
DEBUGGING: DELTA
DEBUGGING
WS 2017/2018

Martina Seidl
Institute for Formal Models and Verification

Simplifying the Problem

� problem found
⇒ simplify it

� which circumstances are relevant?
� which circumstances can be omitted?

� turn problem report into concise test case
(relevant details only)

� by adding and removing circumstances
(experimentally)

delta debugging: automated debugging method for sys-
tematically simplifying test cases such that the problem
still occurs

1/18

How and Why To Simplify

How?

� by experimentation, one finds out whether a circumstance
is relevant or not:

1. omit the circumstance and try to reproduce the problem
2. the circumstance is relevant if the problem no longer occurs

Why?

� easier communication

� easier debugging

� easier identification of duplicates

2/18

Basic Idea of Delta Debugging

from https://www.st.cs.uni-saarland.de/dd/

3/18

https://www.st.cs.uni-saarland.de/dd/

Delta Debugging Roadmap

1. identify the test case(s)

2. identify the deltas
3. set up a Delta Debugging framework

� implement a reduction strategy (binary search)

4. write a testing function
� test automatically if failure occurs under simplified test case

5. invoke Delta Debugging

4/18

Delta Debugging: General Approach

binary search:

1. remove half of the input
2. check if the output is still wrong

2.1 yes: further simplify
2.2 no: reset the state and remove other half of the input

5/18

A Delta Debugging Algorithm: Preliminaries

� elements:
� circumstance: δ
� all circumstances: C = {δ1, δ2, ...}
� configuration: c ⊆ C, (e.g., c = {δ1, ..., δn})

� tests
� testing function: test(c) ∈ {3, 7, ?}
� failure inducing configuration: test(c7) = 7

� relevant configuration: c′7 ⊆ c7 such that
∀δi ∈ c′7 : test(c′7 \ {δi}) 6= 7

6/18

A Delta Debugging Algorithm: Binary
Strategy

� split input: c′7 = c1 ∪ c2
� if removing c1 results in failure:

test(c′7 \ c1) = 7⇒ c′7 = c7 \ c1
� if removing c2 results in failure:

test(c′7 \ c2) = 7⇒ c′7 = c7 \ c2
� otherwise: increase granularity

c′7 = c1 ∪ c2 ∪ c3 ∪ c4

general strategy: split test case into n parts (initially 2)

7/18

The ddmin Algorithm

� result: c′7 = ddmin(c7)
� c′7 is a relevant configuration
� c′7 ⊆ c7

� implementation: ddmin(c′7) = ddmin’(c′7, 2)

ddmin’(c′7, n) =

if |c′7 | = 1 return c′7

if (test(c′7 \ ci) = 7

for some i ∈ {1..n})
return ddmin’(c′7 \ ci, max(n− 1, 2))

if n < |c′7 | return ddmin’(c′7, min(2n,|c′7 |))

otherwise c′7

8/18

Optimizations

� caching
� stop when no progress is observed

� after a certain time
� after a certain number of unsuccessful simplifications
� when a certain granularity has been reached

� syntactic simplifications

� isolation of differences instead of circumstances

9/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value ((let ((x 1) (y 1)) (= x y))))

17 (exit)

example by Aina Niemetz [SMT13] 10/18

Example: ddSMT

1 #!/bin/sh

2

3 if [`grep -c "\<get -value\>" $1` -ne 0];

4 then exit 1

5 fi

6

7 exit 0

−→ simulates: SMT Solver does not support get-value
commands

example by Aina Niemetz [SMT13] 11/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value ((let ((x 1) (y 1)) (= x y))))

17 (exit)

redundant

example by Aina Niemetz [SMT13] 12/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value ((let ((x 1) (y 1)) (= 0 0))))

17 (exit)

all variable bindings substituted

example by Aina Niemetz [SMT13] 13/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value ((= 0 0)))

17 (exit)

example by Aina Niemetz [SMT13] 14/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value ((= 0 0)))

17 (exit)

non-constant Boolean term

example by Aina Niemetz [SMT13] 15/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value (false))

17 (exit)

example by Aina Niemetz [SMT13] 16/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value (false))

17 (exit)

redundant

example by Aina Niemetz [SMT13] 17/18

Example: ddSMT
1 (set-logic UFNIA)

2 (declare-sort sort1 0)

3 (declare-fun x () sort1)

4 (declare-fun y () sort1)

5 (assert (= x y))

6 (push 1)

7 (define-sort sort2 () Bool)

8 (declare-fun x () sort2)

9 (declare-fun y () sort2)

10 (assert (and (as x Bool) (as y Bool)))

11 (assert (! (not (as x Bool)) :named z))

12 (assert z)

13 (pop 1)

14 (assert (forall ((z Int)) (exists ((zz Int)) (= z zz))))

15 (check-sat)

16 (get-value (false))

17 (exit)

example by Aina Niemetz [SMT13] 18/18

