
Efficiently Solving Bit-Vector Problems Using

Model Checkers
Andreas Fröhlich, Gergely Kovásznai, Armin Biere

Institute for Formal Models and Verification
Johannes Kepler University, Linz, Austria∗

Abstract

Bit-precise reasoning is essential in many applications of Satisfiability Modulo Theories
(SMT). Most approaches for solving quantifier-free fixed-size bit-vector logics (QF BV)
rely on bit-blasting. In previous work, we have shown that bit-blasting is not polyno-
mial in general [19], and later proposed QF BV�1, a class of bit-vector problems that
is PSpace-complete [15]. In this paper, we give examples of how to create (polynomial)
SMV specifications out of QF BV�1 formulas. We then use various model checkers to
solve those problems and give detailed experimental results. Our results show that BDD-
based model checkers outperform current SMT solvers by several orders of magnitude on
our benchmarks. Unrolling and using SAT-based model checking turns out to be the same
as bit-blasting and gives worse results. In addition to this, our approach allows us to easily
generate new challenging benchmarks for SMT solvers as well as for model checkers.

1 Introduction

Bit-precise reasoning over bit-vector logics is important for many practical applications of Satis-
fiability Modulo Theories (SMT), particularly for hardware and software verification. Examples
of state-of-the-art SMT solvers with support for fixed-sized bit-vector logics are Boolector [6],
MathSAT [8], STP [16], Z3 [11], and Yices [12]. All these solvers rely on bit-blasting in order
to translate bit-vector formulas into propositional logic (SAT). The result is then checked by
a SAT solver.

In practice, e.g. in the SMT-LIB [1], the BTOR [7], and the Z3 format, the bit-widths in
bit-vector formulas are encoded as binary, decimal, or hexadecimal numbers, i.e., a logarithmic
encoding is used. In [19], we proved that the encoding of bit-widths affects the complexity of the
decision problem of bit-vector logics. In particular, logarithmic encoding makes the quantifier-
free fragment QF BV NExpTime-complete.1 Thus, bit-blasting is not polynomial in general.
Consider the following example (in SMT2 syntax):

(set-logic QF_BV)

(declare-fun x () (_ BitVec 1000000))

(declare-fun y () (_ BitVec 1000000))

(declare-fun z () (_ BitVec 1000000))

(assert (= z (bvadd x y)))

(assert (= z (bvshl x (_ bv1 1000000))))

(assert (distinct x y))

This formula verifies that for an arbitrary bit-vector x of bit-width one million, there exists
no bit-vector y 6= x with x + y = x � 1. Written to a file, this formula can be encoded with
225 bytes. Using the SMT solver Boolector (even with all rewritings switched on), bit-blasting

∗This work is partially supported by FWF, NFN Grant S11408-N23 (RiSE).
1 In [19], we introduced the notation QF BV1 resp. QF BV2 for QF BV using a unary resp. a logarithmic,

actually without loss of generality, binary encoding. In this paper, QF BV will always refer to the logarith-
mic/binary case.

1

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

produces a circuit of size 129 MB encoded in the actually rather compact AIGER format.
Tseitin transformation results in a CNF in DIMACS format of size 843 MB.

In related work [20], we tried to avoid this growth in size by giving a translation from QF BV
to EPR and then using iProver to solve the problem. In most cases, this approach turned
out to perform worse than Boolector on the original instance. Since QF BV is NExpTime-
complete, it is not clear if it is possible to solve the general case more efficiently. However,
the given example only uses addition, shift by one and equality. In [15], we showed that this
kind of formulas can be expressed by QF BV�1, a subset of QF BV which turned out to be
PSpace-complete. In order to prove this, we gave a polynomial translation from QF BV�1

to Sequential Circuits, similar to the one for linear arithmetic on non-fixed-size bit-vectors
proposed in [22, 23].

