
DEBUGGING: OBSERVING
AND TRACKING
WS 2017/2018

Martina Seidl
Institute for Formal Models and Verification

Observing a Program

� deduction tells what might happen

� observation tells what is actually happening

observation at a glance:

� collect facts about what has happened in a concrete run

� look into actual program execution
� approaches:

� logging
� interactive debugging
� post-mortem debugging
� summarization techniques

1/18

Principles of Observation

� Do not interfere. Observation should be effect of original
run, not caused by observation mechanisms.

� Know what and when to observe.
� which part of the state
� at which moments during execution

� Proceed systematically. Guide the search by scientific
method, not by random.

2/18

printf Debugging

simplest (and probably most widespread) way of debugging:
insertion of printf statements into the code for learning
about the values of variables

drawbacks:

� cluttered code
� do not contribute to understand the code in general
� have to be removed after the debugging

� cluttered output
� often a huge mass
� interleaving with ordinary output

� slowdown

� loss of data in case of crash

3/18

Desired Properties of Logging Techniques

� standard formats:
search and filter for specific
� code locations
� events
� data

� variable granularity
� sharpens focus
� improves performance

� disabling feature

� persistence feature

4/18

Customizing Logging

� simple possibility: dprintf (...)

� same behavior as printf (...), but
... write to a special debugging log
... allow output to be turned off
... prefix with information like the date or a marker, e.g.,
DEBUG: size = 3

� drawback: performance if called often

� more cost effective: use a logging macro
� easy to turn off (e.g., at compile time)
� may involve expensive calculations
� may contain information about their own location

5/18

Logging Frameworks

� general purpose libraries for logging are available

� standardize the process of logging
� main components

� logger: collecting message and metadata to be logged
� formatter: aligning collected information for output, e.g.,

convert objects into strings
� handler (appender): display our write output

� severity levels: FATAL, ERROR, WARNING, INFO,
DEBUG, TRACE

6/18

Logging with Aspects

aspect-oriented programming: separate cross-cutting
concerns into individual syntactic entities (aspects)

basic concepts

� advice

� cutpoints

� joinpoints

⇒ logging and actual computation are not intertwined

7/18

Example: Logging with Aspects

log entry and exit of method buy defined in class Article

public aspect LogBuy {

pointcut buyMethod():

call(public void Article.buy());

before(): buyMethod() {

System.out.println("Entering Article.buy()")

}

after(): buyMethod() {

System.out.println("Leaving Article.buy()")

}

}

8/18

Debugger

drawbacks of logging approach:

� writing and integrating code

� rebuild and rerun program

⇒ use external observation tool (debugger) that

� observe program states

� stop program at a certain state

� manipulates program states

� does not change original code

9/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Preparation:

hypothesis input “11 14” works
prediction output is “11 14”
experiment run with input “11 14”
observation output is “0 11”
conclusion hypothesis rejected

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Preparation:

hypothesis input “11 14” works
prediction output is “11 14”
experiment run with input “11 14”
observation output is “0 11”
conclusion hypothesis rejected

$ gcc -g -o shell shell.c

$./shell 11 14

Output: 0 11

$ gdb shell

GNU gdb (Ubuntu

7.11.1-0ubuntu1 16.5) 7.11.1

...

(gdb) _

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 1:

hypothesis a[0] becomes zero
prediction a[0] = 0 in line 9
experiment observe a[0]

observation a[0] = 0

conclusion hypothesis confirmed

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 1:

hypothesis a[0] becomes zero
prediction a[0] = 0 in line 9
experiment observe a[0]

observation a[0] = 0

conclusion hypothesis confirmed

(gdb) break 7

Haltepunkt 1 at 0x4007e6: file shell.c, line 7.

