
DEBUGGING: STRUCTURED
DEBUGGING
WS 2017/2018

Martina Seidl
Institute for Formal Models and Verification



Cause of a Failure

The cause of any event (“effect”) is a preceding event
without which the effect would not have occurred.

to prove causality, one must show that

� the effect occurs when the cause occurs

� the effect does not occur when the cause does not.

advantages in programming

� programs are (high-level) abstractions of reality

� program runs are usually repeatable

� testing can be automated

1/12



Debugging: Ad-Hoc Approach

guess the cause of a failure based on

� intuition

� experience

problems with this approach

� a priori knowledge is necessary

� hardly systematic

� hardly reproducible

� hard to teach

challenge: systematically find an explanation for a failure

2/12



Debugging: Scientific Method

process of obtaining a theory that explains some aspects of the
universe

process outline:

1. observe a failure

2. establish a hypothesis that is consistent with observations

3. make predictions based on the hypothesis
4. test the hypothesis by experiments and further

observations
� refine hypothesis if experiment satisfy the predictions
� otherwise, create alternative hypothesis

5. repeat 3. and 4. until no refinement is possible

3/12



Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

4/12



Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Preparation:

hypothesis input “11 14” works
prediction output is “11 14”
experiment run with input “11 14”
observation output is “0 11”
conclusion hypothesis rejected

4/12



Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 1:

hypothesis a[0] becomes zero
prediction a[0] = 0 in line 9
experiment observe a[0]

observation a[0] = 0

conclusion hypothesis confirmed

4/12



Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 2:

hypothesis infection in shell_sort

prediction a = [11, 14],
size = 2 in line 5

experiment observe a, size

observation a = [11, 14, 0],
size = 3

conclusion hypothesis rejected

4/12



Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 3:

hypothesis size = 3 causes failure
in shell_sort

prediction if we set size = 2

program works
experiment set size = 2

observation as predicted
conclusion hypothesis confirmed

4/12



Example: Broken Shell Short

int main (int argc, char *argv []) {

1 int *a;

2 int i;

3 a = (int *)malloc((argc - 1) * sizeof(int));

4 for (i = 0; i < argc - 1; i++)

a[i] = atoi(argv[i + 1]);

5 shell_sort(a, argc);

6 printf("Output: ");

7 for (i = 0; i < argc - 1; i++)

printf("%d ", a[i]);

8 printf("\n");

9 free(a);

10 return 0;

}

Hypothesis 4:

hypothesis using argc instead of
argc-1 in shell_sort

causes failure
prediction output is “11 14”
experiment change argc to

argc-1 in line 5
observation as predicted
conclusion hypothesis confirmed

change to argc-1

4/12



Summary: Scientific Method

hypothesis

code failing runproblem other runs

prediction

experiment

observation
+ conclusion

hypothesis rejected:

create new hypothesis

hypothesis confirmed:

refine hypothesis

diagnosis fix

5/12



Deriving a Hypothesis

� problem description: without concise description, the
problem cannot be solved

� program code: common abstraction across all program
runs

� failing run: execute the code and reproduce the problem
observe actual facts about the concrete run

� alternate runs: identification of anomalies — differences
between failing run and passing runs

� earlier hypotheses:
� include passed hypotheses
� exclude failed hypotheses

6/12



Theories in Debugging

When the hypothesis explains all experiments and
observations, the hypothesis becomes a theory.

a theory is a hypothesis that

� explains earlier observations

� predicts further observations

context of debugging: a theory is called a diagnosis

This contrasts popular usage, where a theory is a vague guess

7/12



Algorithmic Debugging

basic idea: (partially) automate the debugging process by
interactively querying the user about infection sources

approach:

