful approach for generating random BTOR instances [Vida]

SMT formula can typically be divided into at least four layers

• input , main , predicate , and boolean

Start generating variables for input layer

For each non-input layer:
Generate random nodes by using previously created nodes of matching type

Finally, combine boolean nodes to one root
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In contrast to other theories

• many operators, some use bit-vectors and naturals as operands

• many different types as bit-widths should be random within a range

• most bit-vector operators require operands with same bit-width

â make bit-widths of randomly selected operands compatible

â use zero extend, sign extend or extract

Encode boolean nodes as bit-vectors to find subtle defects

(ite $n24 bv1[1] bv0[1])
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Add further layers

• array input, read, and write

Interleaving creation of bit-vector nodes, reads and writes

• reads are used as read/write indices, write values, and BV operands

Extensionality

• compare arrays for equality in boolean layer

• encode result of comparing arrays as bit-vector

â may be used as (a part of a) BV op, read/write index, or write value
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Delta-debugger (DD) runs solver (or wrapper script) on original failure-

inducing formula φ to obtain golden exit code

DD iteratively tries to simplify the failure-inducing formula

After each simplification , DD calls solver with a simplified formula φ′

• if exit code = golden exit code, success , continue simplifying φ′

• if exit code 6= golden exit code, failure , backtrack, try other simplification

Instead of running the solver directly, a wrapper script can be used

• script determines whether the observable behavior is different or not

â for example, grep for a specific error message
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Perform search through boolean layer and try to replace root by sub-formula

• may immediately prune large parts of the whole formula

For each term/formula node n

• try to substitute n by constant 0/1 resp. false/true

• for each child c of n

â if types of c and n are compatible, then try to substitute n by child c

• try to skip ”chains“ of unary operators and array writes

Finally, try to substitute root by remaining boolean nodes (e.g. inside ite)
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Delta-debugger (DD) can use a time limit for each call to SMT solver

• if solver exceeds time limit, treat simplification as failure and backtrack

• necessary for non-terminating SMT solvers

â DD may generate formula on which SMT solver does not terminate

â Without time limit, DD would wait forever

Use wrapper script with timeout to delta-debug non-terminating solvers

• if solver exceeds time limit, treat it as non-terminating, return exit code

• if solver does not exceed time limit, return different exit code
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Assume we have an SMT theory T , a set of solvers S for T , and a time limit l

• repeatedly use fuzzer to generate random formula φ of theory T

• for each solver s in S

â result := execute s with φ under time limit l

â if result = sat or result = unsat, then remember result for s

â else mark φ as failure-inducing input for s

• if solvers disagree on satisfiability status of φ

â assume majority is correct ; mark φ as failure-inducing for minority
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no-div guard-div
solver crash incorrect crash incorrect

Beaver 1.1 rc1 0 0 12430 1
Boolector 1.0 0 0 0 0
Boolector 1.1 0 0 0 0
CVC3 1.5 April 29th 902 8 - -
MathSAT 4.2.3 0 113 2097 83
OpenSMT internal 19871 8 - -
Spear 2.7 0 6 3577 71
Sword smt-comp08 0 1 0 0
Z3 1.2 0 0 2264 0
Z3 smt-comp08 0 0 0 0

• formulas in no-div do not contain any division operators

• formulas in guard-div use restricted form of division
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no-div guard-div
solver f c t s r f c t s r

Beaver 1.1 rc1 - - - - - 469 12 5 319 98%
CVC3 1.5 April 29th 139 9 172 2429 98% - - - - -
MathSAT 4.2.3 50 1 10 611 97% 190 5 58 3709 76%
OpenSMT internal 154 4 5 492 96% - - - - -
Spear 2.7 6 1 5 401 96% 100 2 4 228 99%
Sword smt-comp08 1 1 4 135 99% - - - - -
Z3 1.2 - - - - - 50 1 734 254 99%

f = # formulas
c = # bug classes
t = average delta-debugging time (seconds)
s = average reduced file size (bytes)
r = average file size reduction

statistical outliers: median values better, see details in paper
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solver error incorrect
Barcelogic smt-comp08 20 0
CVC3 1.5 June 24th 0 0
MathSAT 4.2.5 72 19
Sateen smt-comp08 190 229
Yices 1.0.21 0 0
Z3 smt-comp08 0 19

solver f c t s r
Barcelogic smt-comp08 20 1 29 979 55%
MathSAT 4.2.5 69 2 1 191 92%
Sateen smt-comp08 103 4 3 1231 46%
Z3 smt-comp08 17 1 3 614 71%

• errors for Barcelogic are cases where it does not seem to terminate

• statistical outliers: medians better (73% for Bareclogic, 92% for Z3)
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FuzzSMTBV

• first prototype for bit-vector and array formulas

• written in Python 2

FuzzSMT

• highly configurable fuzzer for a large number of SMT logics:

QF A, QF AUFBV, QF AUFLIA, QF AX, QF BV, QF IDL, QF LIA, QF LRA,
QF NIA, QF NRA, QF RDL, QF UF, QF UFBV, QF UFIDL, QF UFLIA,
QF UFLRA,QF UFNIA, QF UFNRA, QF UFRDL, AUFLIA, AUFLIRA and
AUFNIRA.

• written in Java 5
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DeltaSMT

• SMT delta-debugger supporting timeouts, written in Java 5

• supports most of the logics that are supported by FuzzSMT

VoteSMT

• majority voting framework for SMT implemented by Bash scripts

• automatically classifies results as correct and incorrect

• can be used to find failure-inducing formulas

• runs one fuzz testing process on each processor core
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Fuzz testing

• automatic approach that uses random formulas to find defects

Delta-debugging

• automatic approach to minimize failure-inducing formulas

Majority voting

• automatic approach to classify results as correct or incorrect

Future work

• we work on a paper to apply our techniques to SAT/QBF solvers


