
DEBUGGING: STATIC
ANALYSIS
WS 2017/2018

Martina Seidl
Institute for Formal Models and Verification



Deduction Techniques (1/2)

basic idea: reasoning from abstract program to concrete
program runs (program is not executed)

10 x = read ();

...

20 y = 0;

...

30 x = y;

..

40 print ("x = " + x);

question: what is the value of variable x in line 40 and why?

1/26



Deduction Techniques (2/2)

approach:

� identification of statements that could have caused the
failure
⇒ focus on relevant statements

� identification of statements that could not have caused the
failure
⇒ ignore irrelevant statements

⇒ identification of possible origins of the failure

⇒ narrow down search space

⇒ more effective debugging

2/26



Interplay of Statements

� effects of statements: contribution to information flow
� write: change a program state
� control: determine next executed statement

� affected statements: involvement in information flow
� read: continue with changed program state
� execution: effect only manifests on execution

dependencies between statements:

� control dependence

� data dependence

3/26



Data Dependence / Control Dependence

data dependence: Statement B is data dependent on
statement A if

� A write some variable x that is read by B

� there is at least one path in the control flow graph from A

to B in which x is not overwritten by some other statement

control dependence: Statement B is control dependent on
statement A if

� B’s execution is potentially controlled by A

⇒ visualization in program-dependence graph

⇒ analysis which statements influence which statements

4/26



Control Flow Graph

A control flow graph is a representation of all paths that
might be traversed through a program during
its execution.

elements of a control flow graph

� node: program statement

� edge: control flow

� special node: entry/exit node

� basic blocks: nodes that follow each other

5/26



Control Flow Patterns

patterns for control structures: composing structure of a
program

6/26



Complications When Reasoning about
Programs

� jumps and gotos
unconditional transfer of control

� indirect jumps
jump address is stored in a variable

� dynamic dispatch
method overwriting in object-oriented languages

� exceptions
transfer of control to calling function

7/26



Example: Fibonacci Numbers
Implementation with Defect

0 int fib (int n) {

1 int f;

2 int f0 = 1;

3 int f1 = 1;

4 while (n > 1) {

5 n = n - 1;

6 f = f0 + f1;

7 f0 = f1;

8 f1 = f;

}

9 return f;

}

int main () {

int n = 9;

while (n > 0) {

printf("fib(%d)=%d\n",

n, fib(n));

n = n - 1;

}

return 0;

}

problem: fib (1)

8/26



Example: Effects

9/26



Example: Control Flow Graph

0 int fib (int n) {

1 int f;

2 int f0 = 1;

3 int f1 = 1;

4 while (n > 1) {

5 n = n - 1;

6 f = f0 + f1;

7 f0 = f1;

8 f1 = f;

}

9 return f;

}

10/26



Example: Control Flow Graph

0 int fib (int n) {

1 int f;

2 int f0 = 1;

3 int f1 = 1;

4 while (n > 1) {

5 n = n - 1;

6 f = f0 + f1;

7 f0 = f1;

8 f1 = f;

}

9 return f;

}

10/26



Example: Control Flow Graph

0 int fib (int n) {

1 int f;

2 int f0 = 1;

3 int f1 = 1;

4 while (n > 1) {

5 n = n - 1;

6 f = f0 + f1;

7 f0 = f1;

8 f1 = f;

}

9 return f;

}

10/26



Program Slicing

problem: program computes wrong value for variable z at line
1024, but the statement at line 1024 is correct. Why?

⇒ automaticly find defect with program slicing

A program slice is a reduced program that preserves the
original program’s behavior for a given set of variables at
a chosen point in a program.

basic idea:

� focus on relevant statements and filter irrelevant ones
� narrow down infection sites

11/26



Static Slicing

example:

original program slice w.r.t. (4, {z})

1 x = 2; 1 x = 2;

2 y = x + 2; 2

3 z = x + 1 ; 3 z = x + 1;

4 4

what happened?

