
Programmiersprache C++ Winter 2005 Operator overloading (1)Debugging Multithreaded Programs (1)

Debugging Multithreaded Programs

Debugging
Armin Biere

WS 2012



Programmiersprache C++ Winter 2005 Operator overloading (2)Debugging Multithreaded Programs (2)

Deadlocks
 threads T1, T2, synchronization m1, m2

» T1 waits to synchronize with T2 on m1
» T2 waits to synchronize with T1 on m2
» m1 can only be established by T2 after m2
» m2 can only be established by T1 after m1

 a deadlock freezes a system
 may only occur in rare corner cases

» hard to find and debug



Programmiersprache C++ Winter 2005 Operator overloading (3)Debugging Multithreaded Programs (3)

Finding Deadlocks
 models

» either build or extract abstract model
» model checking or unit testing
» goal is exhaustive simulation of all schedules

 search for cyclic dependencies
» priority inversion (static lock/mutex order)
» cycles in lock dependency graph

 generate massif load, insert jitter
» wait for random time between locks/unlocks
» add artificial work



Programmiersprache C++ Winter 2005 Operator overloading (4)Debugging Multithreaded Programs (4)

Debugging Deadlocks

 access to program state of all threads
» either through debugging/logging thread
» or with symbolic debuggers

 attaching symbolic debuggers
» after program seemed to be frozen
» gdb program.exe pid

» threads, thread 2, bt
 trade-off between printf style debugging and symbolic debugging
 use external tools that monitor locking order

» for instance helgrind (which uses sand boxing)
 programming discipline

» add wrappers around locking instead of directly calling pthread_...
» add checker code that looks incompatible invalid locking order



Programmiersprache C++ Winter 2005 Operator overloading (5)Debugging Multithreaded Programs (5)

Proper Lock Protection

THREAD1

lock (mu);

v = v + 1;

unlock (mu);

THREAD2

lock (mu);

v = v + 1;

unlock (mu);



Programmiersprache C++ Winter 2005 Operator overloading (6)Debugging Multithreaded Programs (6)

Happens-Before Relation
 dependency between events
 events in the same thread/process ordered by execution order
 synchronization among threads/processes

» sending/receiving message
» locking/unlocking (of one particular lock)
» waiting for a condition/enabling a condition

 shared access events should be ordered by happens before relation
» otherwise data races
» non deterministic behavior
» usually also incorrect



Programmiersprache C++ Winter 2005 Operator overloading (7)Debugging Multithreaded Programs (7)

Improper Lock Protection 1

m1 != m2
THREAD1

lock (m1);

v = v + 1;

unlock (m1);

THREAD2

lock (m2);

v = v + 1;

unlock (m2);



Programmiersprache C++ Winter 2005 Operator overloading (8)Debugging Multithreaded Programs (8)

Improper Lock Protection 2

THREAD1

y = y + 1;
lock (mu);
v = v + 1;
unlock (mu);

THREAD2

lock (mu);
v = v + 1;
unlock (mu);
y = y + 1;

But access events to y still in happens-before relation!



Programmiersprache C++ Winter 2005 Operator overloading (9)Debugging Multithreaded Programs (9)

Eraser/Lock Set Algorithm
 check for locking discipline

» shared access protected by at least one lock
» collect lock sets at access events
» check intersection of lock sets non empty

 if a lock set becomes empty
» either improper locking
» even though no problem in this run

 some cases of false positives / warnings
» for instance if threads work in phases
» phases are scheduled properly
» objects are exclusively own by a certain thread such a phase



Programmiersprache C++ Winter 2005 Operator overloading (10)Debugging Multithreaded Programs (10)

Eraser False Warnings
 initialization / collection example

» data is initialized by boss thread
» work is spawned off to worker threads
» results are collected and displayed by boss

 read / read vs read / write
» attach state to data

new

shared

exclusive

shared modified



Programmiersprache C++ Winter 2005 Operator overloading (11)Debugging Multithreaded Programs (11)

High-Level Data Races
 view on protected data consistent

» data X and Y accessed together in thread 1
» access to X alone in thread 2 is fine
» but it is not view consistent to access Y in thread 3 alone

 similar refinements as with Eraser
» same problems with false positives
» needs more programming discipline



Programmiersprache C++ Winter 2005 Operator overloading (12)Debugging Multithreaded Programs (12)

Debugging Data-Races
 tools that implement Eraser algorithm

» example again is helgrind
» usually need sand boxing and thus
» much slower than actual code
» danger of Heisenbugs

 alternatively: programming discipline
» wrap access to shared data
» add checker for locking discipline
» still potential for Heisenbugs

 much more difficult than debugging deadlocks
» need to check all accesses to data
» compared to just checking lock/unlock of a mutex in debugging deadlocks
» even worse than debugging pointer related bugs

 schedule steering: massif load and/or random jitter


	Debugging Multithreaded Programs
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

