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Abstract
Various methods have been developed for solving SAT problems, notably resolution, the

Davis-Putnam-Logemann-Loveland-Procedure procedure (DPLL) and an extension of it, the
conflict-driven clause learning (CDCL). We have formalised these three algorithms in a proof
assistant Isabelle/HOL, based on a chapter of Christoph Weidenbach’s upcoming book Automed
Reasoning – The Art of Generic Problem Solving. The three calculi are presented uniformly
as transition systems. We have formally proved that each calculus is a decision procedure for
satisfiability of propositional logic. One outcome of the formalization is a verified SAT solver
based on DPLL and implemented in a functional programming language.
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1 Introduction
Automated reasoning has been successfully applied to find bugs and prove the absence of bugs
in various systems. Robinson has developed modern resolution in 1965 [1]. It works on classical
first order logic. The basic idea is to use “modus ponens” on a set of clauses and compute all the
consequences of the clauses and see if ⊥ (falsity) is among all the consequences. If falsity is present,
then the set of clauses is not satisfiable. Resolution has been latter extended to allow the use of the
equality predicate, because it is tedious to axiomatize and inefficient to only axiomatize the equality.
The search space can be reduced via term ordering: we still use “modus ponens”, but there are
more side-conditions to reduce the number of clauses that can be deduced. The completeness of
this method can be proven with a sophisticated proof: when all consequences have been calculated,
there is no model if and only if falsity has not been deduced. The method is the base of successful
provers, notably E [2], SPASS [3] and Vampire [4].

Another branch of automated reasoning is based on satisfiability solving: given a boolean
formula, is there an assignment of the atoms such that the formula is true? The first procedure is
the Davis-Putnam-Logemann-Loveland (DPLL) procedure: the basic idea is to split. The procedure
is a bit like a truth table: it performs case distinctions on the propositional variables, which can take
the value > (truth) or ⊥ (falsity). The advantage is that the clauses get simpler, but we have to
backtrack on the choices: as in a truth table, each literal is either true or false and both cases have
to be tested. The DPLL procedure has been extended to conflict-driven clause learning (CDCL)
that does less backtracking thanks by learning from the conflicts (the formula that are false). The
satisfiability modulo theories (SMT) is the extension of the previous procedures to first order logic
and other theories (e.g. arithmetic). It the basis of successful provers, notably CVC4 [5] and Z3 [6].

Resolution on one side and DPLL and CDCL on the other side have different strength and
weaknesses: resolution has a better handling on quantifiers, while SMT solvers handle large ground
problems better. Automated theorem provers (ATPs) have a rich metatheory (for example there
is a semi-decision procedure for first order logic), but most of it has been developed only on paper.
Another community, the one of the interactive theorem provers, develops proof assistants to develop
(and check) proofs using computers. Two big successes are the formal proof of the four colour
theorem [7] and of the Kepler conjecture [8]. Using a computer has many advantages: it is easy to
test variants and the proofs are checked, meaning that the claimed theorems are really theorems.
The main drawback is that writing a proof accepted by the proof assistant is tedious and requires
expertise.

The goal of this master’s thesis is to start the formalizing of the rich ATP metatheory. Our basis
is Weidenbach’s forthcoming book [9] and our tool is Isabelle (Section 2). This proof assistant has
been used for pure mathematics (the Prime Number Theorem proved [10]), for system verification
(the seL4 micro-kernel [11]), and programming languages (the formalisation of Java [12, 13]).

During this master’s thesis, I formalized most of Chapter 2 of Weidenbach’s book about inference
systems for propositional (or ground) logic (Section 3). Ground formulas are important because
the results are “lifted” to first order logic: non ground formulas can be seen as (possibly infinite)
sets of grand formulas. To quote Weidenbach: “Everything interesting happens at the ground level”
(private communication).

Before applying the calculi, we must normalise the formulas (Section 4). Then we present
resolution (Section 5). After that we present DPLL (Section 6) and the implementation of a simple
verified SAT solver in OCaml. Finally, we present the formalisation of CDCL (Section 7).
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The development is publicly available in a git repository1 and can be checked using Isabelle [14]
version 2015.

2 The Proof Assistant
Isabelle is the prover we use in this formalisation. We describe here the prover (Section 2.1), then
how to do definitions (Section 2.2), before describing the Isabelle proofs (Section 2.3).

2.1 General Presentation

Isabelle [14] is a generic framework for interactive theorem proving: the use of a meta-logic Pure
allows a formalisation for different logics and axiomatisations. The built-in meta-logic Pure is an
intuistionistic fragment of higher-order logic. Isabelle is based on the ideas of LCF [15]: every
proof goes through a small trusted kernel. It is written in Standard ML, and has an Isabelle/jEdit
interface through the asynchronous PIDE interface [16].

HOL, higher order logic [17], is the most developed logic in Isabelle: it is based on typed higher-
order logic with ML-style rank-1 polymorphism and Haskell-style axiomatic type classes. On the
type level, we have either base types (like nat), type constructors (for example bool list to define
lists with elements of type bool) or functions (for example nat ⇒ bool is a function going from type
nat to bool). ′a is a base type that can be instantiated later on, for example with a natural number.
On the term level, HOL defines axiomatically bool, and the constants True :: bool (i.e. a constant
named True of type bool), False :: bool, = :: ′a ⇒ ′a ⇒ bool and the connectives and (∧), or (∨),
not (¬). HOL is embedded into the meta-logic Pure using Trueprop :: bool ⇒ prop, that translates
from bool (defined at the HOL level) to prop. Trueprop is omitted when printing, allowing to fully
ignore the difference between bool and prop. There is a slight difference between the HOL level with
the ∀ , −→ and = and their Pure equivalent with

∧
, =⇒ and ≡, but the differences do not matter

in this report. Other logics than HOL include Isabelle/ZF (based on Zermelo-Fraenkel set theory):
it is defined using Pure.

In HOL, functions can be curried (f x y instead of f (x, y)), and usual binary operators can be
used with the infix notation, like the plus operator op + in 2 + 2, instead of plus 2 2. Function
applications bind stronger that infix operators; thus f x + g y should be read (f x) + (g y) (the
addition of two function calls, f x and g y). Types are annotated with type classes to add properties
about them: for example in an expression a + b, a is inferred of type ′a, but of type class plus
to express the property that there is an addition over ′a. If there is the constrain on a type ′a to
have type class plus, then you can only instantiate ′a with a type that has an plus operator. The
polymorphism (i.e. working with ′a) allows to prove things generally (eventually by adding type
classes constrains) and instantiate the types later.

The main proof method in HOL is the simplifier, which uses equation as oriented rewrite rules
on the goals, including conditional rewriting (e.g. ys = [] =⇒ rev ys = z will be rewritten into ys
= [] =⇒ rev [] = z; then the simplifier will use the lemma that says rev [] = [] to get ys = [] =⇒ []
= z). The list of lemmas that are used can be extended by the user’s lemmas.

One very useful tool in Isabelle/HOL is Sledgehammer [18]: it translates the theorems of
Isabelle and exports them to automated provers like CVC4 [5], E [2], SPASS [3], Vampire [4] and
Z3 [6]. Then these automated provers try to find a proof: if one is found, then the proof can

1https://bitbucket.org/zmaths/formalisation-of-ground-inference-systems-in-a-proof-assistant/
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be reconstructed, either in a detailed fashion or using a built-in tactic with the used theorems
as arguments. Sledgehammer eases finding proofs, since it avoids looking for easy proofs and
remembering the names of hundreds of theorems in the standard library. As of now, none of the
formalised theorems have been solved directly by Sledgehammer.

There are a lot of lemmas in either the standard library that is included in Isabelle or the
Archive of Formal Proofs [19]. The automation is very developed when working on list and set and
is improving when working on multisets. Some related developments in Isabelle include Isabelle
Formalisation of Rewriting (IsaFoR) [20]: it is a formalisation of term rewrite systems and of various
termination proving tools.

We have used the HOL logic in this master’s thesis. We will now give more details about how
to define function in Isabelle and write proofs.

2.2 Adding Definitions

Definitions introduces a new theorem to context between the defined symbol and the actual definition.
This approach does not introduce axioms and so do not introduce inconsistencies. New definitions
are defined using already defined types or terms. There are two levels of definition: types (even
types with constructors) and terms.

2.2.1 Types

The primitive way to define a type is to use the typedef command: a type is isomorphic to a
non-empty set (defined using a type, that is already defined). For example we can define the type
of all natural numbers larger than 2:

typedef my-type = {(n::nat). n > 2}
by auto

where by auto prove that the type is inhabited.
To define types inductively, the command datatype defines inductive and mutually recursive

datatypes specified by their constructor
datatype M :: τ = C1 x1| · · · | C` x`

For example here is a definition of natural numbers:

datatype nat =
Zero | Suc nat

There are to constructors Zero that takes on argument and Suc that takes exactly one argument.
The command datatype defines the type using typedef and prove that the type is not empty
(since every type have to be inhabited in HOL).

2.2.2 Terms

A simple definition is of the form definition c :: type where c x = t. This introduces a new
axiom of the form c ≡ λx. t where x are the arguments of the function c. Isabelle ensures that
the constant c is fresh, the variables in x are distinct and that t does not refer to any undefined
variable or undefined types. We can for example have:
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definition K :: ′a ⇒ ′b ⇒ ′a where K x y = x

Definitions are opaque in the sense that they are not unfolded by default when inside a theorem.
Definitions are not recursive (i.e. you cannot call c while defining c). We will use inductive
predicates: an inductive predicate is simply a function to bool with some assumptions (including
calls to itself):

inductive p :: τ where
name1: Q11 =⇒ · · · =⇒ Q1`1 =⇒ p t1

...
... =⇒ =⇒

... =⇒
...

namen: Qn1 =⇒ · · · =⇒ Qn`n =⇒ p tn

where p must be fresh. There are some syntactic restrictions on the rules to ensure monotonicity.
Internally the Knaster-Tarski theorem is used with a fixed-point equation to show the existence of
a least fixpoint. For example, the following is a definition of the predicate even:

inductive even :: nat ⇒ bool where
even0 : even 0 |
even-SS : even n =⇒ even (Suc (Suc n))

where Suc :: nat ⇒ nat and 0 :: nat are the two constructors for natural numbers. The associated
fixpoint equation is

even a = (a = 0 ∨ (∃n. a = Suc (Suc n) ∧ even n))

Contrary to inductive definitions where no termination is required and no evaluation is possible
in general, when defining a function, termination must be proved. Otherwise a non-terminating
definition of the form f x = 1 + f x where f ::nat ⇒ nat is possible, and then you can deduce 0 =
1 (by subtracting f x), which is False and allows to prove anything. When the termination is based
on a structural decrease, primrec can prove automation automatically:

primrec plus-nat :: nat ⇒ nat ⇒ nat where
plus-nat 0 n = 0 |
plus-nat (Suc m) n = Suc (plus-nat m n)

Here, the number of constructors Suc is decreasing for each recursive call. This is a structural
decreasing and primrec is able to prove termination automatically.

It is also possible to use fun that tries a few invariants to show that the argument is decreasing
(e.g. the size of the formula). fun is powerful enough to prove the termination of the Ackerman
function, while primrec is not:

fun ack :: nat ⇒ nat ⇒ nat where
ack 0 n = n + 1 |
ack (Suc m) 0 = ack m 1 |
ack (Suc m) (Suc n) = ack m (ack (Suc m) n)

If the proof of the termination is more complicated, one can use function, which generates
three goals: termination, pattern completeness and non-overlapping patterns. An example will be
presented in Section 6.4
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2.3 Isabelle Proofs

Isabelle proofs are done using some proof methods: they do low level work and go through the
(trusted) kernel of Isabelle. Some important tactics are auto that uses the simplifier with some
knowledge about logic and blast that is specialised on logical formulas. rule th unifies the conclusion
of th with the goal: the premises of the goal remains to show.

