One Thousand and One Refinement:
From CDCL to a Verified SAT Solver

Mathias Fleury
2020/01/28

S I C g;;rl;:\sd Informatics

' l I I I max planck institut
informatik

When you start your proof

1/18

After a few days...

After a few days... Mistake!

OMD{ (3?1: W"ﬁ"‘"‘s 7:}
§ 4o M<3p

Then you write your paper

Paper accepted = Proof correct

Then you extend your paper

‘Explanation

. Proposition”

Definition

o)] T

Paper accepted = Proof correct

What must be upded?

What about ITPs?

When you start...

What about ITPs?

When you start... Before you finish

State of the art

1 F e & '
What must be updated?

Paper proofs vs proof assistants

IsaFoL project

N

Isabelle Formalisation of Logic

The IsaFoL project: motivation

Eat your own dog food

« case study for proof assistants and automatic provers

Build state-of-the-art libraries

+ Automated Reasoning: The Art of
Generic Problem Solving
(ongoing textbook project by Christoph Weidenbach)

Focus on meta-theorems

* reuse proofs

+ be general

The IsaFoL project: content

Excerpts of the IsaFolL project:

« Resolution, ordered resolution, and prover by Schlichtkrull et al.
[ITP’16, 1JCAR’18, CPP’19]

« Superposition by Peltier [AFP’16]
o UNSAT Checker by Lammich [CADE 27]

« CDCL and SAT solver [IJCAR’16, JAR’16, IJCAI’17, CPP’19,
NFM’19]

The IsaFoL project: content

Excerpts of the IsaFolL project:

« Resolution, ordered resolution, and prover by Schlichtkrull et al.
[ITP’16, 1JCAR’18, CPP’19]

« Superposition by Peltier [AFP’16]
o UNSAT Checker by Lammich [CADE 27]

+ CDCL and SAT solver [IJCAR’16, JAR’16, IJCAI’17, CPP’19,
NFM’19]

CDCL

Heuristics

CDCL

!
(Watched literals, heuristics

fancy data structure

WL

|

Generated code CDCL
executable

Formalisation length (total:
78000 lines of code)

CDCL explanation

clauses

CDCL explanation

assignement clauses

CDCL explanation

assignement clauses

CDCL explanation

assignement = trail clauses

CDCL explanation

assignement = trail clauses

CDCL explanation

assignement = trail clauses

CDCL explanation

assignement = trail clauses

CDCL explanation

assignement = trail clauses

CDCL explanation

assignement = trail clauses

Refinement by specialisation

Core of CDCL is DPLL+BJ back to some decision
DPLL+BJ = Propagate+ Decide+ | Backjump
ul
DPLL = Propagate+ Decide+ | Backtrack

back to latest decision

Refinement by specialisation

Core of CDCL is DPLL+BJ back to some decision
DPLL+BJ = Propagate+ Decide+ | Backjump
ul
DPLL = Propagate+ Decide+ | Backtrack

back to latest decision
How to maximize reuse?

Backtrack = Parametrised Backjump (Backtrack_cond)

Backjump on paper vs. in Isabelle

Backjump on paper
if C e Nand M E —C and thereis a C' such that...
then (M, N) =cpc (M'L, N).

Definition (Parametrised Backjump in Isabelle)

if C € Nand M = —C and thereis a C' such that...

then (M, N) =cpe, (M'L,N).

Development hierarchy

DPLL+BJ

/

DPLL
sublocale DPLL < DPLL+BJ where
DPLL+BJ_Cond = DPLL_Cond

Development hierarchy

DPLL+BJ

=

DPLL CDCL

CDCL = DPLL+BJ + Learn + Forget

Development hierarchy

DPLL+BJ

=

DPLL CDCL

.

CDCL+learn_BJ

Strategy used in most implementations:
learn only backjump clause

Development hierarchy
DPLL+BJ

DPLL DCL

S

CDCL+learn_BJ CDCL+restart
CDCL+learn_BJ+restart

|

CDCL+learn_BJ+restart+T

oA

J

Weidenbach’s CDCL

Definition (Parametrised Backjump (BJ_cond))

if C € Nand M E —C and there is a C' such that...
then (M, N) =cpe, (LM, N).