In this paper, we show how model checkers can be used to solve fixed-size bit-bector problems
of this class. In contrast to [15] which provided the theoretical background, we now focus
on experimental evaluation and analyze the potential benefits for efficiently solving bit-vector
formulas. First, in Sec. 2, we provide a short overview of our translation as described in [15]
and give some examples to show how we used this concept to convert SMT2 files to SMV. In
Sec. 3, we then describe some benchmarks that we generated to evaluate the performance of
various model checkers compared to state-of-the-art SMT solvers with support for fixed-sized
bit-vector logics. On most of our benchmarks, BDD-based model checkers turn out to be faster
by several orders of magnitude. We provide experimental data and discuss the results in detail.
Finally, in Sec. 4, we conclude the paper and discuss further topics for future work.

2 QF BV�1 to SMV

In [22, 23], the authors gave a polynomial translation for linear arithmetic on non-fixed-size
bit-vectors (QFPAbit) into Sequential Circuits. In contrast to [22, 23], we focus on fixed-
size bit-vectors but share the goal of avoiding the exponential explosion due to explicit state
representation as for example used in MONA [18]. We adapted this translation in [15] to deal
with fixed-size bit-vectors and extended it by various other operators like shift by one and
indexing.

Given Φ ∈ QF BV�1 without nested equalities. Let n be a bit-width, x[n], y[n] denote

bit-vector variables, c[n] a bit-vector constant, and t
[n]
1 , t

[n]
2 bit-vector terms only containing

bit-vector variables and bitwise operations. Following [22, 23], we assume w.l.o.g that Φ only

consists of the following types of atoms: t
[n]
1 = t

[n]
2 , x[n] = c[n], and x[n] = y[n] � 1[n]. It is easy

to check that any QF BV�1 formula can be written like this with only a linear growth in the
number of original variables.

We encode each atom in Φ separately into an atomic Sequential Circuit. The encoding itself
is straightforward in most cases. A concrete example translating QF BV to SMV is given after
the theoretic part of this section. Compared to [22, 23], we have to consider the fact that all
bit-vectors have a fixed bit-width.

Let nmax be the maximal bit-width of all bit-vectors in the formula. We construct an
additional Sequential Circuit representing a counter. The counter initially is set to 0 and is
incremented by 1 in each clock cycle. A counter like this can be realized with dlog2(nmax)e
latches, i.e. polynomially in the size of Φ.

Now, for each atomic Sequential Circuit, we add a check whether the value of the counter
reached the bit-width n of the bit-vector variables corresponding to the input streams of the
circuit. Once this is the case, the individual circuit does not change its output value anymore.

2

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

Since nmax ≥ n, this will always hold at some point.2

Finally, after constructing all atomic circuits, their outputs are combined by logical gates
following the Boolean structure of Φ. Other operators, such as addition or indexing, can
either be replaced by shift by one in a preprocessing step or directly encoded into a Sequential
Circuit [15].

We now show the translation for the motivational example given in Sec. 1 to the concrete
SMV-format. First of all, a counter for the bit-width of the variables has to be introduced.
This can be done using logarithmic many variables:

init(counter_bit0) := FALSE;

next(counter_bit0) := counter_bit0 xor (TRUE);

init(counter_bit1) := FALSE;

next(counter_bit1) := counter_bit1 xor (counter_bit0);

...

init(counter_bit19) := FALSE;

next(counter_bit19) := counter_bit19 xor (counter_bit0 & ... & counter_bit18);

We then keep track of whether the counter already reached the value of a certain bit-width.3

This variable later serves as a guard for all atoms containing variables of the given bit-width:

init(counter_gte_1000000) := FALSE;

next(counter_gte_1000000) := counter_gte_1000000 |

(counter_bit0 & counter_bit1 & ... & !counter_bit6 & ... & counter_bit19);

After introducing those helper variables, the actual formula can now be translated. The
distinct operator is first replaced by negation of an equality. The translation to SMV then is
straightforward:

init(atom_equal) := TRUE;

next(atom_equal) := case

counter_gte_1000000 : atom_equal;

