
DEBUGGING: SOFTWARE
BMC
WS 2017/2018

Martina Seidl
Institute for Formal Models and Verification

Model Checking

Model Checker

Formal Specification
(Temporal Formula)

Model
(Kripke Structure)

Requirements Implementation

VERIFIED

1/9

Model Checking

Model Checker

Formal Specification
(Temporal Formula)

Model
(Kripke Structure)

Requirements Implementation

ERROR +
Error Trace

debug

1/9

Types of Model Checking

General question: Given a system K and a property p,
does p hold for K (i.e., for all initial states of K) ?

� Explicit state model checking
� enumeration of the state space
� state explosion problem

� Symbolic model checking
� representation of model checking problem as logical

formula (e.g., in propositional logic (SAT) or QBF)

2/9

Bounded Model Checking

basic idea: search for a counter-example of bounded length k

� encoding in propositional logic (or extensions)

� use SAT solvers to find such a counter-example:
formula is satisfiable iff a bug is found, i.e., an execution of
program that violates the claim.

� benefits:
� bit-precise encoding of the real semantics
� powerful SAT solvers
� difficulty of the problem is controllable (by selection of k)

� drawback: incomplete for k that is too small

⇒ can be used for debugging

3/9

Bounded Model Checking of ANSI-C
Programs

� idea:
� unwind program into equation
� check equation using SAT

� benefits:
� completely automated
� treatment of pointers and dynamic memory is possible

� properties:
� simple assertions
� run time errors (pointers/arrays)
� run time guarantees (WCET)

for example implemented in tool CBMC

4/9

From C to SAT

� removal of side effects
example: j=i++ is rewritten to j=i; i=i+1

� control flow is made explicit
example: continue, break are replaced by goto

� transformation of loops to while (...) ...

� while (...) ... loops are unwound
� all loops must be bounded
→ analysis may become incomplete

� constant loop bounds are found automatically, others must
be specified by user

� to ensure sufficient unwinding, “unwinding assertions” are
added

5/9

From C to SAT: Loop Unwinding
original function:

void f (...) {

...

while (cond) {

body;

}

rest;

}

with unwounded loop:

void f (...) {

...

if (cond) {

body;

if (cond) {

body;

if (cond) {

body;

assert(!cond);

}

}

}

rest;

}

after last iteration an assertion is added:
violated if program runs longer than bound permits

6/9

From C to SAT: SSA

single static assignment (SSA) form: fresh variable for LHS of
each assignment

example:

x = x + y;

x = x * 2;

a[i] = 100;

is translated to

x1 = x0 + y0;

x2 = x1 * 2;

a1[i0] = 100;

from which the following SMT formula can be derived

(x1 = x0 + y0) ∧ (x2 = x1 ∗ 2) ∧ (a1[i0] = 100)
7/9

From C to SAT: Conditionals

� for each join point, new variables with selectors are added

� example:

original program:

if (v)

x = y;

else

x = z;

w = x;

⇒

rewritten program:

if (v0)

x0 = y0;

else

x1 = z0;

x2 = v0 ? x0 : x1;

w1 = x2;

8/9

From C to SAT: Example

int main () {

int x, y;

y = 1;

if (x)

y�;

else

y++;

assert

(y==2 || y==3);

}

⇒

int main () {

int x, y;

y1 = 1;

if(x0)

y2 = y1-1;

else

y3 = y1+1;

y4 = x0 ? y2 : y3;

assert

(y4==2 || y4==3);

}

⇒

((y1 = 8) ∧ (y2 = y1 − 1) ∧ (y3 = y1 + 1) ∧ (y4 = x0?y2 : y3))

→ ((y4 ↔ 2) ∨ (y4 ↔ 3))

9/9

