
DEBUGGING: DYNAMIC
PROGRAM ANALYSIS
WS 2017/2018

Martina Seidl
Institute for Formal Models and Verification

System Invariants

properties of a program must hold over the entire run:

� integrity of data

� no access of data of other processes

� handling of mathematical exceptions

� adhere to privileges

⇒ ensured by operating system and hardware

� security for user

� valuable information for debugging

1/25

Example: Heap Memory Problems

common source of errors in C and C++ programs: misuse of
heap memory

example:

...

1 char *s = malloc(24);

2 char *t = malloc(20);

3 strcpy(t, "hello");

4 s[33] = 'b';

5 printf ("%s\n", t);

6 free (t);

7 free (t);

}

problems:

� no free (s)

� write in line 4

� t is released twice

2/25

Software Memory Problems

typical problems related with memory allocation / deallocation:

� use of uninitialized memory (→ undefined values)
� accessing memory that has been released
� accessing memory beyond allocated block
� accessing inappropriate stack areas
� memory leaks
� passing uninitialized memory to system calls

symptoms:

� no observable problem
� increasing memory consumption
� segmentation fault

⇒ memory debugging
3/25

Dynamic Binary Analysis

� analysis of program’s code at runtime

� augmentation of original code with analysis code
= dynamic binary instrumentation (DBI)

⇒ analysis code runs in parallel with original code

⇒ useful information about the program

applications:

� error detection

� profiling

4/25

DBI: Pros and Cons

advantages:

� user-friendliness (no modification of code)

� no recompilation, no relinking

� 100 % coverage

� easy to extend (add plugins to core analysis framework)

problems:

� loss in performance

� data and operations in analysis tool are as complex as in
the original program

� false positives

5/25

Valgrind

� instrumentation framework for building dynamic analysis
tools

� program under observation is executed on synthetic CPU
together with instrumentation code

� some Valrind-based tools:
� memory error detector (memcheck)

• normal call of program: myprog arg1 arg2

• with Valgrind:
valgrind �leak-check=yes myprog arg1 arg2

� thread error detectors
� cache and branch-prediction profiler
� call-graph generating cache and branch-prediction profiler
� heap profiler

6/25

Memcheck

� detection of memory-realted errors in C and C++ programs

� default tool of Valgrind

example output:

==19182== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1

==19182== at 0x1B8FF5CD: malloc (vg_replace_malloc.c:130)

==19182== by 0x8048385: f (a.c:5)

==19182== by 0x80483AB: main (a.c:11)

categories of leaks:

� definitivly lost

� probably lost

7/25

Example: Buggy Shell-Sort (1/3)

...

3 static void shell_sort (int a[], int size) {

...

16 for (i = h; i < size; i++) {

17 int v = a[i];

18 for (j = i; j >= h && a[j - h] > v; j -= h)

19 a[j] = a[j - h];

...

26 int main (int argc, char *argv[]) {

...

35 shell_sort(a, argc);

8/25

Example: Buggy Shell-Sort (2/3)

Valgrind on shell-sort with defect:

$ valgrind ./shell 11 14

==16992== Memcheck, a memory error detector

==16992== ...

==16992== Invalid read of size 4

==16992== at 0x4006A6: shell_sort (shell.c:17)

==16992== by 0x4007D6: main (shell.c:35)

==16992== Address 0x40EE902C is 0 bytes after a block of size 8 alloc'd

==16992== at 0x4C2DC10: malloc (vg_replace_malloc.c:299)

==16992== by 0x40076F: main (shell.c:31)

==16992==

==16992== Invalid write of size 4

==16992== at 0x4006E0: shell_sort (shell.c:19)

==16992== by 0x4007D6: main (shell.c:35)

==16992== Address 0x40EE902C is 0 bytes after a block of size 8 alloc'd

==16992== at 0x4C2DC10: malloc (vg_replace_malloc.c:299)

==16992== by 0x40076F: main (shell.c:31)

Output: 0 11

9/25

Example: Buggy Shell-Sort (3/3)

Valgrind on shell-sort with fix (shell_sort(a, argc-1);) :

valgrind ./shell 11 14

==17395== Memcheck, a memory error detector

==17395== Copyright (C) 2002-2015, and GNU GPL'd, by Julian Seward et al.

==17395== Using Valgrind-3.11.0 and LibVEX; rerun with -h for copyright info

==17395== Command: ./shell 11 14

==17395==

Output: 11 14

==17395==

==17395== HEAP SUMMARY:

==17395== in use at exit: 0 bytes in 0 blocks

==17395== total heap usage: 2 allocs, 2 frees, 1,032 bytes allocated

==17395==

==17395== All heap blocks were freed � no leaks are possible

==17395==

==17395== For counts of detected and suppressed errors, rerun with: -v

==17395== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

10/25

Shadow Values

� shadow every value with another value that describes it

� writing and propagation together with values of original
program

� no change of original program behavior

original operations shadow operations

int p = malloc (...) shadow (p) = undef
R1 = 1 shadow (R1) = def
R1 = R2 shadow (R1) = shadow (R2)
R1 = R2 + R3 R1 = addsh (R2, R3)
if (R1 == 0) ... error if R1 is undef

11/25

Shadow Memory

� V-bit set: corresponding bit is initialized

� A-bit set: corresponding byte is accessible

12/25

Valid-Value Bits (V-Bits)

� every processed bit has an associated valid-value bit (V-bit)
⇒ each byte has 8 V-bits