TRUE : atom_equal & (x <-> y);

esac;

For translating addition, two atoms have to be introduced since the carry bit has to be
remembered in the next step:

init(atom_add) := TRUE;

next(atom_add) := case

counter_gte_1000000 : atom_add;

TRUE : atom_add & (z <-> (x xor y xor atom_cin));

esac;

init(atom_cin) := FALSE;

next(atom_cin) := case

counter_gte_1000000 : atom_cin;

TRUE : atom_add & ((x & y) | (x & atom_cin) | (y & atom_cin));

esac;

2In contrast to [22], we assume that the input streams for all variables start with the least significant bit.
3The counter bits in the next-statement correspond to the binary representation of n − 1 (i.e. 99999910 =

111101000010001111112 in our example).

3

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

The shift operator can be translated in a very similar way but will not be given here
explicitely to keep the example short. Another way would be to replace (x� 1) by (x + x) in
the preprocessing step.

Finally, the specification is defined by the logical combination of the individual atoms and
additionally respecting the bit-width:

AG(!counter_gte_1000000 | !atom_add | !atom_shift | atom_equal)

We also implemented our translation including various operators in a tool called bv2smv.
Binaries and source code are available for download at [9].

3 Experiments

We first describe our benchmark sets. We generated six different sets of QF BV formulas in
SMT2 format. All sets of benchmarks consist of 32 instances each and have two attributes:
First, all benchmark sets are not bit-width bounded [15]. Because of this, bit-blasting is known
to be exponential in general. Second, all benchmarks only contain bitwise operators, addition,
subtraction, shift by one, indexing and relational operators. This ensures that a polynomial
translation to SMV exists. The different instances in a particular set of benchmarks only differ
in the bit-width of their variables and constants. The bit-widths n of the individual instances
are of the form n = 2i and n = 1.5 · 2i with i ∈ {5, . . . , 20} for all six sets. All benchmarks will
be submitted to the QF BV category of SMT-LIB.

QF BV/froehlichkovasznaibiere/ndist.a.n: We verify that, for two bit-vector variables
x[n], y[n], it holds that x[n] < y[n] implies (x[n] + 1[n]) ≤ y[n]. The instances are unsatisfiable
and use addition and unsigned less/greater than operators.

QF BV/froehlichkovasznaibiere/ndist.b.n: We give a counter-example (due to over-
flow) to the claim that, for two bit-vector variables x[n], y[n], it holds that (x[n] + 1[n]) ≤ y[n]

implies x[n] < y[n]. The instances are satisfiable and use addition and unsigned less/greater
than or equal operators.

QF BV/froehlichkovasznaibiere/power2bit.n: We verify that, for a bit-vector variable
x[n] = 2j , it is not possible for two different bits to be both set to 1. The instances are
unsatisfiable and use indexing, subtraction, bitwise operators, and (in)equality.

QF BV/froehlichkovasznaibiere/power2eq.n: We verify that, for two bit-vector variables
x[n] = 2j , y[n] = 2k, with a certain identical bit set to 1, the bit-vectors cannot be distinct. The
instances are unsatisfiable and use indexing, subtraction, bitwise operators, and (in)equality.

QF BV/froehlichkovasznaibiere/power2sum.n: We verify that, for two bit-vector vari-
ables x[n] = 2j , y[n] = 2k, with j 6= k, x[n] + y[n] cannot be a power of 2. The instances are
unsatisfiable and use addition, subtraction, bitwise operators, and (in)equality.

QF BV/froehlichkovasznaibiere/shift1add.n: We verify that for an arbitrary bit-vector
x[n], there exists no bit-vector y[n] 6= x[n] with (x[n] + y[n]) = (x[n] � 1). The instances are
unsatisfiable and use addition, shift by one, and (in)equality. The example used throughout the
paper is part of this benchmark family.