How to get a suitable c”

Refinement by inclusion

CDCL_learn_BJ

Decide, propagate @W
+Learn

CDCL_W

Decide, propagate <> Skip and resolve

Jump+Learn

Refinement by inclusion

CDCL_learn_BJ
(M,N)
(M,N + U)
CDCL_W

(M,N,U,D)

Refinement by inclusion

CDCL_learn_BJ terminating
Decide, propagate ackjump
+Learn
CDCL_W terminating

Decide, propagate <> Skip and resolve

Jump+Learn

Refining Data Structures

Heuristics

CDCL

I

Watched literals, heuristics

fancy data structure

[

Generated code CDCL
executable
Formalisation length (total:
78000 lines of code)

Watched literals explanation

Watched literals = sophisticated data structure to identify
propagations and conflicts.

Watched literals explanation

Watched literals = sophisticated data structure to identify
propagations and conflicts.

o®, 606

020

Watched literals explanation

Watched literals = sophisticated data structure to identify
propagations and conflicts.

o®, 606

*

020

Watched literals explanation

Watched literals = sophisticated data structure to identify
propagations and conflicts.

©®, 66

&

020

Watched literals

First formalisation attempt failed.

Development done in two steps:

Watched literals

First formalisation attempt failed.

Development done in two steps:

1. watched literals...

2. ... extended with blocking literals

Watched literals

First formalisation attempt failed.
Development done in two steps:

1. watched literals...

2. ... extended with blocking literals

My Approach non-deterministic transition system

Refinement in the non-determinism monad

Then we enter the non-determinism monad:

+ closer to programs

+ preserves non-determinism

Refinement in the non-determinism monad

Then we enter the non-determinism monad:

+ closer to programs

+ preserves non-determinism

Abstract level:
OBTAIN should_restart such that

should_restart = #conflict > threshold

Refinement in the non-determinism monad

Then we enter the non-determinism monad:

+ closer to programs

+ preserves non-determinism

Abstract level:
OBTAIN should_restart such that
should_restart = #conflict > threshold
Concrete level:
should_restart « RETURN(#conflict > threshold A

heuristic)

Refinement to keep abstractions
CDCL
Weidenbach

|
Watched clauses) @"@

with multisets *

I

Watched clauses
clauses as lists

[#.0,¢]

|

Watch lists)

efficient indexing

Refinement to keep abstractions
CDCL
Weidenbach

|
Watched clauses) @"@

with multisets *

I

Watched clauses

EX N3
clauses as lists

|

Watch lists
efficient indexing

I

Isasat
. - 0 25
deterministic with heuristics

Generating Code

Heuristics
CDCL
l
Watched literals, heuristics WL
fancy data structure Code
Generated code CDCL
executable

Formalisation length (total:
78000 lines of code)

What is the imperative code?
IsaSAT
deterministic

automatic synthesis

Imperative IsaSAT
in Imperative HOL

automatic mapping

IsaSAT/Standard ML (SML)
or Scala, OCaml, Haskell

Code synthesis and generation

Abstract code:
ASSERT(i < length xs);
RETURN(xs!1i);

Code synthesis and generation

Abstract code:
ASSERT(i < length xs);
RETURN(xs!1i);

After synthesis by Sepref in Imperative HOL:
Array.nth xs 1

Code synthesis and generation

Abstract code:
ASSERT(i < length xs);
RETURN(xs!1i);

After synthesis by Sepref in Imperative HOL:
Array.nth xs 1

After printing in SML, via code equations and printing:
Array.sub(xs, i)

Code synthesis and generation

Abstract code:
ASSERT(i < length xs);
RETURN(xs!1i);

After synthesis by Sepref in Imperative HOL:
Array.nth xs 1

After printing in SML, via code equations and printing:
Array.sub(xs, i)

A native array

Code synthesis and generation

Abstract code:
ASSERT(i < length xs);
RETURN(xs'! i);

After synthesis by Sepref in Imperative HOL:
Array.nth xs 1

After printing in SML, via code equations and printing:
if 1 < Array.size xs
then xs[i]
else raise OutOfBound

Code synthesis and generation

Abstract code: .
ASSERT(1i < length xs); Information is lost

RETURN(xs ! iN/ during translation

After synthesis by Sepref in Imperative HOL:
Array.nth xs 1

After printing in SML, via code equations and printing:
if 1 < Array.size xs

then xs[i]
else raise OutOfBoun In IsaSAT removed

by a compiler flag...