� deletion of statements

� projection of program semantics was preserved

12/26



Static Slicing: (Informal) Definition

A static slicing criterion of a program P is a pair (s, V ), where
s is a statement in P and V is a subset of the variables in P .

A slice S of a program P on a slicing criterion (s, V ) is a
program such that

� S is obtained by deleting statements from P

� P ’s behavior on variables V is preserved in s

note: no algorithm to find state-minimal slices
(finding minimal slices is equivalent to solve the Halting
problem!)

13/26



Forward Slicing

� given a statement A, the
forward slice contains all
statements whose read
variables or execution
could be influenced by A

� SF (A) = {B | A +−→ B}
� not included statements

cannot be affected by A

14/26



Backward Slicing

� Given a statement B, the
backward slice contains
all statements that could
influence the read
variables or execution of B

� SB(B) = {B | A +−→ B}
� often all statements

between A and B are
included

15/26



Multiple Slices

� example: two slices
(addition, multiplication)

� backward slice of
addition

� backward slice of
multiplication

� backward slice of addition
and multiplication

int main () {

int a, b, sum, mul;

sum = 0;

mul = 1;

a = read ();

b = read ();

while (a <= b) {

sum = sum + a;

mul = mul * a;

a = a + 1;

}

write (sum);

write (mul);

}

16/26



Backbone

� statements that occur in
both slices

� useful for focusing on
common behavior

a = read ();

b = read ();

while (a <= b) {

a = a + 1;

17/26



Dice

� only the difference
between two slices

� useful for focusing on
differing behavior

sum = 0;

sum = sum + a;

write (sum);

18/26



Chop

� intersection between a
forward and a backward
slice

� useful for determining how
statement A (originating
the forward slice)
influences statement B
(originating the backward
slice)

19/26



Code Smells

A code smell is a surface indication that usually corre-
sponds to a deeper problem in the system (M. Fowler)

examples:

� use of uninitialized variables

� unused values

� unreachable code

� memory leaks

� interface misuse

� null pointers

20/26



Example: Uninitialized Variables

example 1:

$ gcc -Wall -O -o fibo fibo.c

fibo.c: In function `fib':

fibo.c:7: warning: `f' might be used uninitialized in this function

example 2 (false positive):

int go;

switch (color) {

case RED:

case AMBER:

go = 0; break;

case GREEN:

go = 1; break;

}

if (go) { ... }

21/26



Unused Variable / Unreachable Code

unused variable: variable that is never read

in the dependency graph, no other statement is data dependent
on the write of such a variable

unreachable code: code that is never executed

example:

if (w >= 0)

printf ("w is non-negative\n");

else if (w > 0)

printf ("w is positive\n");

22/26



Memory Leaks / Null Pointers

1 int *readbuf (int size) {

2 int *p = malloc (size * sizeof(int));

3 for (int i = 0; i < size; i++) {

4 p[i] = readint ();

5 if (p[i] == 0)

6 return 0; // end-of-file

7 }

8 return p;

9 }

problems:

� line 2: return value of malloc is NULL
⇒ no memory is allocated

� lines 5 and 6: function is left without reference to p

⇒ p cannot be released

23/26



Interface Missuse

� memory is not the only resource that must be explicitly
deallocated when no longer in use, e.g., streams, sockets,
locks, devices, ...

� indication in control flow graph: path from stream opening
to statement where stream reference is lost without closing
stream

example:

void readfile() {

int fp = open(file);

int size = readint(file);

if (size <= 0)

return;

...

close(fp);

}

24/26



Defect Patterns

� class implements Cloneable but does not define or use
clone method

� method might ignore exception

� null pointer dereference in method

� class defines equal(); should it be equals()?

� method may fail to close database resource

� method may fail to close stream

� method ignores return value

� unread field

� unused field

� unwritten field

25/26



Limits of Static Analysis

� many false positives

� many questions are undecidable (Halting problem)
� many imprecisions

� indirect access, e.g., a [i] depends on i

� pointers
� functions
� object orientation, concurrency

� further risks
� code mismatch
� abstracting away the execution environment
� imprecision

26/26