(gdb) run 11 14

Starting program: shell 11 14

Breakpoint 1, main (argc=3, argv=0x7fffffffdd98) at shell.c:7

7 for (i = 0; i < argc - 1; i++)

(gdb) print a[0]

$1 = 0

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 2:

hypothesis infection in shell_sort

prediction a = [11, 14],
size = 2 in line 5

experiment observe a, size

observation a = [11, 14, 0],
size = 3

conclusion hypothesis rejected

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 2:

hypothesis infection in shell_sort

prediction a = [11, 14],
size = 2 in line 5

experiment observe a, size

observation a = [11, 14, 0],
size = 3

conclusion hypothesis rejected

(gdb) break shell_sort

Breakpoint 2, shell_sort (a=0x602010, size=3) at shell.c:5

5 int h = 1;

(gdb) print a[0]

$2 = 11

(gdb) print a[1]

$3 = 14

(gdb) print a[2]

$4 = 0

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 3:

hypothesis size = 3 causes failure
in shell_sort

prediction if we set size = 2

program works
experiment set size = 2

observation as predicted
conclusion hypothesis confirmed

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 3:

hypothesis size = 3 causes failure
in shell_sort

prediction if we set size = 2

program works
experiment set size = 2

observation as predicted
conclusion hypothesis confirmed

(gdb) set size = 2

(gdb) c

Continuing.

Output: 11 14

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 4:

hypothesis using argc instead of
argc-1 in shell_sort

causes failure
prediction output is “11 14”
experiment change argc to

argc-1 in line 5
observation as predicted
conclusion hypothesis confirmed

10/18

Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 4:

hypothesis using argc instead of
argc-1 in shell_sort

causes failure
prediction output is “11 14”
experiment change argc to

argc-1 in line 5
observation as predicted
conclusion hypothesis confirmed

change to argc-1

10/18

Debugging: Summary
important concepts (selection):

� breakpoint
(stop execution at certain line)
(gdb) break 8

� watchpoint
(stop execution when value of expression changes)
(gdb) watch a[0]

� conditional breakpoint
(stop execution at a specific location if condition is true)
(gdb) break 8 if (a[0] == 0)

benefits:

� no modification of code
� flexible observation
� transient sessions

11/18

Automating Observations

� challenges in observing a program:
� huge amount of states and events
� new run → new observation
� judging if a state is sane or not

� observation alone is not enough for debugging

� essential: compare observed facts with expected behavior

⇒ assertions: take small probes in state and time

12/18

Assertions (1/2)

An assertion is a Boolean expression at a specific point
in a program which will be true unless there is defect.

example:

assert(0 <= index && index < length);

� goal: notify a programmer about a problem

� provides diagnostic information

� easy to remove by recompilation, e.g.,
defining the NDEBUG macro in C

� powerful in combination with fuzzing

13/18

Assertions (2/2)

assert (expr) asserts that an expression is true. The
expression expr may or may not be evaluated.

� If the expression is true, execution continues
normally.

� If the expression is false, what happens is
undefined. https://nedbatchelder.com/text/assert.html

handling failed assertions

� terminate the program
� provide some message and continue
� throw an exception
� ask the user how to continue

14/18

https://nedbatchelder.com/text/assert.html

Assertions: Pros and Cons

benefits:

� support better testing and easier debugging
� detect very subtle problems
� detect problems sooner after they occurred

� scalability and persistence
� executable comments about preconditions, postcondition,

and invariants
� first step towards a formal spec

drawbacks:

� slow down of code
� usually if not executed, then little information gain

(except on control flow)
� improper use can make programs incorrect
� tempting to be used for error handling 15/18

Origins of Assertions

� sanity check of (intermediate) calculations
(often checking the result is easier than obtaining it)

� precondition:
� assert something that has to be true for code to execute
� documents requirements
� useful for failure diagnosis

� postcondition: easy to check guarantee

� invariant: property that has to hold during the whole
program execution
example: for a doubly-linked list it holds:
assert (n->next->prev == n);

� specifications: conditions that the program should fulfill

16/18

Examples for Using Assertions

� stating that an argument of a function should not be null
int div (int x, int y) {

assert (y != 0);

...

� checking the control flow
switch (x) {

case 1: ...; break;

case 2: ...; break;

case 3: ...; break;

default: assert (0);

}

� checking of representations
assert (valid_structure (tree));

� array indices within bounds
� cached values are not out of dates
� ...

17/18

Some Pitfalls

� defects in assertions
� reporting errors where none exists
� reporting no error where an error exists
� side-effects

assert (x = 7);

� misuse for error handling
int result = open (filename);

assert (result != -1);

� vacuous assertions
if (x) {

y = 1;

} else {

y = 2;

}

assert (y == 1 || y == 2);

18/18

