DEBUGGING: TESTING
WS 2017/2018

4

Martina Seidl
Institute for Formal Models and Verification

IIIIIIIIIIIIII

Testing is a Huge Field ...

Acceptance testing
Accessibility testing

Acceptance testing .]
Installation testing

Non-functional testing Sanity testing

Unit testing . .
. . Continuous testing
Regression testing

Beta testing Smoke testing

Compatibility testing
Component interface testing

Integration testing

. Alpha testing .]
Performance testing Usability testing

Destructive testing Functional testing

JXU 1/42

Costs of Defective Software

Cost to
1000 fix a bug \ /
%100 \."" /"—' \
x10 - 0 /-_
\, g NEd ™
) :'): W
','_ > r e N N\
Conception Design Development Testing Release

Time when bug is found arthurminduca.com

JXU 2/42

Testing

Testing is the execution of a program
with the intent to make it fail.

two views on testing:

H testing for validation
detection of yet unknown failures

B testing for debugging
uncovering a known problem

JXU 3/42

Tests in Debugging

in debugging, tests help to

B reproduce the problem

B simplify the problem

B observe a specific run

B ensure that a fix was successful

B protect against regression (a similar problem will not occur
again)

= set program up that it can be tested

JXU 442

Automation of Testing

some tests are difficult to perform manually
= automate testing!

benefits of test automation

B more reuse of tests
B increased repeatability
B simplification of test cases
M isolation of
O failure-inducing input
(] failure-inducing code changes
[J failure-inducing thread schedules
[J failure-inducing program state

= increase trust in program

JXU

5/42

Test Pyramid

8 A

from https://martinfowler.com/bliki/TestPyramid.html

JXU 6/42

https://martinfowler.com/bliki/TestPyramid.html

Interaction Layers of a Program

® User .
- N Execution
|
. A
Presentation 1 Result
A l 4 !
1 1
]
: Functionality
1 l A l 4
1 1 !
1 1 1
]
1
1
]

Unit Unit
4

utomated Testing

adapted from [Zeller09]

JXU 7/42

Interaction Layers of a Program

@® User)
- N Execution
l .

: A
Presentation ‘ 1 Result
A l A !
1 1
1 1
: Functionality
1 l 4 l 4 A
1 1 1 !
1 1 \ 1 |
: Unit Unit :
1]
1 [}

Y 1

utomated Testing

adapted from [Zeller09]

presentation layer: interaction with the user/environment

JXU 7/42

Interaction Layers of a Program

® User .
- N Execution
l .
: A
Presentation 1 Result
A l 4 |
1 1
I 1
: Functionality
i l A l 4 4
1 1 1 !
1 1 1 |
| Unit Unit |
1 [}
1 1
V1

utomated Testing

adapted from [Zeller09]

functionality layer: encapsulate the functionality (independent
from a specific presentation)

JXU 7/42

Interaction Layers of a Program

® User)
- N Execution
|
1
Presentation

1 Result
1

l 4
1
1
Functionality
I
1 1
1 1

Unit

utomated Testing

adapted from [Zeller09]

unit layer: splitting of functionality across cooperating units

JXU 7/42

Challenges in Automated Testing

automated testing can be performed on all layers
(with different benefits and drawbacks)

B ease of execution: How easy is it to get control over
program execution?

B ease of interaction: How easy is it to interact with the
program?

B ease of result assessment: How can we check results
against expectations?

H lifetime of test case: How robust is my test when it comes
to program changes?

JXU 8/42

Testing at the Presentation Layer (1/2)

benefits:
B simulate and automate user behavior
challenges:

B synchronization

B abstraction

B portability

B assessment of output

rule of thumb: the friendlier an interface is to humans, the
less friendly it is to computers

JXU 9/42

Testing at the Presentation Layer (2/2)

15,‘- s
5|6

Plagoack

JXU

pictures from https://www.guru99.com/gui-testing.html

10/42

https://www.guru99.com/gui-testing.html

Example: Record-And-Replay (Selenium)