These proof methods can be combined using two proof styles: forward and backward proofs.
The backward proof consists in going from the goal, unifying the conclusion of some theorems with
the actual goal. After that, the assumption of the theorems are the new goals. This approach is
called apply-style. For example, the proof that four is even:

lemma even (Suc (Suc (Suc (Suc 0 ))))
apply (rule even-SS)
apply (rule even-SS)
apply (rule even0 )
done

After stating the theorem to prove, the goal is the theorem: even (Suc (Suc (Suc (Suc 0 )))).
We apply the theorem even (Suc (Suc 0 )) =⇒ even (Suc (Suc (Suc (Suc 0 )))): using theorem even
n =⇒ even (Suc (Suc n)), rule unifies n with Suc (Suc 0 ). It remains to show that even (Suc
(Suc 0 )). Then the second apply applies theorem even 0 =⇒ even (Suc (Suc 0 )). It remains to
show that even 0. This is true by theorem even 0, i.e. the definition of even: this theorem has no
condition, so our proof is finished.

The other style is forward: you go from the assumptions (if there are some) to the conclusion.
This approach is used in Isabelle’s Intelligible semi-automated reasoning (Isar) [21]. The aim of this
language is to be close to the one used by mathematicians.

lemma even (Suc (Suc (Suc (Suc 0 ))))
proof −
have even 0 by (rule even0 )
then have even (Suc (Suc 0 )) by (rule even-SS)
then show even (Suc (Suc (Suc (Suc 0 )))) by (rule even-SS)

qed

have introduces a fact, that has to be proved. The proof after can discharged by for example
by followed by a tactic call. The keyword then allows to use previous conclusion, while reasoning
on the next one. show introduces a fact that is one of the goals needed to prove the theorem.

We have introduced the proof assistant we used during this formalisation; we will now speak
about the logic we have formalised in Isabelle.

3 Clausal Logic
In this section we define formally the logic, first defining the syntax (Section 3.1), then the associated
semantics (Section 3.2).

5



3.1 Syntax

We consider a countable and non-empty set Σ. Instead of using a set, we use a type (that we
will call ′v). The non-emptness is required by the type definition in Isabelle. We do not translate
the countability constrain into Isabelle, and will show exactly where this constrain is needed. We
then define inductively the set Prop(Σ) of propositional formulas over a signature Σ (usually the
alphabet or the words, i.e. countable sets, are used):

datatype ′v propo =
FT — the truth symbol |
FF — the false symbol |
FVar ′v — where v ∈ Σ, called atom |
FNot ′v propo — is the negation |
FAnd ′v propo ′v propo — is the conjunction symbol |
FOr ′v propo ′v propo — is the disjunction symbol |
FImp ′v propo ′v propo — is the implication symbol |
FEq ′v propo ′v propo — is the equivalence symbol

FT, FF and FVar x are called base terms. FAnd is a symbol of the logic we are defining, while
∧ is the conjunction a symbol of the logic in Isabelle. An atom a or its negation FNot a is called a
literal. We will omit the parentheses, assuming the negation symbol binds more strongly than the
binary operations.

3.2 Semantics

We are working in classical logic, thus there are two truth values: “true” (True in Isabelle or 1
in Weidenbach’s presentation) and “false” (False in Isabelle or 0 ). We define a valuation: it is a
mapping A: Σ → {True, False}. A partial valuation is a function such that some atoms are not
mapped to a value. We extend the valuation over Prop(Σ). The standard definition consists in
using values 1 and 0, but to ease the formalisation we have translated the logic into Isabelle’s logic:

Isabelle definition Weidenbach’s definition
A |= FT True 1
A |= FF False 0
A |= FVar v A v A v
A |= FNot ϕ ¬ A |= ϕ 1 − A |= ϕ
A |= FAnd ϕ1 ϕ2 A |= ϕ1 ∧ A |= ϕ2 max(A |= ϕ1, A |= ϕ2)
A |= FOr ϕ1 ϕ2 A |= ϕ1 ∨ A |= ϕ2 min(A |= ϕ1, A |= ϕ2)
A |= FImp ϕ1 ϕ2 A |= ϕ1 −→ A |= ϕ2 if A |= ϕ1 then A |= ϕ2 else 1
A |= FEq ϕ1 ϕ2 (A |= ϕ1) ←→ (A |= ϕ2) (A |= ϕ1) = (A |= ϕ2)

We interpret the logic we are formalising (with the FAnd) into Isabelle’s logic (with the ∧). This
simplifies the proofs (for example we do not have to show that the only possible values are 0 and
1 ). A formula ϕ entails ψ, written ϕ |=f ψ if for all valuation A such that A |= ϕ, then A |= ψ. A
formula ψ is satisfiable if there is a model of ψ. It is called valid, written |=e ϕ, if every mapping
is a model of ϕ: for example FOr ϕ (FNot ϕ) is valid. Another important difference between
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the paper proofs and the Isabelle proofs is the use of overloaded symbols: |= is used with various
types to mean |=e, |=f or the valuation |= as defined in the previous table. Isabelle has overloading
(meaning that we could have used a single symbol), but it is usually better to be explicit in a formal
context. Overloading also makes type inference more difficult, meaning that we have to add type
annotations.

A partial valuation can also be seen as a set of literals either positive either negative instead of
defining the following partial valuation A: given a set V, for every atom C, A(C ) = 1 if C ∈ V, 0
if FNot C ∈ V, unspecified otherwise. This set is called the interpretation.

Here is a theorem giving a relation between |=f and |=. We give a full Isabelle proof and a full
paper proof, showing the parallel in the proofs.

Textbook Theorem 1 (Deduction Theorem). ϕ |=f ψ ←→ |=e (FImp ϕ ψ)

Proof. ( =⇒ ) Suppose that φ entails ψ and let A be a Σ-valuation. We have to show that A |=
FImp ϕ ψ. If A ϕ = 1, then we also have that A ψ = 1, thus A (FImp ϕ ψ) = max (1 − A
ϕ) (A ψ). Otherwise, A ϕ = 0, thus A (FImp ϕ ψ) = max (1 − A ϕ) (A ψ)=1. We have
finally that in both cases A |= FImp ϕ ψ.

(⇐= ) Let A be an arbitrary valuation: A |= FImp ϕ ψ, i.e. A (FImp ϕ ψ) = 1= max (1 −
A(ϕ)) (A(ψ)). If A ϕ = 0, then A ϕ = 0, otherwise A ϕ = 1 and necessary A ϕ = 1. So in
both cases ϕ |=f ψ.

Here is a full detailed Isabelle proof. This proof is close to previous proof, except it uses the
Isabelle definition instead of arithmetic on 0 and 1. We do only want to “give a flavour” of Isabelle
proofs: the reader is not expected to make fully sense of it.

theorem ϕ |=f ψ ←→ |=e (FImp ϕ ψ)
proof
assume H : ϕ |=f ψ
show |=e (FImp ϕ ψ)
unfolding entails-def
proof
fix A
{ assume A |= ϕ
then have A |= ψ using H unfolding evalf-def by metis
then have A |= FImp ϕ ψ by auto

}
also {
assume ¬ A |= ϕ
hence A |= FImp ϕ ψ by auto

}
ultimately show A|= FImp ϕ ψ by blast

qed
next
assume H : |=e (FImp ϕ ψ)
show ϕ |=f ψ
proof (rule ccontr)
assume ¬ϕ|=f ψ

7



then obtain A where A |= ϕ ∧ ¬A |= ψ using evalf-def by metis
hence ¬ A |= FImp ϕ ψ by auto
then show False using H entails-def by blast

qed
qed

There are two blocks between the separated by next: the first block is the implication and the
other the converse (as in the paper proof). The keywords of the Isabelle proof are close to the words
used in the other version.

We have fully detailed the proof to show that the Isabelle proof can be very close to the paper
proof. A shorter is possible using the simplifier and the definition of |=e and |=f :

theorem ϕ |=f ψ ←→ |=e (FImp ϕ ψ)
by (simp add: evalf-def entails-def )

This is an atypical example: the detailed paper proof is longer than the Isabelle version. Usually,
it is the other way around.

4 Normal Forms
Before trying to solve the actual problem, we must normalise the set of formulas N that we are
considering. We will formally define two normal forms (Section 4.1), then introduce transitions
systems (Section 4.2) and show how to define them in Isabelle (Section 4.3).

4.1 Definition of Two Normal Forms

We give here the definitions of two normal form as in Weidenbach’s book. The idea of this two
normal forms is to remove the FImp and FEq.

Definition 1 (CNF, clauses). A formula is in conjunctive normal form (CNF) if it is a conjunction
of clauses (i.e. of disjunction of literals):

∧
i

∨
j Li,j where Li,j are literals and

∨
j Li,j is a clause.

Definition 2 (DNF). A formula is in disjunctive normal form (DNF) if it is a disjunction of
conjunction of literals:

∨
i

∧
j Li,j where Li,j are literals.

An interesting property of this representation is that C ⊂ C ′ means that C ′ is more general:
the satisfiability of C implies the one of C ′; each valuation satisfying C satisfies also C and C ′
(written {C,C ′} seen as a set of clauses). We will write this as I |= C implies I |= s {C , C ′}.

General clausal propositional are related to the normal form by the following theorem:

Verified Theorem 3. Each propositional formula can be transformed into an equivalent CNF
form.

Proof. First we recursively transform φ→ ψ and φ↔ ψ into ¬φ∨ψ and (¬φ∨ψ)∧ (¬ψ∨φ). Then
we reorganise the ∧ and the ∨ (see Algorithm 4.1). This algorithm preserves not only validity (the
same models satisfy the formula before and after normalisation), but also it is also an equivalence
transformation. It is an algorithm with exponential complexity and faster algorithms exist in
practice.
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Algorithm 4.1: Transformation into CNF form
Data: A formula ϕ without → nor ↔
Result: A formula ϕ′ equivalent to ϕ in CNF

1 Algorithm cnf(ϕ)
2 switch ϕ do
3 case >, ⊥, ¬>, ¬⊥
4 return ϕ
5 end
6 case φ ∧ ψ
7 φ1 ∧ · · · ∧ φn := cnf (φ)
8 ψ1 ∧ · · · ∧ ψm := cnf (ψ)
9 return φ1 ∧ · · · ∧ φn ∧ ψ1 ∧ · · · ∧ ψm

10 end
11 case φ ∨ ψ
12 φ1 ∧ · · · ∧ φn := cnf (φ)
13 ψ1 ∧ · · · ∧ ψm := cnf (ψ)
14 return (φ1 ∨ ψ1) ∧ · · · ∧ (φ1 ∨ ψm)∧ · · · ∧ (φn ∨ ψ1) ∧ · · · ∧ (φn ∨ ψm)
15 end
16 case ¬(φ ∨ ψ)
17 return cnf(¬φ ∧ ¬ψ)
18 end
19 case ¬(φ ∧ ψ)
20 return cnf(¬φ ∨ ¬ψ)
21 end
22 endsw

After that, we can do some simplification on the translation into the CNF like transforming
P ∨ ¬P into > and ⊥ ∨Q into ⊥. These simplifications are not necessary but improve efficiency.

The presentation as a transition system allows to prove various refinement and implementations
that changes the order in which the transformation are done. Changing the order of the transforma-
tion lead to better performance for example. The Algorithm 4.1 is one of the possible orders: the
innermost formulas are transformed first, and then the whole formula is transformed. For example
in FAnd ϕ ψ, ϕ and ψ are transformed before FAnd ϕ ψ is transformed.

