
Fuzzing and Delta-Debugging SMT Solvers

Robert Brummayer and Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University Linz, Austria

SMT 2009
Montreal, Canada

August 2nd, 2009



Piled Higher and Deeper by Jorge Cham  www.phdcomics.com

title: "Debugging" - originally published 1/14/2006



Introduction (1/3)
R. Brummayer, FMV, JKU Linz

2/17

SMT solvers often used as workhorses

• verification, symbolic execution, compiler optimization, scheduling, . . .

SMT solver requirements

• correctness , robustness , efficiency, . . .

Incorrect SMT solver may lead to incorrect overall results

Crashing SMT solver may lead to crash of the overall system

Non-terminating SMT solver may lead to non-terminating overall system



Introduction (2/3)
R. Brummayer, FMV, JKU Linz

3/17

SMT solvers implement theoretically studied decision procedures

Demand for efficiency leads to error prone optimizations

Neglected topics in the SMT community

• how do we test/verify that our implementations are correct ?

• how do we make sure that our solvers are robust ?

Traditional approaches based on testing

• unit testing / regression testing

â tedious and insufficient task of generating test cases manually



Introduction (3/3)
R. Brummayer, FMV, JKU Linz

4/17

Grammar-Based Black-Box Fuzzing

• test SMT solver with random SMT formulas for specified theory

• randomness in input causes execution of untested code and corner cases

• impressingly effective black box approach

â no knowledge about implementation details needed

Formulas may be large which makes debugging hard/infeasible

Solution: Delta-debugging [Zeller] to minimize failure-inducing formulas



Generating Random SMT formulas
R. Brummayer, FMV, JKU Linz

5/17

Divide formula into layers

• successful approach for generating random BTOR instances [Vida]

SMT formula can typically be divided into at least four layers

• input , main , predicate , and boolean

Start generating variables for input layer

For each non-input layer:
Generate random nodes by using previously created nodes of matching type

Finally, combine boolean nodes to one root



Generating Random Bit-Vector Formulas
R. Brummayer, FMV, JKU Linz

6/17

In contrast to other theories

• many operators, some use bit-vectors and naturals as operands

• many different types as bit-widths should be random within a range

• most bit-vector operators require operands with same bit-width

â make bit-widths of randomly selected operands compatible

â use zero extend, sign extend or extract

Encode boolean nodes as bit-vectors to find subtle defects

(ite $n24 bv1[1] bv0[1])



Generating Random Bit-Vector Array Formulas
R. Brummayer, FMV, JKU Linz

7/17

Add further layers

• array input, read, and write

Interleaving creation of bit-vector nodes, reads and writes

• reads are used as read/write indices, write values, and BV operands

Extensionality

• compare arrays for equality in boolean layer

• encode result of comparing arrays as bit-vector

â may be used as (a part of a) BV op, read/write index, or write value



Delta-Debugging SMT formulas
R. Brummayer, FMV, JKU Linz

8/17

Delta-debugger (DD) runs solver (or wrapper script) on original failure-

inducing formula φ to obtain golden exit code

DD iteratively tries to simplify the failure-inducing formula

After each simplification , DD calls solver with a simplified formula φ′

• if exit code = golden exit code, success , continue simplifying φ′

• if exit code 6= golden exit code, failure , backtrack, try other simplification

Instead of running the solver directly, a wrapper script can be used

• script determines whether the observable behavior is different or not

â for example, grep for a specific error message



Generic Delta-Debugging Strategies for SMT
R. Brummayer, FMV, JKU Linz

9/17

Perform search through boolean layer and try to replace root by sub-formula

• may immediately prune large parts of the whole formula

For each term/formula node n

• try to substitute n by constant 0/1 resp. false/true

• for each child c of n

â if types of c and n are compatible, then try to substitute n by child c

• try to skip ”chains“ of unary operators and array writes

Finally, try to substitute root by remaining boolean nodes (e.g. inside ite)