Base URL httpsjfwww.jiu.aty

.
® ™ BED @ @
Test Case Source
test *

Command Target Value

open jcontent

type id=empphrase_quick seigl
clickAndWait css=input.button

click link=1. Fermale Medelle u. Verifixation

a4 clickAndWait link=HWMCC"17
Command v
Target Cancel Find
Select an element by clicking on it in the browser or click Cancel to

—— cancel

Runs: 1 Value

Failures: o

Log Reference Ul-Element Rollup Info~ Clear

[info] Playing test case Untitied
[info] Executing: |open | fcontent | |
[info] Executing:

: |clickAndWait | link=Tag im Zeichen weiblicher Philosaphie | |
[info] Executing

: |type | id=empphrase_quick | seidl |
[info] Executing: |clickAndWait | css=input.submit | |
[info] Executing: |cliekAndWait | css=input.submit | |
linfo] Executing: |type | id=sterm | seidl |

[info] Executing: |click | id=search | |

JXU

11/42

Testing at the Functionality Layer

benefits:

B direct access of the program’s functionality

B automation support by computing infrastructure
B programatic access and evaluation of results

B less fragile than testing at the presentation layer

requirement:

clear separation between presentation and functionality

JXU 12/42

Model-Based Testing

B model:

O finite state machine

[specification of intended behavior

O representation of test strategies and testing environment
B execution:

[J generic framework (e.g., Modbat)

[specific framework (e.g., Igimbt)
H different kinds of models, for example:

0 API model
J option model
[0 data model

= very powerful in combination with fuzz testing

JXU 13/42

Example: Model of a SAT Solver

f simplified API Model \

from http://fmv. jku.at/papers/ArthoBiereSeidl-TAP13.pdf

JXU 14/42

http://fmv.jku.at/papers/ArthoBiereSeidl-TAP13.pdf

Testing at the Unit Layer

idea:

B decomposition of program into units (subprograms,
functions, libraries, classes, ...)
B automation of the execution of a specific unit

B test the behavior of the individual units

tasks of a unit testing framework:

1. set up environment for embedding the unit
2. execute the unit’s testcases and verify the outcome

3. tear down the environment

JXU

15/42

Isolating Units

requirements:

B clear separation between presentation and functionality
B availability of results

problem: (circular) dependencies

example [Zeller09]:

______ invokes _ _ _ _ _ |
! i
Core UserPresentation
+print_to file() +confirm loss()
A T
! invokes !

e o o o o e e e - -

JXU 16/42

Isolating Units Example: Problem

void print_to_file(string filename) {
if (path_exists(filename)) {
// FILENAME exists; ask user to confirm overwrite
bool confirmed = confirm_loss(filename) ;
if (!'confirmed)

return;

+
// Proceed printing to FILENAME...

JXU 17/42

Isolating Units Example: Fix (1/2)

void print_to_file(string filename,
Presentation presentation) {
if (path_exists(filename)) {

// FILENAME exists;
// ask user to confirm overwrite
bool confirmed =
presentation.confirm_loss(filename) ;
if (!confirmed)
return;
}
// Proceed printing to FILENAME

(&S

~U

18/42

Isolating Units Example: Fix (2/2)

Core

Presentation

+print to file() +confirm loss()

T

UserPresentation AutomatedPresentation

+confirm loss() +confirm loss()

AN

JXU

ask user |

return true;

19/42

Breaking Dependencies

dependency inversion principle: depend on abstraction
rather than details

to break the dependency from class A to class B

1. introduce an abstract superclass B’ of B
2. change A such that it depends on B’ (rather than B)
3. introduce new subclasses of B’ that can be used with A

= new subclasses of B’ can be used without changing A

JXU 20/42

Design for Debugging

B decompose the system such that dependencies between
components are minimized

B one way of realization: model-view-controller pattern

example: information system for elections

Black:

Green:
Yellow:
Pink:
Others:

User

JXU

21/42

MVC Pattern

B model:
managing the data _—
W view: e

+aetach (Observer)
displaying the data ’E‘Sfi(%; \!m
H controller: 1
processing the data

observers »

0..%
. . Observer .
benefits for testing — | Awcsoven')
B controllers for
automated execution View |
eitiaiize = Controller

. dedlCated VleWS I““k;c°ztr°¥f:g(:;) 2.1 +initialize(Model,View)
taisplay () rdateq) !
+update() 0]

B independent testing of
Mand C

JXU 20/42

Design Rules

reduction of dependencies by

B high cohesion: Those units that operate on common data
should be grouped together.