4.2 Positions, Transition Systems

To refer to a subformula, we define the position as list over {L, R} where R means right and L
means left (L is also the default value if there is no right formula, e.g. ψ is on the left in FNot
ψ). The empty list [] means that we are considering the actual level. The set of all positions in a
formula is given by (where L · p means that L is added at the beginning of the list p):
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pos FF = {[]}
pos FT = {[]}
pos (FVar x) = {[]}
pos (FAnd ϕ ψ) = {[]} ∪ {L · p | p ∈ pos ϕ} ∪ {R · p | p ∈ pos ψ}
pos (FOr ϕ ψ) = {[]} ∪ {L · p | p ∈ pos ϕ} ∪ {R · p | p ∈ pos ψ}
pos (FEq ϕ ψ) = {[]} ∪ {L · p | p ∈ pos ϕ} ∪ {R · p | p ∈ pos ψ}
pos (FImp ϕ ψ) = {[]} ∪ {L · p | p ∈ pos ϕ} ∪ {R · p | p ∈ pos ψ}
pos (FNot ϕ) = {[]} ∪ {L · p | p ∈ pos ϕ}

For example ϕ is at position [L, R, L] in FAnd (FEq FT (FNot ϕ)) FF. Using the position,
removing the equivalence symbols can become: transform FEq ϕ1 ϕ2 into FAnd (FImp ϕ1 ϕ2)
(FImp ϕ2 ϕ1) at any possible position with an FEq. This is not deterministic anymore (we are not
giving an order on the possible positions) and we do not care about the exact chosen path, but only
on properties on the result (that do not have to be unique). The heuristics used in practise try to
find the shortest path, but we show only properties on the final state (Figure 1), whatever the path
is.

Figure 1: Transition system: each arrow represent a possible transition. The points represents
states: there are two final states (the two states on the right, without leaving arrow). While an
algorithm will chose deterministically one of the different paths, our presentation as a transition
system means that we show properties on all possible paths and all the possible final states.

The transformation defined as a transition system is defined as χ[FEq ϕ1 ϕ2]p =⇒elim-eq χ[FAnd
(FImp ϕ1 ϕ2) (FImp ϕ2 ϕ1)]p where χ[ϕ]p means that ϕ is at position p in χ and nothing else has
changed during the transformation =⇒elim-eq. This vision as a transition system is more flexible
than an algorithm: whatever order on the rewriting is more convenient, it does not matter for the
proof of the transition system.

The definition of a transition system consists in giving all possible transitions: in Figure 1, it
corresponds to all the possible arrows. The underlying non-deterministic algorithm is simply: do a
transition among all the possible ones, as long as possible. In our the example, whatever the order
of applying replacing the FEq symbols, we will get a formula without FEq symbols. The algorithm
terminates when we are in a state where no transition is possible: this is called a final state. No
unicity is required on the final states.
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4.3 Formalisation in Isabelle

We used a presentation as a transition system and not as a term rewrite system: in the book, rewrite
systems have been introduced in a previous chapter of the book. We could have formalised rewrite
system using IsaFoR [20], but it is an overkill for what we have formalised. We have introduced a
transition system that do rewriting, then we lift this rewriting to rewriting one of the subformulas.

Algorithm 4.2: Basic CNF/DNF transformation (see rules in Figure 2)
Data: A propositional formula ϕ
Result: A propositional formula ϕ ′ equivalent to ϕ in CNF or DNF form)

1 apply rule elim-equiv as long as possible
2 apply rule elim-imp as long as possible
3 apply rule elimTB as long as possible
4 apply rule pushNeg as long as possible
5 apply rule pushConj as long as possible for CNF
6 apply rule pushDisj as long as possible for DNF

4.3.1 CNF, DNF Definition

Contrary to the Weidenbach’s definitions of CNF and DNF, our operators are only binary connectives,
so we cannot express the definitions exactly as in Definitions 1 and 2. More precisely, an implicit
generalisation from binary to n-ary is used in Weidenbach’s book, because there are semantically
the same. Isabelle does not allow these changes (since the formulas are synctatically different), so
we have only binary operators. For example, FAnd (FAnd a b) (FAnd c d) would be written a ∧ b
∧ c ∧ d, relying on the associativity of FAnd.

If we look at the definitions, there are there constrains: firstly in the innermost their are only
literals; secondly this literals can be connected by the connective FOr (respectively FAnd), finally
these groups are connected by FAnd (respectively by FOr). In Isabelle we will separate these three
constrains: we will relax the constrain on literals and allow base terms (FT, FT or FVar v for an
atom v). These can be grouped using a connective c that will be instantiate depending on whether
we define CNF or DNF:

• we can have the simple terms directly:

simple ϕ
grouped-by c ϕ

• or we can have the negation of a simple term:

simple ϕ
grouped-by c (FNot ϕ)

• or we can group two groups using the c connective. The wf-conn c l verifies that it is a real
term.
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elim-equiv: elim-equiv (FEq ϕ ψ) (FAnd (FImp ϕ ψ) (FImp ψ ϕ))

elim-imp: elim-imp (FImp ϕ ψ) (FOr (FNot ϕ) ψ)

elimTB: remove all the unused FT and FF :
elimTB (FAnd ϕ FT ) ϕ
elimTB (FAnd FT ϕ) ϕ
elimTB (FAnd ϕ FF) FF
elimTB (FAnd FF ϕ) FF
elimTB (FOr ϕ FT ) FT
elimTB (FOr FT ϕ) FT
elimTB (FOr ϕ FF) ϕ
elimTB (FOr FF ϕ) ϕ
elimTB (FNot FT ) FF
elimTB (FNot FF) FT

pushNeg: push the FNot at the innermost:
pushNeg (FNot (FAnd ϕ ψ)) (FOr (FNot ϕ) (FNot ψ))
pushNeg (FNot (FOr ϕ ψ)) (FAnd (FNot ϕ) (FNot ψ))
pushNeg (FNot (FNot ϕ)) ϕ

pushConj: pushConj = push-conn-inside CAnd COr

pushDisj: pushDisj = push-conn-inside COr CAnd

Figure 2: Transformation rules
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grouped-by c ϕ grouped-by c ψ wf-conn c [ϕ, ψ]
grouped-by c (conn c [ϕ, ψ])

After that we make groups withe the other connective that will be instantiated depending on
whether we will define CNF or DNF. An inner group is also an outer group and we can combine
outer group using the correct connective:

• either we have a group:

grouped-by c ϕ
super-grouped-by c c ′ ϕ

• or we make groups:

super-grouped-by c c ′ ϕ super-grouped-by c c ′ ψ wf-conn c [ϕ, ψ]
super-grouped-by c c ′ (conn c ′ [ϕ, ψ])

It is important to notice is that FF is a correct CNF and DNF formula, although there is a no
single literal in FF. This case is not explicitly stated in the definition of CNF and DNF, because
an empty formula is not very interesting, but the question arises when doing the Isabelle proof.
Thus we use a predicate no-T-F-except-top-level that checks that there is no FT nor FF, except on
top-level. We can now combine all these properties:

• is-cnf ϕ ≡ is-conj-with-TF ϕ ∧ no-T-F-except-top-level ϕ where is-conj-with-TF is an abbre-
viation for super-grouped-by COr CAnd

• is-dnf ϕ ≡ is-disj-with-TF ϕ ∧ no-T-F-except-top-level ϕ where is-disj-with-TF is an abbre-
viation for super-grouped-by CAnd COr

4.3.2 Transition System

We have formalised the approach as a transition system without using explicitly the path that leads
to the rewritten formula: given a rewrite relation r, rewriting means that at each level either the
actual formula is rewritten or a single one of the arguments has changed.

To make a shorter definition, instead of writing every formula case (FAnd, FOr,. . . ), we made
a higher representation: a formula is a connective (CAnd, COr,. . . ) and a list of arguments. This
allows to have an shorter representation, but we have to ensures that the list really corresponds to a
term, thus the predicate wf-conn c ϕs that ensures the number of arguments of c is compatible with
the number of elements in ϕs, e.g. the connective CAnd corresponding to FAnd has two arguments
exactly.

The predicate propo-rew-step r ϕ ψ means that ϕ is rewritten in ψ by the relation r. It is
defined inductively as follows:

• We use a rule representation: on the above you have the assumption to fulfil (here simply r
ϕ ψ) to show the term below the line.
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r ϕ ψ

propo-rew-step r ϕ ψ

• Otherwise, rewriting one of the argument is enough:

propo-rew-step r ϕ ϕ ′ wf-conn c (ψs @ (ϕ · ψs ′))
propo-rew-step r (conn c (ψs @ (ϕ · ψs ′))) (conn c (ψs @ (ϕ ′ · ψs ′)))

where @ is the append function. It is a complicated formula (since it is general to enough
to mach every possible rewriting), but it means simply that a single one of the arguments
has been rewritten. For example if you have propo-rew-step r (FAnd ϕ ψ) (FAnd ϕ ′ ψ ′) then
either r (conn CAnd [ϕ, ψ]) (conn CAnd [ϕ ′, ψ ′]), or one of the arguments has changed: ϕ
into ψ and ϕ ′ = ψ ′; or ϕ ′ into ψ ′ and ϕ = ψ.

This abstraction over rewriting is independent of the considered transformation. The link
between the path approach and propo-rew-step is given by:

Verified Theorem 4. If propo-rew-step r ϕ ϕ ′ then ∃ψ ψ ′ p. r ψ ψ ′ ∧ path-to p ϕ ψ ∧ replace-at
p ϕ ψ ′ = ϕ ′.

The theorem means that whenever we have some transition from ϕ to ϕ ′, then there is some ψ
at a path p in ϕ that is rewritten.

To prove the full transformation of Algorithm 4.2, we iterate the transition relation propo-rew-step
r to rewrite as long as possible (i.e. until no more step is possible): (propo-rew-step r)∗∗ is the
reflexive transitive closure of a curried predicate.

Definition 5. r↓ = (λϕ ψ. (propo-rew-step r)∗∗ ϕ ψ ∧ (∀ψ ′. ¬ propo-rew-step r ψ ψ ′))

Each transformation is one call to ↓. For each of these transformations, we have to show some
invariants and we can then compose our transformations to get the full transformation of the
Algorithm 4.2 by using the relational composition op �:

cnf-rew = elim-equiv↓ � elim-imp↓ � elimTB↓ � pushNeg↓ � pushDisj↓

The operator op � is defined by (R � S) = (λx z. ∃ y. R x y ∧ S y z). In the definition of
cnf-rew, cnf-rew ϕ ψ means that there are some formulas %s such that (elim-equiv↓) ϕ %, (elim-imp↓)
% % ′, (elimTB↓) % ′ % ′′, (pushNeg↓) % ′′ % ′′′ and (pushDisj↓) % ′′′ ψ

We can then prove the following two theorems:

Verified Theorem 6 (Equivalence preservation). cnf-rew ϕ ψ −→ (∀A. (A |= ϕ) = (A |= ψ))

Proof. The idea of the proof is to show that the equivalence is preserved by each transformation
used in cnf-rew. For elim-equiv for example, we have to show that elim-equiv ϕ ψ =⇒ ∀A. (A |=
ϕ) = (A |= ψ), hence (elim-equiv↓) ϕ ψ =⇒ ∀A. (A |= ϕ) = (A |= ψ).

Verified Theorem 7 (Correctness). cnf-rew ϕ ϕ ′ =⇒ is-cnf ϕ ′.
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4.3.3 Changing the Order of the Rules

It is better to change the order of the rules and to remove the FT and FF symbols before any other
transformation. This leads to shorter formulas, which means that less transitions are needed. The
algorithm changes the rules and more elimination are required for FT and FF. The definition of
this removing elimTBFull is a bit more complicated: there are more cases, for example replacing
FEq FF ϕ into FNot ϕ. The associated reordering does not change the ideas behind the proof and
except the reordering (namely removing FF and FT at the beginning) does not change the other
transformations. The new transformation can be defined as:

Definition 8. cnf-rew ′ ≡ elimTBFull↓ � elim-equiv↓ � elim-imp↓ � pushNeg↓ � pushDisj↓

elimTBFull removes all the true and false symbols, except the one at the top-level (for example
for the formula FImp FT FT ), which cannot be removed.

4.3.4 Alternative CNF Representation

All the proof methods we will present in the next sections assumes that the formula are in CNF. To
ease the work, instead of assuming each time that the formulas are in CNF, we will use a different
representation. A literal is a positive atom or a negative one:

datatype ′a literal =
Pos ′a
| Neg ′a

After that a clause is simply a multiset of literals and clauses are set of clauses (of type ′a
clause):

type-synonym ′a clause = ′a literal multiset
type-synonym ′v clauses = ′v clause set

We use a type-synonym to be able to write ′a clause instead of the multiset version, but we do
not use an opaque type. Multisets are written for example {|Pos P, Pos P|}. All other operators are
written the same way as the usual set counterpart (∈ for inclusion of an element and ⊂ for strict
inclusion).