Out of the benchmark instances in SMT2 format, we generated SMV instances by using
bv2smv and the flattening tool smvflatten.4 We used the state-of-the-art SMT solvers Boolec-
tor, MathSAT, Z3, and STP on the SMT2 instances, and NuSMV [10] on the corresponding
SMV instances. In order to involve state-of-the-art model checkers like Tip [13] and IImc5 (that

4http://fmv.jku.at/smvflatten/
5http://ecee.colorado.edu/wpmu/iimc/

4

http://fmv.jku.at/smvflatten/
http://ecee.colorado.edu/wpmu/iimc/

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

uses techniques described in [2, 3]), we also converted all the SMV instances to AIGER format
by using the translation tool smvtoaig that is part of the AIGER distribution.

All our experiments were run on the same cluster and with the same setup as the latest
Hardware Model Checking Competition (HWMCC’12).6 More precisely, we used a 32-node
cluster with Intel Quad Core 2.6 GHz processors and 8 GB RAM. The wall clock time limit
was set to 900 seconds and the memory limit to 7 GB. Each solver had full access to one node
(4 cores).

In total, we used 19 different solvers (resp. configurations) on 6 different benchmark sets
each consisting of 32 instances, yielding a total of 3648 runs. All our results are available on
our web page at [9] together with generation scripts for all benchmarks in SMT2 format and
our tool bv2smv.

Tab. 1 provides an overview of the total number of solved instances and the average runtime
(in seconds) and space requirement (in megabytes) on the solved instances. For BMC solvers,
we used the knowledge that the counters in the generated specifications only allow the atomic
circuits to change their value in the first number of steps equal to the bit-width n of the original
SMT2 formula. We therefore set the bound for unrolling to be equal to n + 1 and, whenever a
BMC solver reached the bound without timeout or out-of-memory, counted the instance to be
shown unsatisfiable.

The solvers were executed with default settings if not stated otherwise explicitely. However,
in some exceptional cases, we intentionally used some promising or interesting strategies. For
instance, in Tab. 1, Tip-BMC references Tip using BMC-based strategy. Since we expected and
later experienced that BDD-based techniques perform particularly well on our benchmarks, we
intended to test model checkers with BDD-based strategies, those which offer such an option.
Note that NuSMV uses BDD-based forward reachability analysis by default. We also tested
NuSMV with backward reachability analysis, referenced by NuSMV-bw. IImc also offers BDD-
based solving strategy, with both forward resp. backward reachability analysis; we reference
IImc with default settings resp. with BDD-based forward resp. backward reachability analysis
as IImc resp. IImc-BDD-fw resp. IImc-BDD-bw.

S
T
P

B
o
o
l
e
c
t
o
r

M
a
t
h
S
A
T
5

Z
3

I
I
m
c
-
B
D
D
-
b
w

N
u
S
M
V
-
b
w

I
I
m
c
-
B
D
D
-
f
w

I
I
m
c

N
u
S
M
V

B
l
i
m
c
‡

T
i
p
-
B
M
C
‡

A
i
g
b
m
c
‡

T
i
p

solved 147 146 127 123 192 189 185 172 170 147 130 99 93
sat 23 32 13 23 32 29 32 32 27 9 31 21 17

unsat 124 114 114 100 160 160 153 140 143 138 99 78 76
time 206 190 310 171 12 30 79 132 148 233 266 295 496
space 1063 805 587 2180 8 24 9 74 38 95 1142 2073 6

Table 1: Overall results for all solvers

Apart from those in Tab. 1, we tested other models checkers as well, all submitted to
HWMCC’12. We excluded some of them due to uncertain results: (a) Super prove2 and Sim-
ple sat, which employ ABC with improved strategies, produced discrepancies on some satisfiable

6http://fmv.jku.at/hwmcc12/
‡Versions submitted to HWMCC’12.

5

http://fmv.jku.at/hwmcc12/

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

instances; (b) PdTrav, on some instances, threw exception about syntactical error in input.