Delta-Debugging with Timeouts
R. Brummayer, FMV, JKU Linz

10/17

Delta-debugger (DD) can use a time limit for each call to SMT solver

• if solver exceeds time limit, treat simplification as failure and backtrack

• necessary for non-terminating SMT solvers

â DD may generate formula on which SMT solver does not terminate

â Without time limit, DD would wait forever

Use wrapper script with timeout to delta-debug non-terminating solvers

• if solver exceeds time limit, treat it as non-terminating, return exit code

• if solver does not exceed time limit, return different exit code



Basic Majority Voting Framework for SMT
R. Brummayer, FMV, JKU Linz

11/17

Assume we have an SMT theory T , a set of solvers S for T , and a time limit l

• repeatedly use fuzzer to generate random formula φ of theory T

• for each solver s in S

â result := execute s with φ under time limit l

â if result = sat or result = unsat, then remember result for s

â else mark φ as failure-inducing input for s

• if solvers disagree on satisfiability status of φ

â assume majority is correct ; mark φ as failure-inducing for minority



Fuzzing Experiments for Restricted Bit-Vector Logic
R. Brummayer, FMV, JKU Linz

12/17

no-div guard-div
solver crash incorrect crash incorrect

Beaver 1.1 rc1 0 0 12430 1
Boolector 1.0 0 0 0 0
Boolector 1.1 0 0 0 0
CVC3 1.5 April 29th 902 8 - -
MathSAT 4.2.3 0 113 2097 83
OpenSMT internal 19871 8 - -
Spear 2.7 0 6 3577 71
Sword smt-comp08 0 1 0 0
Z3 1.2 0 0 2264 0
Z3 smt-comp08 0 0 0 0

• formulas in no-div do not contain any division operators

• formulas in guard-div use restricted form of division



Delta-Debugging Experiments for Restricted Bit-Vector Logic
R. Brummayer, FMV, JKU Linz

13/17

no-div guard-div
solver f c t s r f c t s r

Beaver 1.1 rc1 - - - - - 469 12 5 319 98%
CVC3 1.5 April 29th 139 9 172 2429 98% - - - - -
MathSAT 4.2.3 50 1 10 611 97% 190 5 58 3709 76%
OpenSMT internal 154 4 5 492 96% - - - - -
Spear 2.7 6 1 5 401 96% 100 2 4 228 99%
Sword smt-comp08 1 1 4 135 99% - - - - -
Z3 1.2 - - - - - 50 1 734 254 99%

f = # formulas
c = # bug classes
t = average delta-debugging time (seconds)
s = average reduced file size (bytes)
r = average file size reduction

statistical outliers: median values better, see details in paper



Fuzzing & Delta-Debugging Experiments for Integer Difference Logic
R. Brummayer, FMV, JKU Linz

14/17

solver error incorrect
Barcelogic smt-comp08 20 0
CVC3 1.5 June 24th 0 0
MathSAT 4.2.5 72 19
Sateen smt-comp08 190 229
Yices 1.0.21 0 0
Z3 smt-comp08 0 19

solver f c t s r
Barcelogic smt-comp08 20 1 29 979 55%
MathSAT 4.2.5 69 2 1 191 92%
Sateen smt-comp08 103 4 3 1231 46%
Z3 smt-comp08 17 1 3 614 71%

• errors for Barcelogic are cases where it does not seem to terminate

• statistical outliers: medians better (73% for Bareclogic, 92% for Z3)



Tools (1/2)
R. Brummayer, FMV, JKU Linz

15/17

FuzzSMTBV

• first prototype for bit-vector and array formulas

• written in Python 2

FuzzSMT

• highly configurable fuzzer for a large number of SMT logics:

QF A, QF AUFBV, QF AUFLIA, QF AX, QF BV, QF IDL, QF LIA, QF LRA,
QF NIA, QF NRA, QF RDL, QF UF, QF UFBV, QF UFIDL, QF UFLIA,
QF UFLRA,QF UFNIA, QF UFNRA, QF UFRDL, AUFLIA, AUFLIRA and
AUFNIRA.

• written in Java 5



Tools (2/2)
R. Brummayer, FMV, JKU Linz

16/17

DeltaSMT

• SMT delta-debugger supporting timeouts, written in Java 5

• supports most of the logics that are supported by FuzzSMT

VoteSMT

• majority voting framework for SMT implemented by Bash scripts

• automatically classifies results as correct and incorrect

• can be used to find failure-inducing formulas

• runs one fuzz testing process on each processor core



Conclusion and Future Work
R. Brummayer, FMV, JKU Linz

17/17

Fuzz testing

• automatic approach that uses random formulas to find defects

Delta-debugging

• automatic approach to minimize failure-inducing formulas

Majority voting

• automatic approach to classify results as correct or incorrect

Future work

• we work on a paper to apply our techniques to SAT/QBF solvers