In this representation, the equivalent FF of the empty multiset: we will write it ⊥. There is no
equivalent of FT. This is not a real problem: given a set of formulas, we can remove all the true
formulas, except if we have only true formulas in our set: in that case, there is no contradiction to
find.

We will either write the multiset of literals {|L1, . . . , Ln|} (this is the Isabelle representation)
or L1 ∨ · · · ∨ Ln (this is the more common notation) for the clauses. Multisets are not ordered,
contrary to clauses: {|L, L ′|} = {|L ′, L|} while on the syntax level, (L ∨ L ′) 6= (L ′ ∨ L), but thanks
to associativity and commutativity of ∨, the order in clauses does not matter.

The length of the development is 500 lines of code to define the logic as presented in the previous
section. Then there are 300 lines of code that defines abstract transformation and 1 000 lines of
code to define the transformations, CNF and DNF. Now we have defined how to normalise the
representation of a set of formulas; we will describe the algorithms that we have formalised.
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5 The Resolution Calculus
The resolution calculus was invented by Robinson [1]: it does transformation on the sets of clauses
to find constrains on the values of the literals. This deductions called inferences will be presented
in Section 5.1; then we will describe in more details the inference system we are using in Section
5.2 and finally give an overview of the Isabelle proof (Section 5.3.1).

5.1 Inferences

We try to find a contradiction in N , a set of clauses in CNF. This proof of ⊥ that we are looking
for is a trace of application of inference rules. An inference rule deduces a conclusion C from a some
premises C1, . . . , Cn, written:

C1 · · · Cn

C
We can also see inferences as transitions: (N ∪ {C1, . . . , Cn}) ⇒ (N ∪ {C1, . . . , Cn} ∪ {C}) is the
transition associated to the inference rule. No clause is removed by an inference rule. An inference
is said to be sound, when C is entailed by its premises: C1, . . . , Cn � C.

A simple procedure to find a proof of false consists in applying all rules over and over as long as
we find new formulas until we find ⊥. This is a final state for the procedure (we reached false), but
it is not necessary a termination state for the rewrite system. The procedure stops when ⊥ is found,
or when the rules do not provide any new information: at this point the set of all the formulas we
have found is called saturated. An inference system is refutational complete if we can always find ⊥
whenever the given set of formulas is inconsistent.

Remark that the given procedure does not always terminate: if new inferences can always be
deduced, then it does not stop. If the procedure is refutational complete, then the procedure is a
semi-decision procedure: it stops if the set is inconsistent (and a proof is found); otherwise, it can
stop (in a state where we know that the set of formula is statisfiable) or not.

5.2 The Rules

We use proof trees in this part instead of a transition system to make the inferences easier to
understand and avoid writing the set of known clauses at each step: in a proof tree, this set is the
clauses we have started with and the clauses we have deduced by applying the rules.

Let us consider the following rules called binary resolution with factoring:

C ∨ P ¬P ∨ C ′ Res
C ∨ C ′

(a) Resolution on the literal P

C ∨ L ∨ L Fact
C ∨ L

(b) Factoring of the literal L

Figure 3: The rules of resolution calculus.

An important point is that in the two rules, C and C ′ can be the empty clause: for example,
the Factorisation rule allows to deduce L from L ∨ L. The reason is that the ∨ based representation
is only a representation of the multiset presentation.
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The Res rule is a sound inference. It can be easily shown by case distinction on the value of A:
if A is true in a model, then ¬A is false and thus D must be true, because the premises are valid.
Otherwise, A is false: C must be true.

We consider the set of formulas in CNF: N = {¬A ∨B,¬B ∨ C,A ∨ ¬C,A ∨B ∨ C ∨ C,¬A ∨
¬B ∨ ¬C}, from which we want to deduce ⊥. On one hand we can deduce C:

A ∨B ∨ C ∨ C Fact
A ∨B ∨ C A ∨ ¬C Res

A ∨B ∨A Factorisation
B ∨A ¬A ∨B Res

B ∨B
B ¬B ∨ C Res

C

On the other hand, but we can also deduce ¬C, by using C and B we have previously proven:

C A ∨ ¬C Res
A ¬A ∨ ¬B ∨ ¬C Res¬B ∨ ¬C B Res¬C

Thus: ¬C C Res⊥ . We apply the rule in a given order and change the rule, on which we apply
the rules: if the Factorisation rule is applied over-and-over on the same clause A ∨B ∨ C ∨ C, then
each time we get the same A ∨ B ∨ C. To prove termination and correctness, we would have to
ensure that each rule is not always applied on the same clause.

5.3 Formalisation in Isabelle

We will first describe the formalisation (Section 5.3.1). In this version, clauses are only added to
our set of clause, while it can useful to remove some to reduce the search space (Section 5.3.2).

5.3.1 The Calculus

{|Pos p|} + C ∈ N {|Neg p|} + D ∈ N ({|Pos p|} + C , {|Neg p|} + D) /∈ already-used
(N , already-used) ⇒Res (C + D, already-used ∪ {({|Pos p|} + C , {|Neg p|} + D)})

Res

(a) Resolution on A
{|L, L|} + C ∈ N

(N , already-used) ⇒Res (C + {|L|}, already-used)
Fact

(b) Factoring on L

Figure 4: The rules of resolution calculus

To prove termination, we need to ensures that no rule is applied twice to the same clauses and
contrary to a paper proof we can not add the condition after the definition. More precisely removing

17



a duplicate literal from a clause (rule Fact) terminates, but repeated applications of Res does not
necessary, thus we maintain a set called already-used containing the pair of premises that we have
already used. This slight addition is only added to the proof of the termination theorem and not to
the other proof like soundness and completeness, as if it does not make any difference, while it does.

The rules of the Isabelle version are in Figure 4: with this rules, the case C empty is in the
rules, since it is simply C being the empty multiset.

The soundness and completeness theorem we wrong in Weidenbach’s book [9], but the idea of
the proof is correct:

Textbook Theorem 9 (Wrong Version). The resolution calculus is sound and complete:
N is unsatisfiable iff N ⇒Res

? {⊥}.

Textbook Theorem 9 (Corrected Version). The resolution calculus is sound and complete:
N is unsatisfiable iff there is some N such that N ⇒Res

? N ′ where ⊥ ∈ N ′.

The difference between the wrong and the corrected version of the theorem is that in one case
⊥ ∈ N ′ and in the other case N ′ = {⊥} (the set containing only the empty clause). The theorem
is correct if we add simplification rules as we do in the next section, but under the current rules it
is not. A corrected version verified in Isabelle is the following theorem:

Verified Theorem 9 (Soundness and Completeness). If finite (fst ψ) and snd ψ = ∅, then the
following equivalence holds: ∃ψ ′. ψ ⇒Res

∗∗ ψ ′ ∧ ⊥ ∈ fst ψ ′ if and only if unsatisfiable (fst ψ).

There are two differences between both theorems: first (to prove termination later), we use a
set of used clauses, which is initially empty, thus the condition snd ψ = ∅. Moreover we have to
assume that the number of clauses is finite since sets are infinite in Isabelle, thus the finite (fst ψ).

Proof. (⇐= ) The converse is a proof by contradiction: assume that N is satisfiable and we have
ψ ⇒Res

∗∗ ψ ′ such that ⊥ ∈ fst ψ ′ is impossible. Each transition (N , used) ⇒Res (N ′, used)
is such that N |=ps N ′. As ⊥ ∈ ψ ′, we have N |=p ⊥. This is false, since N is satisfiable.

( =⇒ ) We assume that N is unsatisfiable. The idea of the proof of the implication in the theorem
is to build a semantic tree and to decrease the size by merging sibling leafs. Each of this
merging consists in applying some rules of the calculus.

A semantic tree is a binary tree, such that each node is labelled with an atom and the
leafs are labelled with a formula. Given a node marked with the atom l, the literal Pos l is
true in the left subtree and the literal Neg l is true in the right subtree. At the level of the
leafs, all these literals are a (possibly partial) valuation. The formula ϕ at a given leaf is such
that the interpretation is I is not a model: I 2 ϕ. For example in Figure 5a, the leftmost leaf
is labelled with the formula {|Neg P, Neg Q|}. The interpretation is {|Pos P, Pos Q|}, and we
have {|Neg P, Neg Q|}2{|Neg P, Neg Q|}.

We will now describe the merging of the sibling node on an example, with the following set
of clauses: N = {{|Pos P|}, {|Pos P, Neg P|}, {|Neg P, Pos Q, Pos Q|}, {|Neg P, Pos Q, Pos
Q|}, {|Neg P, Neg Q|}, {|Pos P, Pos Q|}}. The first step is to build a semantic tree associated
to the set of clauses. To do so we build a semantic tree such that every path from the node
to a leaf is a total valuation. As the valuation are total, there is always a clause in N such
that the interpretation is not a model. For our set of formulas, a possible semantic tree is in
Figure 5a.
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P

Q

{|Neg P,
Neg Q|}

Pos Q

{|Neg P,
Pos Q,
Pos Q|}

Neg Q

Pos P

Q

{|Pos P|}

Neg Q

{|Pos P,
Pos Q|}

Neg Q

Neg P

(a) Initial semantic tree

P

Q

{|Neg P,
Neg Q|}

Pos Q

{|Neg P,
Pos Q,
Pos Q|}

Neg Q

Pos P

{|Pos P|}

Neg P

(b) Initial semantic tree after merging one sibling node

P

{|Neg P, Neg P|}

Pos P

{|Pos P|}

Neg P

(c) Initial semantic tree after merging two sibling nodes

⊥
(d) Initial semantic tree after merging all sibling nodes

Figure 5: Reduction of the size of a semantic tree, on the set of clauses N = {{|Pos P|}, {|Pos P,
Neg P|}, {|Neg P, Pos Q, Pos Q|}, {|Neg P, Pos Q, Pos Q|}, {|Neg P, Neg Q|}, {|Pos P, Pos Q|}}
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The Isabelle version consists in taking an element of all the atoms and building the tree
recursively:

build-sem-tree atms ψ =
(if atms = {} ∨ ¬ finite then Leaf
else
let m = Min atms in
let t = build-sem-tree (atms − {m}) ψ in
Node m t t)

The condition atms = ∅ ∨ ¬ finite atms is necessary to prove termination: if we could
define without and apply it on an infinite set of atoms, the tree would be infinite, which is
impossible, since we are using a datatype. We have to find a way to take an element of the
set: we take the minimum of the set. That is why we have added a type class linorder on the
type of the atoms: it means that there is a linear order of the set. This allows us to take the
variables in a given order to build the tree (here taking the minimum of the variables not yet
in the tree but in the set for formulas). This is not an issue: as we have only a finite number
of literals, we can give each of this literals a number and then use the order given by this
number. Moreover in practice we use a words over the alphabet and there is an natural order
on it (the lexicographic order).

Now we have built the semantic tree, we can start merging the siblings. First we merge
the two rightmost sibling leafs {|Pos P, Pos Q|} and {|Pos P|}: the atom Q does not appear in
one of the two formulas, so we can replace the node Q by a leaf containing the formula {|Pos
P|}. We have not done any use of the rule.

We can merge the two other sibling leafs with formulas {|Neg P, Neg Q|} and {|Neg P, Pos
Q, Pos Q|}: the literal Q appears in both formulas. The first step is to remove the duplicate
in the formula to get {|Neg P, Pos Q|}. The associated transition is (N , ∅) ⇒Res (N ∪ {{|Neg
P, Pos Q|}}, ∅). Then we can apply the Res rule to {|Neg P, Pos Q|} and {|Neg P, Pos Q|} to
get {|Neg P, Neg P|}: (N ∪ {{|Neg P, Pos Q|}}, ∅) ⇒Res (N ∪ {{|Neg P, Pos Q|}, {|Neg P,
Neg P|}}, ∅) (result in Figure 5c). We did not use any rule here.