In total, IImc-BDD-bw clearly performs best as it can solve all instances. Backward reacha-
bility analysis seems to produce better results than forward reachability for BDD-based model
checkers in general. While this applies especially to unsatisfiable instances, NuSMV-bw only per-
forms slightly better than NuSMV on the satisfiable ones. Interestingly, Boolector also gives
very good results for the satisfiable instances. As expected, in particular the average space
requirement of all SMT solvers is very large.

Fig. 1, 2, and 3 provide a detailed overview of the runtimes and space requirements of various
solvers on the individual benchmark sets. We chose Boolector and STP representing the SMT
solver class and NuSMV, NuSMV-bw, IImc, IImc-BDD-bw, and Tip-BMC as model checkers. Please
consider that sampling memory is imprecise in case of low runtime, causing noise on the plots
that show memory consumption.

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of ndista with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of ndista with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of ndistb with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of ndistb with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 1: Detailed results of the ndist.a and ndist.b benchmark sets.

Fig. 1 shows the results of the solvers on the ndist.a and ndist.b benchmark sets. On
the ndist.a instances, all BDD-based model checkers clearly outperform both SMT solvers
considering time and space. Tip-BMC performs very similar to the SMT solvers. This is not
surprising since unrolling up to a bound equal to the bit-width will in the end produce the same
propositional formula as bit-blasting.

With ndist.b being satisfiable, SMT solvers show better runtimes while still requiring
similar amounts of space. This can be explained by the fact that it is enough to guess the correct
assignment which might be found as a consequence of good heuristics and at the same time

6

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2bit with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2bit with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2eq with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2eq with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 2: Detailed results of the power2bit and power2eq benchmark sets.

could cause the variation in the runtimes of STP. While backward reachability analysis seems
to give a clear advantage on the unsatisfiable benchmark, it only slightly increases performance
on the satisfiable one.

One interesting aspect in Fig. 2 is the fact that STP performs really well on both benchmarks.
We suppose that this is connected to the fact that power2bit and power2eq both use indexing
with relatively small indices. Interestingly, Boolector performs much worse on both instances.
The good performance on this kind of formulas, therefore, does not seem to be a result of
bit-blasting and applying SAT solvers but rather due to some special technique used in STP.

One might notice the typical shape of the runtime curves related to IImc: they start steep,
but above a certain bit-width they show rather moderate ascent. The curves representing space
consumption seem to grow slowly up to a certain point where, after a big jump, space usage
almost seems to be fixed to a constant or, in some cases, even starts to decrease. We think that
this strange behavior is due to the fact that IImc uses several scheduled approaches, such as
IC3 [2], BMC, BDDs, etc. Probably due to the same fact, the IImc curves are even more hectic
on the power2bit benchmark in Fig. 2. During our experiments we also tested IImc with IC3
strategy alone, resulting in timeouts on most instances. Therefore, we assume that above a
certain bit-width IImc with default scheduling switches to BDDs, resulting in moderate ascent
in memory consumption and runtime.

Probably Fig. 3 depicts most properly the distinction between BDD-based approaches and
those which use SAT-based ones. Although SMT solvers and Tip-BMC time out quite soon on

7

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of power2sum with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of power2sum with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

ti
m

e

bit-width

Time needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

 1

 10

 100

 1000

 100 1000 10000 100000 1e+06

s
p
a
c
e

bit-width

Space needed to solve instances of shift1add with different bit-widths

Boolector
STP
IImc

IImc-BDD-bw
NuSMV

NuSMV-bw
Tip-BMC

Figure 3: Detailed results of the power2sum and shift1add benchmark sets.

both problem sets, and, on the power2sum benchmark, the performance of IImc now is rather
similar, BDD-based model checkers are able to deal even with very large bit-widths.

In general, looking at the runtimes, we can see that SMT solvers can compete well on
instances with smaller bit-width, while BBD-based model checkers start to outperform their
counter-parts with growing bit-width.