1. assume an incorrect result R with origins O1, O2, . . . , On

2. for each Oi, enquire whether Oi is correct

3. if some Oi is incorrect, continue at Step 1 with R = Oi

4. otherwise (all Oi are correct), we found the defect

8/12



Example: Algorithmic Debugging
def insert (elem, list):

if len (list) == 0:

return [elem]

head = list[0]

tail = list[1:]

if elem <= head:

return list + [elem]

return [head] + insert (elem, tail)

def sort (list):

if len (list) <= 1:

return list

head = list[0]

tail = list[1:]

return insert (head, sort(tail))

sort ([2,1,3]) = [3, 1,2]

sort ([1,3]) = [3, 1] insert (2, [3,1]) = [3,1,2]

sort ([3]) = [3] insert (1, [3]) = [3,1]

9/12



Example: Algorithmic Debugging
def insert (elem, list):

if len (list) == 0:

return [elem]

head = list[0]

tail = list[1:]

if elem <= head:

return list + [elem]

return [head] + insert (elem, tail)

def sort (list):

if len (list) <= 1:

return list

head = list[0]

tail = list[1:]

return insert (head, sort(tail))

sort ([2,1,3]) = [3, 1,2]

sort ([1,3]) = [3, 1] insert (2, [3,1]) = [3,1,2]

sort ([3]) = [3] insert (1, [3]) = [3,1]

7

9/12



Example: Algorithmic Debugging
def insert (elem, list):

if len (list) == 0:

return [elem]

head = list[0]

tail = list[1:]

if elem <= head:

return list + [elem]

return [head] + insert (elem, tail)

def sort (list):

if len (list) <= 1:

return list

head = list[0]

tail = list[1:]

return insert (head, sort(tail))

sort ([2,1,3]) = [3, 1,2]

sort ([1,3]) = [3, 1] insert (2, [3,1]) = [3,1,2]

sort ([3]) = [3] insert (1, [3]) = [3,1]

7

7

9/12



Example: Algorithmic Debugging
def insert (elem, list):

if len (list) == 0:

return [elem]

head = list[0]

tail = list[1:]

if elem <= head:

return list + [elem]

return [head] + insert (elem, tail)

def sort (list):

if len (list) <= 1:

return list

head = list[0]

tail = list[1:]

return insert (head, sort(tail))

sort ([2,1,3]) = [3, 1,2]

sort ([1,3]) = [3, 1] insert (2, [3,1]) = [3,1,2]

sort ([3]) = [3] insert (1, [3]) = [3,1]

7

7

3

9/12



Example: Algorithmic Debugging
def insert (elem, list):

if len (list) == 0:

return [elem]

head = list[0]

tail = list[1:]

if elem <= head:

return list + [elem]

return [head] + insert (elem, tail)

def sort (list):

if len (list) <= 1:

return list

head = list[0]

tail = list[1:]

return insert (head, sort(tail))

sort ([2,1,3]) = [3, 1,2]

sort ([1,3]) = [3, 1] insert (2, [3,1]) = [3,1,2]

sort ([3]) = [3] insert (1, [3]) = [3,1]

7

7

3 7

9/12



Algorithmic Debugging: Critical Discussion

� drive the search for a deffect in a systematic way
guided by human input

� problems on real-world scenarios:

� scalability: number of functions, shared data structures, ...
⇒ works best for functional and logical programming
languages

� process is too mechanical: programmer has to assist the
tool

⇒ replace programmer by oracle that knows the external
specification of the program

10/12



Structuring the Debugging Process

not every problem needs the strength of a the scientific method,
but for complex problems it is useful to

� be explicit is important to understand (and find) the
problem

� write down hypotheses and observations in order to know
� where you are
� where you have been
� where you want to go
� what you want to get

11/12



Reasoning about Programs for Debugging

� deduction (0 runs)
reason from (abstract) program code to concrete runs
⇒ static analysis

� observation (1 run)
inspection of a single program run
⇒ facts about program execution

� induction (n runs)
reasoning from the particular to the general
⇒ summary of findings from multiple runs

� experimentation (n controlled runs)
refinement and rejection of hypotheses
⇒ scientific method

12/12