We have reduced the number of variables that appear in the leaf. We can now merge the
last two sibling leafs {|Neg P, Neg P|} and {|Pos P|}: we first reduce the number of occurrences
of Neg P and apply the Res rule: we get ⊥ (Figure 5d). We have applied two rules of the
calculus.

We have now finished to merge the sibling leafs and there is a single remaining leaf
containing the formula ⊥: this is what we wanted to have. More generally, at the end we
have a formula ϕ such that the empty valuation is not a model: [ ] 2ϕ. The only solution is
that ϕ is (as here) ⊥: we have deduced what we wanted to have.

In the previous example we have have skipped the conditions on already-used. To take
care of the conditions, we use the following invariant:

Definition 10. • For each pair (A, B) that has been already used, there is an atom P
such that Pos P is in A and Neg P is in B.
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• Either there is χ that subsumes the conclusion (i.e. χ implies the conclusion of the Res
rule A − {|Pos P|} + (B − {|Neg P|})) or the latter is a tautology. any formula).

The part of the invariant with the tautology is for the case that we want to apply the Res
rule to the same two clauses only changing the literal. For example if we have {|Pos P, Pos Q|}
and {|Neg P, Neg Q|}, we can apply the Res rule with P or Q: in each case we have a tautology.
In that case every possible conclusion is a tautology (including the previous conclusion). In
the semantic tree, we cannot have this case since we are always working with conflicts: I 2 ϕ
implies that I is not tautology. This shows also that re-applying the Res rule on the same
two clauses, even when changing the variables, does not lead to any progress in the proof.

The part with the subsumption is not necessary here, since we do not remove any clause.
However, it allows to use the conclusion where some duplicate have already been removed: if
we want to re-apply the resolution rule on {|Neg P, Neg Q|} and {|Neg P, Pos Q|}, and {|Neg
P|} is already in the set of clauses, we can directly take the version without duplicates.

This theorem shows completeness and soundness of the resolution calculus: this proof is one of
the proofs of Weidenbach’s book, we were able to simplify.

5.3.2 The Calculus with reduction Rules

The problem with the inference system described above is that new clauses are only added, while it
is useful to delete some clauses like the factoring rule: we have both {|Pos P, Pos P|} + C and {|Pos
P|} + C, while the second is enough (since they are equivalent). More precisely the rules described
in Section 5.2 are inference rules since new clauses are added, while we will describe reduction rules
that are useful to have fewer clauses (see Figure 6).

[[A ∈ N ; A ⊂ B; B ∈ N ]] =⇒ simplify N (N − {B})
(a) Subsumption: each model of A is also a model of B, so the latter can be removed of A. ⊂ is the strict
inclusion (to ensures that A and B are different).

A + {|Pos P|} + {|Neg P|} ∈ N =⇒ simplify N (N − {A + {|Pos P|} + {|Neg P|}})
(b) Tautology deletion, we remove a clause.

A + {|L|} + {|L|} ∈ N =⇒ simplify N (N − {A + {|L|} + {|L|}} ∪ {A + {|L|}})
(c) Condensation is close to the Fact rule but removes the premise.

Figure 6: Reduction rule

The rules are applied using a strategy: simplify as much as possible, then apply Res or Fact: this
is the transition of the transition system. This means that (except the first state), all the formulas
are always simplified. As we are interested in what happens after the simplification and the rules,
we will consider a simp+↓ that simplifies as much as possible. Then we get the two rules:

simp+↓ N N ′

resolution (N , already-used) (N ′, already-used)
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(N , already-used) ⇒Res (N ′, already-used ′) simplified N simp↓ N ′ N ′′

resolution (N , already-used) (N ′′, already-used ′)

Using a predicate that fully simplify the formula make thing easier, since we can assume that
at each step (except the very first), we can show that we are always in a state where everything is
simplified. There are two predicates simp+↓ and simp↓: the difference is that simp+↓ must do one
step (in simp+↓ N N ′N is different of N ′), whereas simp↓ do an arbitrary number of steps including
zero. We cannot have a rule of the form simp↓ N N ′ =⇒ resolution (N , al) (N ′, al), otherwise
we cannot prove termination: we could remain in the same state while doing steps (resolution (N ,
al) (N , al)). simp↓ simplifies our state and if nothing can be done, then it does nothing. It is the
inference rule that change the state in the rule.

The proofs are close to the proofs presented in previous version, but we have to show that simp↓
terminates, because we want to use the result after the simplification. Now the subsumes part in
the invariant of Definition 10 is important: we remove clauses that are either tautologies or are
replaced by a simpler clause. The simplifications does not preserve a semantic tree, because the
formulas on the leafs can change; but there are replaced by another equivalent formula.

Verified Theorem 11. The resolution calculus with reduction rules terminates.

Proof. The idea of the proof is that we cannot apply the Fact rule, since the clauses are always
simplified. Then at each step of already used clauses is strictly increasing. As there is only a finite
number of simplified clauses containing only the atoms of the set of clauses, we have termination.

The proof of this theorem is one of the few that were broken in Weidenbach’s book: the given
argument was wrong. The proof tried to prove a better bound than ours (our upper bound is 3n

Res steps where n is the number of clauses).
The length of the full formalisation of resolution only is 1 200 lines of Isabelle. The resolution

calculus is based on combining clauses. We will now present another algorithm that is based on
case distinction of the values of the atoms.

6 The Davis-Putnam-Logemann-Loveland Calculus
The idea of the previous calculus was to apply rules on the set of clauses whose unsatisfiability we
want to show, until we derive ⊥. The idea now is to “try” values for propositional variables and
when we have found a contradiction to backtrack on the decision and try the other choice. We will
first describe the rules (Section 6.1), then give an example (Section 6.2). After that we will describe
the Isabelle formalisation (Section 6.3), before describing a simple implementation (Section 6.4).

6.1 The Rules

The Davis-Putnam-Logemann-Loveland (DPLL) procedure is a procedure developed in 1962 [22,
23]. The idea is to build a sequence of literals that have been assigned: if we have to “try” a value
we mark the corresponding literal with +. After our choice, we try to find a contradiction and when
we have found one, we backtrack on our last choice and choose the opposite value.

More formally we start with the pair (ε;N): N is the set of clauses and initially no value has
been defined and ε is the empty list. At the end we have either (M ;N) where M � N (meaning
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that we have found a model) or (M ;N) where M � ¬N without marked variables in M : N is
unsatisfiable. By construction, M will not contain a contradiction (no atom appears more than
once in M and especially it cannot appear both positively and negatively). Here are the rules:

• Propagate (Prop): if C ∨ L ∈ N and M � ¬C and the atom L has not yet been defined in
M , then (M ;N)⇒DPLL (L ·M ;N). We do not have to backtrack on that decision, since we
have taken the only possible decision for L.
We write |L| /∈l |M | to mean that L has not been defined in M, i.e. neither L nor −L is in
M. Contrary to Weidenbach’s presentation, the literal is consed on the left and not on the
right: his cons operator appends the element to the list (i.e. of type ′a list ⇒ ′a ⇒ ′a list).
In Isabelle the cons operator adds an element at the beginning (i.e. of type ′a ⇒ ′a list ⇒ ′a
list). As Isabelle lists are a very developed with a lot of automation, we flipped the direction
of the list M between the presentation in the book and in our files.

• Decide (Dec): if a literal L is undefined in M , we can define it: (M ;N) ⇒DPLL (L+M ;N).
In that case we have to backtrack later on the decision because we chose arbitrary whether L
or ¬L is put in M , thus the mark +.

• Backtrack (Back): starting from (M2L
+M1;N), if we have found a contradiction i.e. ∃D ∈

N,M � ¬D, then we take the opposite of our last choice (i.e. there is no marked variable in
M2, ¬(∃K,K+ ∈M)): (M2L

+M1;N)⇒DPLL (¬LM ;N). As this is the only other case case
for the value on L, no mark is needed.

6.2 Example

We apply our procedure on the set: N = {{|P, Q|}, {|¬ P, Q|}, {|P, ¬ Q|}, {|¬ P, ¬ Q, S |}, {|¬ P, ¬
Q, ¬ S |}} (the example comes from [9]). The Back rule stands for application of the backtrack rule,
Dec for decide and Prop for Propagate. One possible trace of transitions is

([], N ) ⇒DPLL ([P+], N ) Dec since |P| /∈l |[]|
⇒DPLL ([Q, P+], N ) Prop since {|¬ P, Q|} ∈ N
⇒DPLL ([S+, Q, P+], N ) Dec since |S | /∈l |[Q, P+]|
⇒DPLL ([¬ S , Q, P+], N ) Back since [S+, Q, P+] |=as (¬ {|¬ P, ¬ Q, ¬ S |})
⇒DPLL ([¬ P], N ) Back since [¬ S , Q, P+] |=as (¬ {|¬ P, ¬ Q, S |})
⇒DPLL ([Q, ¬ P], N ) Prop since {|P, Q|} ∈ N

Now we have found a conflict: {|P, ¬ Q|} ∈ N but is false. We could stop here (we now know
that the set of clauses N is unsatisfiable), but we can still preform some transitions:

⇒DPLL ([(¬ S)+, Q, ¬ P], N ) Dec since ([Q, ¬ P], N )
⇒DPLL ([S , Q, ¬ P], N ) Back since [(¬ S)+, Q, ¬ P] |=as (¬ {|P, ¬ Q|})

There is no remaining transition: every atom of the problem has a value and we cannot backtrack,
since there is no marked variable. As the found valuation is not a model of N, N is unsatisfiable.

We can see here that sometimes we can apply rules but we already know whether the set of
clauses is satisfiable. This kind of state is a final state (written final-dpll-state (M , N )), but not a
termination state for the transition system. In practice, most implementations do no stop, but as
we did here, propagate all the variables: the reason is that M |= N is expensive to test: you have
to test that every clause in N has M as model, so it is cheaper to verify to finish the propagation.
Rule Propagate is not needed to show completeness since we can apply decide on the the opposite
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and then backtrack on the choice, but ignoring it can lead to exponentially longer solution. The
strategy of ignoring Propagate is included in our transition system: we do not give any constrain
on which rule to apply.

6.3 Isabelle Formalisation

We have formalised the rules described previously (described in Section 6.3.1). Then we will give
some indications of the invariants needed for the proof (Section 6.3.2). When doing transitions,
there are states that allows to conclude even if there are more possible transitions; these final states
are described in Section 6.3.3. Then we show the theorem of correctness in Section 6.3.4

6.3.1 The Rules

We use a generalised version of the marked literals (to share definitions and lemmas between this
section and the next section) with annotations on both marked and not marked literals:

datatype ( ′v, ′l, ′m) marked-lit =
Marked (lit-of : ′v literal) (level-of : ′l) | Propagated (lit-of : ′v literal) ′m

For DPLL the mark is a simple constant called Level for the level and Proped for the propagation.
lit-of is the function that give the literal that is marked or propagated, while lits-of returns the
literals in a list of marked or propagated literals. We will nevertheless write L+ for Marked L Level
and L for Propagated L Proped.

Now we can define a new version of |=: (I |=a C ) = (lits-of I |= C ). We translate the |=a (“a”
stands for annotated) into |=, using the function lits-of.

The rule of the calculus are:

• Propagate:

C + {|L|} ∈ N M |=as (¬ C ) |L| /∈l |M |
(M , N ) ⇒DPLL (L · M , N )

• Decide:

|L| /∈l |M | |L| ∈ atms-of-m N
(M , N ) ⇒DPLL (L+ · M , N )

Unlike Weidenbach’s presentation, we have added the condition |L| ∈ atms-of-m N. This
(obvious) condition is needed for the soundness of the calculus.

• Backtrack: The distance between the paper version and the Isabelle version is the largest in
this case, because there are implicit information.

backtrack-split M = (M ′, L · M ) is-marked L D ∈ N M |=as (¬ D)
(M , N ) ⇒DPLL (− lit-of L · M , N )
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backtrack-split M = (M , L M ′) is a decomposition such that that S = M @ (L · M ′). The
marked literal is the first element of M ′when such an element exists, otherwise M ′ = []. Using
(M ′, Marked L · M ′) instead of tuple (M ′, Marked L, M ) allows a unified vision if there is no
marked literal. Notice that is-marked L is redundant given the definition of backtrack-split,
but we stay closer to the definition when adding the condition.