� V-bit indicates if value in original bit is valid
� V-bit is checked immediately on operations on a value that

affect program’s externally-visible behavior
⇒ error if value is undefined and used for generating an
address, making a control flow decision, or as argument for
a system call

� simple read accesses to uninitialized memory do not result
in warnings:
struct S { int x; char c; };

struct S s1, s2;

s1.x = 42; // 5 bytes init

s1.c = 'z';

s2 = s1; // 8 bytes copied, no warning

13/25

Access-Bits (A-Bits)

� all global data is marked “accessible” on program start
(= A-bits are set)

� malloc() sets A-bits for the area returned

� free() clears them

� local variables are “accessible” on function entry and
“non-accessible” on exit

⇒ error if “non-accessible” data is used

14/25

Address Sanitizer: Overview

� compile-time instrumentation module
� run-time library: Linux, OS X, Android, Windows
� supported by LLVM and GCC

example:

int global_array[100] = {1};

int main(int argc, char **argv) {

return global_array[argc + 100];

}

� clang -fsanitize=address test.c -o test
� output when running ./test

==28580==ERROR: AddressSanitizer: global-buffer-overflow on address 0x000000719cd4 at pc 0x0000004e9bc5 bp 0x7ffceb145ee0 sp 0x7ffceb145ed8

READ of size 4 at 0x000000719cd4 thread T0

...

0x000000719cd4 is located 4 bytes to the right of global variable

'global_array' defined in 'test4.c:1:5' (0x719b40) of size 400

15/25

Coverage for Debugging

detecting anomalies by using coverage information:

1. Every failure is caused by an infection, which again is
caused by a defect.

2. Teh defect must be executed in order to trigger the
infection.

3. Thus, code that is executed only in failing runs is more
likely to contain the defect than the code that is always
executed.

⇒ use coverage tool that keeps track of executed code lines

⇒ compare coverage of passing and failing run

16/25

Example: Coverage

int middle(int x, int y, int z) {

1 int m = z;

2 if (y < z) {

3 if (x < y)

4 m = y;

5 else if (x < z)

6 m = y;

} else {

7 if (x > y)

8 m = y;

9 else if (x > z)

10 m = x;

}

11 return m;

}

x 3 1 3 5 5 2
y 3 2 2 5 3 1
z 5 3 1 5 4 3

1 • • • • • •
2 • • • • • •
3 • • • •
4 •
5 • • •
6 • •
7 • •
8 •
9 •

10
11 • • • • • •

ok ok ok ok ok fail

⇒ consider line 6, because it has been exectued by only one
passing test

17/25

Challenges in Parallel Programming

... so far we considered only sequential programs

with parallel programs we have the same challenges as with
sequential programs plus

� ensure correctness of overall program

� ensure correctness of n parallel processes
� new problems

� deadlock
� race condition
� irreproducibility

18/25

Deadlocks

typical deadlock situation:

� two threads T1 and T2

� shared resources: m1 and m2

� access of resources:
� T1 waits to synchronize with T2 on m1, but ...

m1 can only be established by T2 after m2

� T2 waits to synchronize with T1 on m2, but ...
m2 can only be established by T1 after m1

⇒ deadlock (usually system freezes)

19/25

Finding Deadlocks

� models
� either build or extract abstract model
� model checking or unit testing
� goal is exhaustive simulation of all schedules

� search for cyclic dependencies
� priority inversion (static lock/mutex order)
� cycles in lock dependency graph

� generate massif load, insert jitter
� wait for random time between locks/unlocks
� add artificial work

20/25

Debugging Deadlocks

� access to program state of all threads

� either through debugging/logging thread
� with symbolic debuggers

� attaching symbolic debuggers
� after program seemed to be frozen
� gdb program pid

� threads, thread 2, bt

� external tools that monitor locking order, e.g., helgrind
(which uses sand boxing)

� programming discipline: proper lock protection

21/25

Happens-Before Relation

� dependency between events

� events in the same thread/process ordered by execution
order

� synchronization among threads/processes
� sending/receiving message
� locking/unlocking (of one particular lock)
� waiting for a condition/enabling a condition

shared access events should be ordered by happens before
relation, otherwise

� data races

� non-deterministic behavior

22/25

Example: Lock Protection

proper lock protection

Thread 1 Thread 2

lock (mu);

v = v + 1;

unlock (mu);

lock (mu);

v = v + 1;

unlock (mu);

improper lock protection

Thread 1 Thread 2

y = y + 1;

lock (mu);

v = v + 1;

unlock (mu);

lock (mu);

v = v + 1;

unlock (mu);

y = y + 1;

23/25

Example: Data Race

nclude <pthread.h>

int var = 0;

void* child_fn (void* arg) {

var++; /* this is line 6 */

return NULL;

}

int main () {

pthread_t child;

pthread_create(&child, NULL, child_fn, NULL);

var++; /* this is line 13 */

pthread_join(child, NULL);

return 0;

}

24/25

Example: Data Race

Thread #1 is the program's root thread

Thread #2 was created

...

by 0x400605: main (simple_race.c:12)

Possible data race during read of size 4 at 0x601038 by thread #1

Locks held: none

at 0x400606: main (simple_race.c:13)

This conflicts with a previous write of size 4 by thread #2

Locks held: none

at 0x4005DC: child_fn (simple_race.c:6)

...

by 0x511C0CC: clone (in /lib64/libc-2.8.so)

Location 0x601038 is 0 bytes inside global var "var"

declared at simple_race.c:3

25/25