This effect becomes even stronger when we look at the space used during solving the for-
mulas. Judging from the graphs, it might even be possible that the space requirement of
BDD-based model checkers is logarithmic compared to that of SMT solvers. This could be
the case due to the fact that SMT solvers apply bit-blasting, which is exponential for bench-
marks that are not bit-width bounded, while our translation does not cause the problems to
leave PSpace. However, this alone is not sufficient. BDD-based model checkers like NuSMV
might create exponential sized BDDs nevertheless. More rigorous arguments or larger empirical
analysis are needed.

4 Conclusion

In this paper, we efficiently solved quantifier-free bit-vector formulas using model checkers.
While state-of-the-art SMT solvers usually apply bit-blasting to solve this kind of formulas,
we already showed in previous work [19] that this can cause an exponential blowup in general.
An approach for polynomially translating QF BV to EPR exists [20] (as well as exponential

8

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

ones [14, 17]), but solving the resulting formulas also suffers from the NExpTime-completeness
of EPR [20, 21]. Building on previous complexity results [15], however, we know that restricting
QF BV to only allowing bitwise operators, shift by one, addition, subtraction, multiplication
by constant, relational operators and indexing leads to PSpace-completeness of the resulting
logic. This allows us to polynomially translate bit-vector formulas to Sequential Circuits and
use model checkers for reachability analysis.

In order to show the potential benefit of our approach, we created a set of benchmarks and
used it to compare the performance of various model checkers on the translated instances to
the one of current SMT solvers on the original files. We showed that on most of our problems,
state-of-the-art model checkers like IImc and even older ones, such as NuSMV, performed better
by several orders of magnitude considering runtime as well as space.

Our results also showed that BDD-based model checking techniques perform much better
than SAT-based model checkers. This probably is the case because of the similarity between
BMC and bit-blasting, and gives reason to investigate especially BDD-based solving techniques
further.

Some of the best results were achieved by NuSMV. Considering the fact that NuSMV has
seen relatively little development during the last years compared to current SMT solvers, this
could lead to even better results if it is possible to improve the underlying techniques.

One of the main reasons we assume to be responsible for the good performance of model
checkers on our benchmarks, is their better fit to the PSpace-nature of this problem class.
Still, the resulting BDDs can of course be exponential in general.

While we did not pay special attention to the variable ordering during our translation,
we ran NuSMV using -dynamic command, letting it figure out a good variable order during
runtime. We also used the -reorder command to output the optimal variable order found
by NuSMV and to look for patterns in it. When using this variable order in a second run
instead of choosing the order dynamically, the runtimes usually decreased further.7 Maybe our
translation can be adapted using additional information to directly create variable orders that
result in smaller BDDs. In order to do this, it might be interesting to look at the structure of the
instances produced by our translation more closely. Especially the usage of counter definitions
and constraints is similar throughout all formulas.

Sequential optimization techniques, such as those implemented in state-of-the-art model
checkers like ABC [4], are useful even for bounded model checkers which otherwise only rely on
unrolling. It is an interesting question whether it is possible to lift these techniques from model
checking to bit-vector reasoning in combination or as a preprocessing step before bit-blasting.

Finally, only one model checker could solve all of our instances for the largest bit-widths.
Constructing this kind of formulas, therefore, offers an easy way to provide challenging bench-
marks for state-of-the-art SMT solvers and model checkers at the same time. For better solvers
and future challenges, the difficulty of a problem can be adjusted by simply increasing the
bit-width of the original SMT formula.

As a related classification problem, it will be interesting to investigate the complexity of
Presburger arithmetic on fixed-size bit-vectors.8 While the corresponding decision problem is
known to be NP-complete for non-fixed-size bit-vectors, it is not clear whether we still remain
in NP when considering fixed-size bit-vectors and whether translations as proposed in [5] are
polynomial if a logarithmic encoding is used for the bit-widths.

7This is not included in our results since we did not analyze it in detail yet.
8The benchmark sets ndist.a and ndist.b are in this class.