Every rule implies a progress: there is no explicit backtracking where we would go back to a
previous state and change the decision taken there.

Now we have stated the definitions, we will give an overview of the proofs.

6.3.2 Invariants

Most invariants are written assuming that the initial state is ([], N ), but it is easier to write the
properties as invariants: it avoids doing induction on the possible transition and on the iteration of
the transitions.

One of the very first properties to show is the following:

Verified Theorem 12. If (M , N ) ⇒DPLL (M ′, N ′) then N = N ′.

This is correct by the way the rules are stated, but we have nevertheless to write this property
down and prove it by induction.

Textbook Theorem 13. The sequence M will, by construction, neither contain duplicate nor
complementary literals.

We will define no-dup being the property that there is no duplicate, in the sense that no atom
is defined twice. This property subsumes the duplicate freedom and the complementary freedom of
the previous theorem.

Verified Theorem 13. If S ⇒DPLL S ′ and no-dup (fst S) then no-dup (fst S ′).

Proof. Isabelle is not fully convinced by the argument “by construction”, but the proof is simply an
induction on the possible transitions. Only the backtrack case needs a little more work in Isabelle,
because of the splitting.

When applying the rule Propagate, we do not have to backtrack on that decision, since we have
taken the only possible decision for L. This leads to the following theorem:

Textbook Lemma 14. et (M ; N ) be a stated reached by the DPLL algorithm from the initial
state (ε;N). If M=Mm+1Lm

+. . .L1
+M 1 and all M i have no decision literal then for all 1 ≤ i ≤

m it holds: N , M 1,. . ., Li
+ |= M i+1.

In Isabelle it is a bit more complicated since writing the decomposition down is not as easy.
get-all-marked-decomposition gives all the possible decomposition of the form (M i, Li · M ) where
no variable is marked in M. Then we want to show that for each of this decomposition N , M , Li

|= M. In Isabelle, the |= is not overloaded, so it becomes:

unmark (Li · M ) ∪ N |=ps unmark M i
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unmark (Li · M ) converts all the marked literals from Li · M to normal literals. More precisely
they become clauses composed of a single literal, meaning that each literal have to be true. The
Isabelle needs one more assumption to prove it: all the atoms in M have to be in the atoms of N.
This condition is written atm-of ‘ lit-of ‘ M ⊆ atms-of-m N : the operator ‘ means that

Verified Lemma 14. If all-decomposition-implies N (get-all-marked-decomposition M ) and one
DPLL step (M , N ) ⇒DPLL (M ′, N ′) is done and the condition on the atoms hold atm-of ‘ lit-of ‘
M ⊆ atms-of-m N, then all-decomposition-implies N ′ (get-all-marked-decomposition M ′).

This conclusion can be generalised.

Textbook Lemma 15. th-dpll-prop-gene (ε;N)⇒?
DPLL (M,N) whereM = Mm+1·L+

m · · ·L+
1 · · ·M1

and there is no decision literal in the Mi. Then: N,L+
1 , . . . , L

+
i �M1, . . . ,Mi+1.

Verified Lemma 15. If one step (M , N ) ⇒DPLL (M ′, N ′) is done, every atom in M is also in N
atm-of ‘ lit-of ‘ M ⊆ atms-of-m N and all-decomposition-implies N (get-all-marked-decomposition
M ), then snd S ′1 ∪ {{|lit-of L|} | is-marked L ∧ L ∈ fst S ′1} |=ps unmark (fst S ′1 ).

Verified Lemma 16. If M contains only propagated literals and there is D ∈ N with M |=as (¬
D) then N is unsatisfiable

The Isabelle version needs some more assumptions, because of our presentation as invariants:
the invariants have to be stated explicitly.

Verified Theorem 17. If all-decomposition-implies N (get-all-marked-decomposition M ) and D ∈ N
and M |=as (¬ D) and ∀ x∈M . ¬ is-marked x and atm-of ‘ lits-of M ⊆ atms-of-m N then unsat-
isfiable N .

This theorem shows that an important property: if we have found a contradiction while running
the DPLL and no variable is marked, then the set of clauses is unsatisfiable. This is part of the
proof of correctness.

6.3.3 Final States

Final states are states where can conclude: if M is a model of N, we know that N is satisfiable,
even if M is not total. Otherwise if we have found a conflict and no variable is marked (i.e. we
cannot backtrack), then N is unsatisfiable. The formal Isabelle definition is the following:

Definition 18. final-dpll-state S = (fst S |=as snd S ∨ (∀L∈fst S . ¬ is-marked L) ∧ (∃C∈snd S .
fst S |=as (¬ C ))).

This definition is linked to the termination of the final states of the rewrite system:

Verified Theorem 19. If we are in state S and we cannot do any transition (i.e. ∀S ′. ¬ S ⇒DPLL
S ′), then we are in a final state: final-dpll-state S.

As we have seen in the example of Section 6.2, the converse is not true: we can be in a final
state, but there might be more rewrite steps to do. In practice, testing the satisfiabilty is too hard
to be tested. If any of these conditions are met:
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• we have found a contradiction and cannot backtrack;

• we have done every possible transition.

Theses conditions are cheap to verify in an implementation, contrary to the definition of a final
states.

6.3.4 Correctness Theorems

There states where we know the satisfiability of the set of clauses before having done all the
possible transitions, contrary to the resolution calculus where all inferences have to be done to
conclude. However the termination of the rewrite system is enough to prove that we get in final
state (Theorem 19): if we are lucky we get a final state early in the trace, but at latest when no more
transition is possible, we are in a final state. That is why on one side the completeness theorem
is expressed using the final-dpll-state predicate and the termination is proved one the transition
system without the predicate.

The completeness and soundness theorem is the following:

Verified Theorem 20 (Completeness, Soundness). If ([], N ) ⇒DPLL
∗∗ (M , N ) and final-dpll-state (M , N )

and finite N then (M |=as N ) = satisfiable N .

The termination (no more rewriting step can be done) can be proven using a well-founded order:
the lexicographic order over natural numbers. If M = Ln · · · L2 ·L1 · [], then we define the following
measure converting the state to a list:

µ(M , N ) = mn · . . . · m2 · m1 · 3 · . . . · 3

where mi is 2 when Li is annotated, 1 otherwise. and there are as many 1 as non-assigned variable
in M. In Isabelle this becomes

dpll-mes M n = map (λl. if is-marked l then 2 else 1 ) (rev M ) @ replicate (n − |M |) 3

where map f l applies f on every element of the list l.
The termination comes from the decreasing of the measure µ with respect to the lexicographic

order. The lexicographic order with respect to order ≺ is lex ≺. To prove it, we need some of the
invariants:

Verified Lemma 21. If (M , N ) ⇒DPLL (M ′, N ′) and atm-of ‘ lit-of ‘ M ⊆ atms-of-m N and
no-dup M and finite N then (dpll-mes M ′ |atms-of-m N ′|, dpll-mes M |atms-of-m N |) ∈ lex {(a,
b) | a < b}.

|atms-of-m N | is the cardinal of set composed of the atoms in N. Although we consider (M , N )
⇒DPLL (M ′, N ′), the conclusion is the other way around with (M ′, N ′) appearing before (M , N )
(dpll-mes M ′ |atms-of-m N ′|, dpll-mes M |atms-of-m N |) ∈ lex {(a, b) | a < b}.

Using this key lemma, we can show the iteration of the transition is well-founded. To prove it,
we have to ensure that the needed invariants (all together named dpll-all-inv) are correct. Using
Isabelle well-foundedness predicate wf :

Verified Theorem 22 (Well-foundedness of DPLL). wf {(S ′, S) | dpll-all-inv S ∧ S ⇒DPLL S ′}
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Given the definition of wf, we have the next state is the first element of the pair: the relation
{(0 , 1 ), (1 , 2 ), (2 , 3 ), . . . } is well-founded whereas the relation {. . . , (−3 , −2 ), (−2 , −1 ), (−1 ,
0 )} is not.

We can remove the invariant of the condition in the set and show that

Verified Theorem 23. If finite N then wf {(S ′, [], N ) | ([], N ) ⇒DPLL
++ S ′}.

The length of the formalisation is five hundred lines of Isabelle code, with around the same
length of libraries that defines the marked literals.

6.4 Implementation in Isabelle

In this section, we give a simple Isabelle implementation of a verified solver trying to prove the
satisfiability of a set of clauses. We will first describe the function implementing the transitions
(Section 6.4.1). After this, the details are specific to Isabelle, its function definition (Section 6.4.2).
Then we export our verified Isabelle implementation in OCaml using the code generation (Section
6.4.3): the exported code is a verified solver in a real-world language.

6.4.1 Transition Step

We use the following strategy:

• we first try to find a unit clause, i.e. a clause composed of a single literal, using the function
find-first-unit-clause;

• otherwise if there is no unit clause, we try to find a contradiction, using the predicate ∃C∈N .
Ms |=as (¬ multiset-of C );

• otherwise if there is no conflict, we select an unused variable (taking the first one when
iterating over the formulas, find-first-unused-var);

• otherwise, the arguments are simply returned.

In our presentation we used sets, but in our program we will use lists. Moreover we will use
integers int instead of type ′a.

definition DPLL-step :: int dpll-annoted-lits × int literal list list ⇒ int dpll-annoted-lits
× int literal list list where

DPLL-step = (λ(Ms, N ).
case find-first-unit-clause N Ms of

Some L ⇒ (L · Ms, N ))
| None ⇒

if ∃C∈N . Ms |=as (¬ multiset-of C )
then

case backtrack-split Ms of
(-, []) ⇒ (Ms, N ) |
| (-, L · M ) ⇒ (− lit-of L · M , N )

else
case find-first-unused-var N (lits-of Ms) of
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None ⇒ (Ms, N )
| Some a ⇒ (a+ · Ms, N )

We do not have used any special data structure nor good strategy, since the implementation is
only for presentation purpose.

When no step is possible, then the function DPLL-step returns its arguments. As we are using
different types than the one described in our previous section, we define toS Ms N that converts
the state (Ms, N ) from the type int dpll-annoted-lits × int literal list list to the type presentation
we used in the previous section with sets. The correctness theorem associated with this definition
is the following:

Verified Theorem 24. If (Ms ′, N ′) = DPLL-step (Ms, N ) and (Ms, N ) 6= (Ms ′, N ′) then toS
Ms N ⇒DPLL toS Ms ′ N ′.

This lemma shows that DPLL-step does some subset of the possible transitions, but this is not
enough: we can prove the same lemma for the identity function, since the condition (Ms, N ) 6=
(Ms ′, N ′) is always false. We have to show that DPLL-step is doing a step until a final state is
reached.

Verified Theorem 25. (Ms, N ) = DPLL-step (Ms, N ) =⇒ final-dpll-state (toS Ms N ).

6.4.2 Combining and Termination

Using the previously defined DPLL-step, we would like to combine to write something like:
function DPLL-nt:: int dpll-annoted-lits ⇒ int literal list list
⇒ int dpll-annoted-lits × int literal list list where

DPLL-nt Ms N =
(let (Ms ′, N ′) = DPLL-step (Ms, N ) in
if (Ms ′, N ′) = (Ms, N ) then (Ms, N ) else DPLL-nt Ms ′ N )

But we cannot prove the termination, since the function DPLL-nt is not terminating (nt stands
for non terminating): we have no control on the arguments (Ms, N ) so they can be in an a state
where our invariants needed to prove termination do not hold.

