

Profiling

● profiling = quantitative debugging
– measure performance, resource usage

● CPU time
● memory consumption
● latency, througput

– here focus on CPU time (on Linux x86)
● first thing to try if your program is slow

– search for performance bugs
● previously: qualitative debugging

– search for failures, resp. incorrect behaviour

Profiling through Logging

● similar to printf style debugging
– add logging code with time stamps
– logging code removable at compile time
– logging code enabled / disabled at run time

● Debug performance through logging:
– wrap logging code around phases
– run test cases with logging enabled
– analyze time spent in phases
– reiterate and refine phases as necessary

#ifdef INCLUDE_LOGGING_CODE

static void timestamp (void) {
 getrusage (RUSAGE_SELF, &u);
 seconds = u.ru_utime.tv_sec + 1e-6 * u.ru_utime.tv_usec;
 seconds += u.ru_stime.tv_sec + 1e-6 * u.ru_stime.tv_usec;
 fprintf (log_file, "%.2f", seconds);
}

#define LOG(code) do { \
 if (!logging_enabled) break; \
 timestamp (); \
 fprintf (log_file , “:%s:%d: “, __FILE__, __LINE__); \
 code; \
 fputc (' ', log_file); fflush (log_file); \
} while (0)

#else

#define LOG(code) do { } while (0)

#endif

C code for Logging

Statistics

● Add code to count important events
– find event types on which you think the

performance depends linearly:
● number of requests, decisions, updates, etc.

– avoid Heisenberg effect
● counting should be cheap
● if statistics are cheap keep them in release code

– optionally include / disable statistics at
compile / run time

● similar to printf style debugging!

Where is the Hot-Spot?

● Logging / Statistics are not sufficient
– inaccurate, manual instrumentation / analysis

● Apply Low Hanging Fruit Principle
– profile, and only optimize hot spot
– do not forget:

● 90% time spent in one part of the program, then
improving this part (the hot spot) could speed up
your program 10x

● if it is only 50% then only at most 2x
● if it is only 20% then only at most 1.25x

Gprof

● compiler (gcc) instruments program
– counts number of executions of each function
– counts number of times an edge is traversed

in the callgraph of a program
– samples time spent in each function

● running the program dumps this
information to gmon.out

● gprof a.out reads program and dump
– produces flat and call graph profile

Sampling CPU Time

● need support by OS / processor
– OS generates interrupt every 1/100 seconds
– signal handler looks up frame pointer
– return address in frame gives code offset
– from code offset we get function f
– increase execution count of f

● problem: timing not accurate
– run test case multiple times

● Heisenberg issues ...

Performance Counters

● high resolution counters
– more accurate time stamps

● wall clock time stamps
● system wide

– also allow sampling / counting other events
● data cache hits / misses
● almost no overhead
● system wide

● root access needed!

Oprofile

● system wide profiler for Linux
– needs special kernel module
– root access
– only works on some platforms
– comes for instance with 'ubuntu'

● comparison to gprof
– more accurate, less overhead
– no recompilation nor relinking

Google Perftools

● sampling based user space tool
– no recompilation
– relinking can be avoided with LD_PRELOAD
– nice analysis tools, e.g. graphical

● compared to Oprofile
– easier to use
– clearly shows hotspots
– less platforms

Using Coverage Tools

● originally for counting number of lines /
branches executed

● main purpose is to detect untested code
● can be used to generate program slice for

one test case
● very accurate, but also very slow > 10x
● example: gcov + gcc
● number of times a line is executed does

not need to be linearly related to time
spent in this function

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