B low coupling: Units that do not share common data
should exchange as little information as possible.

low cohesion — high coupling vs high cohesion — low coupling

® — A o° —A ,
Al AA
H_\AH S

= use features of programming languages

JXU 23/42

Rules for Quality Assurance

specify test early test first
test often test enough have others test
check verify assert

JXU

24/42

Reproducing the Problem

B first step in debugging: reproduce the problem
B necessary for
J observing
[fixing
B generate a test case that triggers the failure if problem was
reported by user

challenges: reproducing the

B problem symptoms
B environment (problematic setting)
B history (necessary steps to create the problem)

JXU 25/42

Reproducing the Environment

debugging in the problem environment is often not possible
because of

B privacy: users and companies don’t want other on their
computers

B ease of development: development environment (incl.
diagnostic software is not available on the user’'s machine

B cost of maintenance: users cannot stop working while
their machines are used for debugging

H travel costs
B risk of experiments

= diagnostic actions use local environment

JXU 26/42

Diagnosis in Local Environments

iterative process for reproducing the problem in the local
environment

1. attempt to reproduce THE problem
(as described in the problem report)
2. adopt properties (e.g., config files, drivers, hardware)
prefer properties that are
[J most likely responsible
[J easy to change/undo
3. stop adopting properties if
[the problem is reproduced
[J the local and the problem environments are identical
 incomplete or wrong problem report?
+ overseen difference

side-effect: learn about failure-inducing circumstances

JXU 27/42

Reproducing Program Execution

B generation of individual steps that resulted in failure
B challenge: reproduce the program input by

[observing the program input

[J controlling the program input

B types of input:

Operating Time
Environment
\ / Randomness
Schedule /
Program <— User Input
PhySiCS/ /7 \
Debugging Tools Communication

JXU 28/42

Controlling Inputs

introduction of control layer between real input and input
perceived by program

= isolation of program under observation from environment

Operating Time
Environment / Randomness

N\, —

Scheduleg
User Input
= "
Physics/
el

™

Debugging Tools Communication

JXU 29/42

Reproducing Data

B data comes from files, databases, etc.
[J documents
[J configuration files

B under control of user

B usually easy to transfer and replicate
B challenges:

[0 get ALL the data that is necessary
[0 get ONLY the data that is necessary
O privacy (sensitive information)
* sign non-disclosure agreement
* anonymize data
+ simplify data such that sensitive information is removed

JXU 30/42

Reproducing User
Interaction/Communication

B input comes from complex user interfaces or via networks

B often difficult to observe and control
B possible approach:

[capture interaction: record input
(] replay interaction: execute program with previously
recorded input

B similar as testing on the presentation layer

B additional challenge in reproducing communication:

J huge amount of input
= bad impact on performance
[J solution: start from last correctly reproducible state

JXU

31/42

Reproducing Time/Randomness

B indeterministic input: time/date, random number
B reproducibility for pseudo-random input:

[0 make time/random input configurable
[J save time/date
[0 save random seed

B real random input:

J capture sources
O replay input sequence

JXU 32/42

Reproducing the Environment (1/2)

B interaction between programs and environment is typically
handled via the operating system
= monitor and control of input and output
= recording and replaying OS interaction thus makes
entire program run reproducible

example: monitoring tools strace and dtrace

W diverting operating system calls to wrapper functions
B log incoming and outgoing data by diverting a specific
interrupt routine that transfers control from program to
system kernel
= no re-linking is necessary