A first way to define it, where we still have a total function, is to stop the execution whenever
the invariant is false:

function DPLL-ci:: int dpll-annoted-lits ⇒ int literal list list
⇒ int dpll-annoted-lits × int literal list list where

DPLL-ci Ms N =
(if ¬dpll-all-inv (toS Ms N )
then (Ms, N )
else
let (Ms ′, N ′) = DPLL-step (Ms, N ) in
if (Ms ′, N ′) = (Ms, N ) then (Ms, N ) else DPLL-ci Ms ′ N )

Whenever the invariant dpll-all-inv (toS Ms N ) is false, we stop the execution: ci in the function
name stands for check invariant. Otherwise we use the order given by Theorem 22, but with the
state conversion. Here is the beginning of the proof. We give the well-founded relation to use:
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termination
apply (relation {(S ′, S). (toS ′ S ′, toS ′ S) ∈ {(S ′, S). dpll-all-inv S ∧ dpll S S ′}})

Then we can show that DPLL-ci is really doing some steps of the transition systems:

Verified Theorem 26. DPLL-ci Ms N = (Ms ′, N ′) =⇒ toS Ms N ⇒DPLL
∗∗ toS Ms ′ N.

Proof. The proof is easy. If the invariant is false, then we do not do any step (Ms = Ms ′ and N =
N ′) and we use the reflexivity of the relation. Otherwise, we have done a single step.

We do not need any assumption about the invariant: whenever it is false, the conclusion comes
from the fact that op ⇒DPLL

∗∗ is reflexive.
This version is not adapted to an implementation: we do not want to verify that the invariant

holds at each step. A solution is to use function [24] such that termination is not required
everywhere: then the function is only specified on its domain and theorems (like simplification rule)
can only be applied if we are in the domain.

function (domintros) DPLL-part:: int dpll-annoted-lits ⇒ int literal list list
⇒ int dpll-annoted-lits × int literal list list where

DPLL-part Ms N =
(let (Ms ′, N ′) = DPLL-step (Ms, N ) in
if (Ms ′, N ′) = (Ms, N ) then (Ms, N ) else DPLL-part Ms ′ N )

The simplification are generated automatically by the function package. The DPLL-part
encodes non termination: the domain is defined as all the points where the procedure terminates.
The aim is to find conditions such that where are in the domain, as for example: dpll-all-inv (toS ′
S) =⇒ DPLL-part-dom S

If the function would not terminate, then the domain would be empty. For terminating functions,
the condition on the domain is always true. The function DPLL-part is deeply linked to DPLL-ci
when the invariant is verified:

Verified Theorem 27. If dpll-all-inv (toS M N ) then DPLL-part M N = DPLL-ci M N .

This function is better suited for a code exportation since the invariant is not checked at each
step (and the code exportation to verify is not invariant).

6.4.3 Code Generation

In the previous subsection, we implemented a concrete solver based on DPLL in Isabelle. To export
the code in OCaml an obtain a verified solver, we use the code-generation tool [25]. It cannot handle
partial function so we introduce a type that embeds the invariant. This follows the classical idiom
when using the code generator. Isabelle has a mechanism to define new types as isomorphic to a
subtype of an already defined type. Here our new type dpll-state is isomorphic to the :

typedef dpll-state = {(M ::(int, dpll-marked-level, dpll-mark) marked-lit list, N ::int literal
list list). dpll-all-inv (toS M N )}

morphisms rough-state-of state-of

Here our new type dpll-state is isomorphic to the elements of type (int, dpll-marked-level,
dpll-mark) marked-lit list × int literal list list such that the invariant dpll-all-inv is true.
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Concrete type int
dpll-annoted-lits × int
literal list list

Abstract type dpll-state

state-of

rough-state-of

Invariant
dpll-all-inv

Figure 7: Morphisms between the abstract type and the concrete type with the invariant: the
invariant folds only on a subset of the concrete type, and only this part can be linked to the abstract
type.

Now we have defined the type, we can use it and define DPLL-tot: DPLL-tot S = (let S ′ =
DPLL-step ′ S in if S ′ = S then S else DPLL-tot S ′) where DPLL-step ′ :: dpll-state ⇒ dpll-state
is DPLL-step, but converts its arguments from the abstract type forth to use DPLL-step and back
after the step. This definition of DPLL-tot allows to prove termination.

The definition allows to prove the same properties than the other definition, especially the
correctness of the transformation.

Verified Theorem 28 (Correctness ofDPLL-tot). If we have evaluated our function, i.e. rough-state-of
(DPLL-tot (state-of ([], N ))) = (M , N ′) and (M ′, N ′′) = toS ′ (M , N ′), then the following equiva-
lence holds: satisfiable N ′′←→ M ′ |=as N ′′.

We can now use Isabelle export-code, that allows to generate code from our DPLL-tot definition.
We have to define a constructor Con going from the concrete type to the abstract type: Con xs =
state-of (if dpll-all-inv (toS (fst xs) (snd xs)) then xs else ([], [])). Given the conditions, we have
proven the termination (since DPLL-tot terminates) and the correctness.

Here is an extract of the generated code in OCaml:

let rec rough_state_of (Con x) = x;;
let rec dPLL_stepa s = Con (dPLL_step (rough_state_of s));;
let rec dPLL4 s =

let sa = dPLL_stepa s in
(if equal_dpll_state sa s then s else dPLL4 sa);;

There is no invariant check, thanks to our type definition. The result is a proven implementation,
if the code generation, the Isabelle kernel and the OCaml compiler are trusted. There is not invariant
check.
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We have presented the DPLL procedure and a simple implementation. We will now present an
evolution of this procedure, that is faster in practice.

7 The Conflict-Driven Clause Learning Procedure
Conflict-driven clause learning (CDCL) is an extension of the DPLL procedure, based on the idea
that backtracking more than one level is more efficient. We will first describe the rules (Suction
7.1), then we will show an example (Section 7.2) before giving more details about the proof and the
strategy (Section 7.3). In this section we assume that the clauses are without duplicate literals.

7.1 Rules

A state is a tuple (M ;N ;U ; k;C) whereM is the model we are working on: it is as before a sequence
of marked literals. The marks are not the same as before: decision literals (marked with + in the
previous section) are now marked with a natural number; propagation literals are marked with a
clause (the number of variables to backtrack on). N is the set of clauses we are considering. k is an
integer representing the level of backtracking. C is a non-empty clause (for backtracking states) or
> or ⊥ (⊥ means that the search of a model has not been succesful so far) and U is a set of clauses
to keep the clause that previously caused a contradiction.

The level of an atom ` inM is j when Pos` ∈Mj orNeg` ∈Mj andM = Mn·Ln · · ·MjL
j · · ·M1·

L1 ·M0, or 0 if ` is not in M . The level of the literal L is the level of the atom of L. The level of a
clause is the maximum of the levels of the literals.

We start with (ε;N ; ∅; 0;>) and we want to reach a final state: either (M ;N ;U, k;>) where
M � N , or (M ;N ;U, k;⊥) meaning that N is unsatisfiable. During the search, an intermediate
proof step is characterised by M 2 N . Here are the rules:

Propagate (Prop): as in DPLL, we use our knowledge. If M � ¬C and C ∨ L ∈ N ∪ U where L
has not yet been defined, then (M ;N ;U ; k;>)⇒CDCL (MLC∨L;N ;U ; k;>).

Decide (Dec): we can also determine the value of a literal L, if it is undefined in M :

(M ;N ;U ; k;>)⇒CDCL (MLk+1;N ;U ; k + 1;>)

The level of backtracking is increased, since we have decided a new value to backtrack later
on.

Conflict (Con): if there is a conflict in our state (M ;N ;U, k;>), i.e. D ∈ N ∪ U and M � ¬D,
then we “mark” the conflict: (M ;N ;U ; k;>)⇒CDCL (M ;N ;U ; k;D).

Skip (Skip): if we are in a situation where we are backtracking (D /∈ {⊥,>}) and ¬L does not
occur in D (i.e. does not participate to the conflict), then we can remove the assignation of
the literal, (MLC∨L;N ;U ; k;D)⇒CDCL (M ;N ;U ; k;D).

Resolve (Resolve): if D contains a literal of level k or k = 0:

(MLC∨L;N ;U ; k;D ∨ ¬L)⇒CDCL (M ;N ;U ; k;D ∨ C)
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The idea of the rule is to go back in to our previous state. Imagine we have the state
(MLC∨L;N ;U ; k;⊥∨¬L): we have chosen L, but get a conflict after. We change our decision,
but as our decision was necessary (see rule Prop), the conflict must be in C: (M ;N ;U ; k;⊥∨C).

Backtrack (Back): one important rule is the backtracking:

(M1K
i+1M2;N ;U ; k;D ∨ L)⇒CDCL (M1L

D∨L;N ;U ∪ {D ∨ L}; i;>)

given that the literal L is of maximal level k and D is of level i where i < k (i.e. each literal
in D is of maximum level i). The CDCL backtrack rule generalises the DPLL backtrack rule:
i is the level we jump back, while in DPLL we can only go back one level.

Restart (Restart): We restart our actual partial valuation M, but not the learnt clauses. This
allows to restart and maybe find a conflict faster thanks to the learnt clauses. This rule is
heuristically used in practice and can obviously lead to non-termination:

(M ;N ;U ; k;>)⇒CDCL (ε;N ;U ; k;>)

provided that M |=as N is false.

Forget (Forget): We remove one of the learnt clause:

(M ;N ;U ∪ {C}; k;>)⇒CDCL (M ;N ;U ; k;>)

provided that M |=as N is false.

When no rule can be applied anymore, then either C is > and N is satisfiable and M |=as R, or
C is ⊥ and N is unsatisfiable. Notice that in both cases we cannot apply Restart and Forget: when
C is >, then ¬ M |=as N does not hold, and when C is ⊥, then C is not equal to >. Thus these
states are real termination states.

7.2 Example

We use C-True instead of > and C-Clause D instead of D when D is different of >. We apply our
procedure on the set N = {{|Pos P, Pos Q|}, {|Neg P, Pos Q|}, {|Pos P, Neg Q|}, {|Neg P, Neg Q,
Pos S |}, {|Neg P, Neg Q, Neg S |}}.

([], N , ∅, 0 , C-True) ⇒CDCL ([(Pos S)1], N , ∅, 1 , C-True) (Dec)
⇒CDCL ([(Neg P)2, (Pos S)1], N , ∅, 2 , C-True) (Dec)
⇒CDCL ([(Pos Q){|Pos P, Pos Q|}, (Neg P)2, (Pos S)1], N , ∅, 2 ,

C-True) (Prop)
⇒CDCL ([(Pos Q){|Pos P, Pos Q|}, (Neg P)2, (Pos S)1], N , ∅, 2 ,

C-Clause {|Pos P, Neg Q|}) (Res)
⇒CDCL ([(Neg P)2, (Pos S)1], N , ∅, 2 , C-Clause {|Pos P|})

(Back)
⇒CDCL ([(Pos P){|Pos P|}, (Pos S)1], N , {|Pos P|}, 0 , C-True)

(Back)
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The result of Resolve rule is {|Pos P, Pos P|}. We must remove the duplicates; otherwise
the conditions to apply the backtrack rule are not verified: {|Pos P, Pos P|} is of the
form D + {|Pos P|}, but D is of level 2 as Pos P and D must be of level strictly less
than P.

⇒CDCL ([(Pos Q){|Neg P, Pos Q|}, (Pos P){|Pos P|}, (Pos S)1],
N , {|Pos P|}, 0 , C-True) (Prop)

⇒CDCL ([(Pos Q){|Neg P, Pos Q|}, (Pos P){|Pos P|}, (Pos S)1],
N , {|Pos P|}, 0 , C-Clause {|Pos P, Neg Q|}) (Prop)

⇒CDCL ([(Pos P){|Pos P|}, (Pos S)1], N , {|Pos P|}, 0 , C-Clause
{|Neg P|}) (Res)

⇒CDCL ([(Pos S)1], N , {|Pos P|}, 0 , C-Clause ⊥) (Res)

The last rule simply consists in applying Resolution. At the end we get C-Clause ⊥: N is not
satisfiable.

7.3 Isabelle Formalisation

We first present the rules in Isabelle (Section 7.3.1), then we show some invariants (Section 7.3.2).
If we do not restrict the rules, there is no termination: to prove it, we use a strategy (Section 7.3.3).