9

Efficiently Solving Bit-Vector Logics using Model Checkers Fröhlich, Kovásznai, and Biere

References

[1] Clark Barrett, Aaron Stump, and Cesare Tinelli. The smt-lib standard: Version 2.0. In Proceedings
of the 8th International Workshop on Satisfiability Modulo Theories (Edinburgh, UK), 2010.

[2] Aaron R. Bradley. Sat-based model checking without unrolling. In Proc. VMCAI’11, pages 70–87,
2011.

[3] Aaron R. Bradley, Fabio Somenzi, Zyad Hassan, and Yan Zhang. An incremental approach to
model checking progress properties. In Proc. FMCAD’11, pages 144–153, 2011.

[4] Robert K. Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool.
In Proc. CAV’10, pages 24–40, 2010.

[5] Raik Brinkmann and Rolf Drechsler. Rtl-datapath verification using integer linear programming.
In Proc. ASP-DAC’02, 2002.

[6] Robert Brummayer and Armin Biere. Boolector: An efficient smt solver for bit-vectors and arrays.
In TACAS, volume 5505 of LNCS, pages 174–177. Springer, 2009.

[7] Robert Brummayer, Armin Biere, and Florian Lonsing. BTOR: bit-precise modelling of word-level
problems for model checking. In Proc. BPR’08, pages 33–38, 2008.

[8] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and Roberto Sebas-
tiani. The MathSAT SMT solver. In Proc. CAV’08, pages 299–303, 2008.

[9] bv2smv project page. Website. http://fmv.jku.at/bv2smv/.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebastiani, and
A. Tacchella. Nusmv version 2: An opensource tool for symbolic model checking. In Proc. CAV02,
2002.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient smt solver. In Proc. ETAPS’08, pages
337–340, 2008.

[12] Bruno Dutertre and Leonardo de Moura. The Yices SMT solver. Tool paper at
http://yices.csl.sri.com/tool-paper.pdf, August 2006.

[13] Niklas Eén and Niklas Sörensson. Temporal induction by incremental SAT solving. Electronic
Notes in Theoretical Computer Science, 89(4):543–560, 2003.

[14] Moshe Emmer, Zurab Khasidashvili, Konstantin Korovin, and Andrei Voronkov. Encoding in-
dustrial hardware verification problems into effectively propositional logic. In FMCAD’10, pages
137–144, 2010.

[15] Andreas Fröhlich, Gergely Kovásznai, and Armin Biere. More on the complexity of quantifier-free
fixed-size bit-vector logics with binary encoding. In Proc. CSR’13 (to appear), 2013.

[16] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Computer
Aided Verification (CAV ’07), Berlin, Germany, July 2007. Springer-Verlag.

[17] Zurab Khasidashvili, Mahmoud Kinanah, and Andrei Voronkov. Verifying equivalence of memories
using a first order logic theorem prover. In FMCAD’09, pages 128–135, 2009.

[18] Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. Mona implementation secrets. In
Proc. CIAA’00, pages 182–194, 2000.

[19] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. On the complexity of fixed-size bit-vector
logics with binary encoded bit-width. In Proc. SMT’12, pages 44–55, 2012.

[20] Gergely Kovásznai, Andreas Fröhlich, and Armin Biere. Bv2epr: A tool for polynomially trans-
lating quantifier-free bit-vector formulas into epr. In Proc. CADE’13 (to appear), 2013.

[21] Harry R. Lewis. Complexity results for classes of quantificational formulas. J. Comput. Syst. Sci.,
21(3):317–353, 1980.

[22] Andrej Spielmann and Viktor Kuncak. On synthesis for unbounded bit-vector arithmetic. Tech-
nical report, EPFL, Lausanne, Switzerland, February 2012.

[23] Andrej Spielmann and Viktor Kuncak. Synthesis for unbounded bit-vector arithmetic. In Proc. IJ-
CAR’12, volume 7364 of LNCS, pages 499–513, 2012.

10

http://fmv.jku.at/bv2smv/

	Introduction
	QF_BV1 to SMV
	Experiments
	Conclusion