JXU 33/42

Demo: strace

$ strace 1s

execve("/bin/1s", ["1s"], [/* 68 vars */]) = 0O

brk (NULL) = 0x149a000
access("/etc/1d.so.nohwcap", F_0K) = -1 ENOENT (No such file or directory)
mmap (NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0) = Ox7f
access("/etc/1d.so.preload", R_0OK) = -1 ENOENT (No such file or directory)
open("/etc/1d.so.cache", O_RDONLY|O_CLOEXEC) = 3

fstat (3, {st_mode=S_IFREG|0644, st_size=115809, ...}) =0

mmap (NULL, 115809, PROT_READ, MAP_PRIVATE, 3, 0) = 0x7£d2de63e000

close(3) =0

access("/etc/1d.so.nohwcap", F_0K) = -1 ENOENT (No such file or directory)
open("/1ib/x86_64-1linux-gnu/libselinux.so.1", O_RDONLY|O_CLOEXEC) = 3

read(3, "\177ELF\2\1\1\0\0\0\0\0\0\0\0\0\3\0>\0\1\0\0\0\260Z\0\0\0\0\0O\0". .., 8
fstat (3, {st_mode=S_IFREG|0644, st_size=130224, ...}) =0

mmap (NULL, 2234080, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 3, 0) = O0x7
mprotect (0x7£d2de235000, 2093056, PROT_NONE) = 0

mmap (0x7£d2de434000, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENY
mmap (0x7£d2de436000, 5856, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANON
close(3) =0

agRSHF §'/etc/1d. so.nohwcap", F_0K) = -1 ENOENT (No such file or directory)
B{g 1ib/x86_64-1linux-gnu/libc.so.6", O0_RDONLY|O_CLOEXEC) = 3 34/42

Reproducing the Environment (2/2)

tracing

B a huge amount of data

B replay everything to reproduce failure = huge performance
penalty

alternative: checkpoints

B records entire state that it can be restored

H ideally, record stable state (e.g., between two transactions)
B replay interaction since checkpoint

B problem: states are usually huge

JXU 35/42

Reproducing Schedules

B many concurrent threads and processes on modern
computing systems =- operating system defines schedule
in which individual parts are executed

M ideally, program behavior is independent of schedule

O schedule is indeterministic

[program behavior is deterministic
B non-deterministic programs are very challenging to debug
B example:

Thread A Thread B Thread A Thread B
open(file) open(file)
read(...) open(file)
modify(...) read(...)
write(...) read(...) updates
close(...) modify(...) get lost!
open(file) write(...)
read(...) close(...)
modify(...) modify(...)

J z U write(...) write(...)
close(...) close(...) 36/42

Reproducing Schedules

if the problem has been found: fix the problem with
synchronization mechanisms, otherwise:

B solution 1: record the schedule
= enable deterministic replay

[huge amount of data
J performance
[scalability

B solution 2: uncover differences in execution

0 massive random testing
[J program analysis

JXU 37/42

Physical Influences

ways to influence a computing device:

B energy impulses
B quantum effects

H real bugs

B humidity

B mechanical failures
m ..

rare and hard to reproduce

JXU 38/42

Effects of Debugging Tools

debugging tools might change the behavior of a program

B differences between debugging environment and
production environment:

(] uninitialized memory
[J corrupted memory
[J insertion of output statements
[different compiling options
H results:
(] problem is masked by another problem
[J problem is gone
B counter-measures:

[J checking the data flow
[] assertions

JXU

39/42

Reproducible and Less-Reproducible
Problems

B Bohrbug:

[J repeatable
[0 manifests reliably under a possibly unknown but
well-defined set of conditions

B Heisenbug:

[J disappears or changes when one tries to isolate it
B Mandelbug:

[J appears chaotic/non-deterministic
B Schroedinbug: manifests only if someone

[J reads the source code
(] uses the program in an uncommon manner

JXU 40/42

Focusing on Units

B reproduce the execution of a specific unit
(might be easier than controlling the whole program)
B example: problem with database
= execute only SQL statements instead of whole
application
B approach:

1. introduce logging for recording the behavior
2. set up mock object that simulate the recorded behavior

JXU 41/42

Reproducing a Crash

case of a crash recording is efficient and effective

different approaches:

B keep a copy of the calling stack
expensive, because of permanent monitoring

B remember the failing state
less expensive, but different information

B wait for a second chance
activate monitoring after crash

JXU 42/42