7.3.1 Rules

CDCL is an extension of DPLL and some types are shared between both approaches:

datatype ( ′v, ′level, ′mark) marked-lit =
is-marked: Marked (lit-of : ′v literal) (level-of : ′level) |
Propagated (lit-of : ′v literal) (mark-of : ′mark)

Re-using the definition allows a to share some lemmas between DPLL and CDCL. The conflicting
clause is either > or a clause:

datatype ′a conflicting-clause = C-True | C-Clause ′a

The separation between N and the learnt clauses in U is only to clarify the presentation: the
learnt clauses are consequences of N, thus propagating can be done based on a clause being either
in N or in U.

S = (M , N , U , k, C-True) C + {|L|} ∈ N ∪ U M |=as CNot C |L| /∈l |fst S |
S ⇒CDCL (LC + {|L|} · M , N , U , k, C-True)

Prop

S = (M , N , U , k, C-True) |L| /∈l |M | |L| ∈ atms-of-m N
S ⇒CDCL (Lk + 1 · M , N , U , k + 1 , C-True)

Dec

When a conflict is found we update the state:

S = (M , N , U , k, C-True) L ∈ N ∪ U M |=as CNot L
S ⇒CDCL (M , N , U , k, C-Clause L)

Conf
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S = (LC · M , N , U , k, C-Clause D) − L /∈ D D 6= ⊥
S ⇒CDCL (M , N , U , k, C-Clause D)

Skip

We can resolve a conflict: when we have done a case distinction before and found a conflict, we
can combine both information:

S = (LC + {|L|} · M , N , U , k, C-Clause (D + {|− L|}))
get-maximum-level D (LC + {|L|} · M ) = k ∨ k = 0

S ⇒CDCL (M , N , U , k, C-Clause (remdups-mset (D + C )))
Res

This is an important invariant of the section: we have to ensure that there is no duplicate in
the formulas. To remove them, we use the function remdups-mset.

The backtrack rule is a generalisation of the backtrack rule of DPLL. To backtrack several levels,
we introduced a function get-all-marked-decomposition that returns a list of all decomposition of
of the form M 1 · Lk · M 2. This function is linked to the backtrack-split we used for DPLL by the
following theorem: backtrack-split S = (M , L · M ′) =⇒ hd (get-all-marked-decomposition S) = (L
· M ′, M ).

S = (M , N , U , k, C-Clause (D + {|L|}))
(K i + 1 · M 1, M 2) ∈ get-all-marked-decomposition M get-level L M = k

get-level L M = get-maximum-level (D + {|L|}) M get-maximum-level D M = i
S ⇒CDCL (LD + {|L|} · M 1, N , U ∪ {D + {|L|}}, i, C-True)

Back

Remark that contrary to DPLL, we are not taking the negation of literal K in the new state, but a
different literal L.

We have separated Restart and Forget from the other rules:

S = (M1 , N1 , U1 ∪ {C1}, k1 , C-True) ¬ M1 |=as N1
S ⇒CDCL ([], N1 , U1 , 0 , C-True)

Forget

S = (M1 , N1 , U1 , k1 , C-True) ¬ M1 |=as N1
S ⇒CDCL ([], N1 , U1 , 0 , C-True)

Restart

7.3.2 Invariants without Strategy

There are a few theorems that can be proved without constrain on the rules, then in the next section
we introduce a strategy, where the rules Restart and Forget are not applied.

When we use the previous rule without any strategy, there a few propositions that we can show:
firstly that the that the levels on the literals are sorted from the backtracking level k to one. This
is obvious given the construction, but has to be shown.

The learnt clauses are entailed by the clauses. To prove so we need the three following invariants
(collectively called cdcl-learnt-clause):

• the learnt clauses are entailed by N : N |=ps U, but M |=as CNot C ;

• whenever the conflicting part is not true, then N |=p C ;
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• for every mark, it is entailed by the clauses: N |=ps get-all-mark-of-propagated M.

The proof that the learnt clauses are entailed by the set of clauses is very sketchy in Weidenbach’s
book and I could not understand the link between some of the arguments of in the proof and the
argument. We can show the same property about propagated variables as we did for DPLL (Lemma
14):

Verified Theorem 29. If:

• one step is done, i.e. S ⇒CDCL S ′;

• our property holds in S: ( all-decomposition-implies (clauses S) (get-all-marked-decomposition
(fst S));

• our 3 previous invariants are true cdcl-learned-clause S;

• some properties about the length and the numbering are correct (i.e. the levels are [k. . . 1 ]);

• the defined literal are in N.

then all-decomposition-implies (clauses S ′) (get-all-marked-decomposition (fst S ′)).

The proof is significantly more complicated than the proof of DPLL and this needs all the
invariants that are given as assumption here. This theorem holds independently of the strategy of
application of the rules and is enough to show the counterpart of lemma 2.9.2.

Verified Lemma 30. ([ ];N)⇒?
CDCL (M,N) where M = Mm+1 ·L+

m · · ·L+
1 · · ·M1 and there is no

decision literal in the Mi. Then N,L+
1 , . . . , L

+
i �M1, . . . ,Mi+1.

Although this properties are very general, we need some more specific constrains on how to
apply the rules to prove termination for example: an infinite application of restarts is possible, but
incompatible with termination.

7.3.3 Invariants with Strategy

Weidenbach’s book [9] presents the strategy we will use, called reasonable: the rule Conf is preferred
over Prop, and both are preferred over all other and we do not apply restart and forget. In an
inductive predicate, there is no order between the different rules. So we create two inductive
definitions: one for Prop and Conf cdcl-cp and one for the other rule cdcl-o (Back, Dec, Res). There
is a strategy in cdcl-cp: Conf is preferred overProp. To do so, the rule is stated such that propagate
S S ′ is applied, only if we cannot do any step with a Conf rule, i.e. no-step conflict S. To ease the
proof, we apply the rule Conf after applying Prop if possible. This allows to be sure that there is
no possible conflict after each application of cdcl-cp or it has been selected.

cdcl-cp is defined by:

• if there is conflict, we apply it:

conflict S S ′

cdcl-cp S S ′
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• if there is no conflict no-step conflict S, then we do a propagation propagate S S ′ and the
conflict conflict S ′ S ′′ after propagation.

propagate S S ′ no-step conflict S conflict S ′ S ′′

cdcl-cp S S ′′

• if there is no conflict no-step conflict S, then we do a propagation propagate S S ′ and there is
no conflict no-step conflict S ′.

propagate S S ′ no-step conflict S no-step conflict S ′

cdcl-cp S S ′

This presentation allows to prove that after a cdcl-cp step, then we have no conflict: (conflicting S
= C-True −→ (∀D ∈ clauses S ∪ learned-clauses S . ¬fst S |=as CNot D).

Then we can define the full strategy:

• if we can apply cdcl-cp, we apply it as long as possible (more than once, thus the +↓):

cdcl-cp+↓ S S ′

cdcl-s S S ′

• if we cannot apply either propagate (no-step propagate S) nor conflict (no-step conflict S),
then we can apply another rule cdcl-o S S ′. As before when then apply the cdcl-cp as long as
possible, possibly zero times, using ↓.

cdcl-o S S ′ no-step propagate S no-step conflict S cdcl-cp↓ S ′ S ′′

cdcl-s S S ′′

One of the important invariants is the following:
∀D. conflicting S ′ = C-Clause D −→ D 6= ⊥ −→

(∃L. L ∈ D ∧ get-level L (fst S ′) = backtrack-level S ′)
It states that whenever we have a conflict that is not ⊥, then there is a literal of level the

backtracking level. It explains why the backtracking conditions are not too restrictive: we can can
remove literals until the marked variable, i.e. going from LC1

1 ·L
C2
2 · . . . ·LCn

n ·Ki+1 ·M to Ki+1 ·M
using the Skip and Res rules. Then we can apply the backtrack rule, since there is no duplicate and
K ∈ C we do not get stuck in this case. This important invariant does not appear in the proof in
Weidenbach’s book.

We call S0-cdcl N the initial state: it is an initial state only if N is finite (finite N ) and has no
duplicate (no-dup-mset-set N ). The termination theorem is the following (the fact that we cannot
do any more step is included in the definition of +↓).

Verified Theorem 31 (CDCL final states). If cdcl-s↓ (S0-cdcl N ) S ′ and no-dup-mset-set N and
finite N then conflicting S ′ = C-Clause ⊥ ∧ unsatisfiable (clauses S ′) ∨ conflicting S ′ = C-True
∧ fst S ′ |=as clauses S ′.
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This theorem can be verified with the Restart rule, but to prove termination we have to work
without this rule. The termination car be shown with a measure:

case C of
C-True ⇒ [3 ^ |atms-of-m N | − |U |, 1 , |atms-of-m N | − length M ]
| C-Clause - ⇒ [3 ^ |atms-of-m N | − card U , 0 , length M ]

We are using a list (and not a pair), since the lexicographic order in Isabelle is defined for lists.
The decreasing itself is independent of the strategy, but there is one key property that depends on
the strategy and has not been formalised in this work: the learnt clauses have not been learnt before.
The proof depends on the formalisation of the superposition calculus (ordered resolution as presented
in 5) to show it and on the link between CDCL and superposition. In Weidenbach’s book [9], the
superposition calculus has been already introduced before CDCL. The idea of superposition is
to restrain the possible inference of resolution: the result of the inferences is not redundant with
respect to our knowledge.

The length of the development is 2 500 lines of code: it is nearly five time longer that the
DPLL formalisation (compare the 8 rules of CDCL to the 3 rules of DPLL). There are around five
hundred lines of code of shared libraries between CDCL and DPLL to define the marked variables
and various lemmas about them.

7.4 Formalisation of Modern SAT Solvers

While the resolution formalisation (Section 5) was not an efficient solver (its purpose was the
completeness theorem, not efficiency), Marić [26] has developed a concrete CDCL prover and has
verified it in Isabelle/HOL (the code can be found in the Archive of Formal Proofs [27]).

It provides an implementation in Haskell (thanks to Isabelle/HOL’s code generator). The
algorithm is implemented in a side-effect-free manner, and is less efficient than a C state-of-the-art
prover, but it is proven that it terminates and that it finds a proof. There are two ways of trusting
a prover:

(1) proving the program itself: it can be very hard for state-of-the-art algorithms, but allows a
full trust into the prover (e.g. if you have proven completeness, then a result will always be
found); checking that a model is correct is very easy. The other direction is the difficult one: if
no conflict has been found, is the problem really unsatisfiable?

(2) extending a SAT solver so that it outputs a proof of the contradiction. Then an external proven
verifier can be used to certify the output. It is often simpler to prove, but this approach has some
drawbacks, because producing proofs causes an overhead, but allows implementing state-of-the
art algorithm without having to prove it. Notice that this means that we can get nothing: if the
prover always produces a wrong output, you only know that it is wrong. This approach does
not really allow to prove completeness, since we have no properties on the SAT solver itself.

The first approach has been used by Marić, allowing someone to use a proven solver (meaning
that if a result can be found, it will be found and if a result is found, it is correct). He has proven
even more properties like termination, unlike Oe et al. in [28]: they have proven in Guru the
correctness of a quite efficient implementation in C (using integer overflow for example, contrary to
Marić), but no termination.
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8 Conclusion
We have presented here the formalisation of the normalisation, the resolution calculus, the DPLL
and CDCL procedures in Isabelle/HOL. This presentation as a transition systen allows to study
easily changes in the definitions and the conditions on the transition, since Isabelle will tell exactly
where it is not able to redo the proof.

We have done a full Isabelle developpement without sorry (the keyword in Isabelle to admit a
lemma): our proof are complete and we have not used any axiom. We have shown soundness and
completeness of the tree calculi and have produced a simple verified prover. This prover could be
integrated to Isabelle as a new proof method. The actual method [29] replays the proof through
the Isabelle kernel. We would not need that, since we have proved the correctness of our solver.
During our developement, we have contributed to improve the library of multisets in Isabelle.

As a future work, formalising superposition to prove the missing assumption for the termination
of CDCL. The superposition calculus (an extension of the resolution calculus) is also used (with
different rules) for first-order logic in automated provers: it would be interesting to formalise it.
With enough automation this could interest researches working on various fragments of first-order
logic, to have more confidence in the proofs.
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