Code synthesis and generation

Abstract code:
ASSERT(i < length xs);
RETURN(xs'! i);

In the nice Isabelle

After synthesis by Sepref in Imperative HOL: world GMP integer

Array.nth xs 1

After printinginh SML, via code equations and printing:
if i< Array.size xs
then xs[i]
else raise OutOfBound

Code synthesis and generation

Abstract code: In IsaSAT, uint64 in-
ASSERT(i < length xs);

teger until it does
RETURN(xs!i);

not fit

After synthesis by Sepref in Imperative HOL:
Array.nth xs 1 Array.nth_uint64 xs 1

After printing in SML, via code equations and printing:
if 1 < Array.size xs
then xs[i] Array.nth_uint64(xs, i)
else raise OutOfBound

Correctness theorem

Theorem
If the input is well formed and UNSAT (resp. SAT), then IsaSAT
terminates and it returns UNSAT (resp. SAT with a model).*

'if the Standard ML compiler is able to allocate large enough arrays

Correctness theorem

Theorem
If the input is well formed and UNSAT (resp. SAT), then IsaSAT
terminates and it returns UNSAT (resp. SAT with a model).*

And the only other efficient verified solver

Theorem (Correctness versat)
If the input is well formed and the solver returns UNSAT, then the
problem is UNSAT.

'if the Standard ML compiler is able to allocate large enough arrays

Performance

2000
Il

1500
1

time
1000
I

—— versat

-+~ IsaSAT (SML)
1saSAT (LLVM)
CaDiCaL
minisat

500
1

0 500 1000 1500 2000

#solved

Comparison of various SAT solvers on preprocessed instances

Performance

2000

1500
]

time
1000
I

—— 15aSAT (LLVM)
CaDiCal
minisat

500
]

T T T T T
0 500 1000 1500 2000

#solved

Comparison of various SAT solvers on preprocessed instances

Performance

2000

1500
]

time
1000
I

—— 15aSAT (LLVM)
CaDiCal
minisat

500
]

T T T T T
0 500 1000 1500 2000

#solved

Comparison of various SAT solvers on preprocessed instances

Conclusion

CDCL
extensible

Il
Watched Literals
fancy data structure
Il

Generated Code
executable

CDCL Optimizing CDCL
extensible CDCL+brand-and-bound

Il
Watched Literals
fancy data structu re

Generated Code
executable

O Captain! My Captain!
Now comes the appendix, go back to the previous
slide

18/18

Appendix Outline

What is hard?

Refinement

Correctness and Trust
Features

Missing Features

CDCL

Complexity

Importing Correctness in Isabelle
IsaSAT/LLVM vs IsaSAT/MLton
Performance

OCDCL

Related Work

What is hard?

Why is it so hard?

Mostly about defi-

nitions

Formalisation part Length{(kloc)

CDCL Libraries 3 Entailment

CDCL 17

Refinement Libraries 6 Setup for machine
words, arrays of ar-
rays

Refinement except last layer 26

Heuristics 35 code synthesis, lots

of code

Mostly about defi-

nitions

Formalisation part Length{(kloc)

CDCL Libraries 3 Entailment

CDCL 17

Refinement Libraries 6 Setup for machine
words, arrays of ar-
rays

Refinement except last layer 26

Heuristics 35 code synthesis, lots

of code

Mostly about defi- Aliasing and owner-
nitions ship

Formalisation part

CDCL Libraries 3 Entailment
CDCL 17
Refinement Libraries 6 Setup for machine

words, arrays of ar-
rays

Refinement except last layer 26

Heuristics 35 code synthesis, lots
of code

Mostly about defi- Aliasing and owner-
nitions ship

Formalisation part

CDCL Libraries 3 Entailment
CDCL 17
Refinement Libraries 6 Setup for machine

words, arrays of ar-
rays

Refinement except last layer 26

Heuristics 35 code synthesis, lots
of code

Aliasing and owner-

Mostly about defi-
nitions

Formalisation part

CDCL Libraries
CDCL
Refinement Libraries

Refinement except last layer
Heuristics

ship

Leng

35

kloc) single threaded

ErRa\vilm nt

Setup/for machine
words, arrays of ar-
rays

code synthesis, lots
of code

Refinement

Refinement in the non-determinism monad: Data structure

Abstract level:
OBTAINLs.t.LeC
Concrete level:

blit « RETURN(watcher.blit)

Correctness and Trust

Correctness

And IsaSAT/LLVM:

Theorem (Correctness IsaSAT/LLVM)
Ifthe input is a valid input and the solver returns SAT (UNSAT), then
the problem is SAT (UNSAT).

Isabelle protects of:

+ programming errors (out-of-bound)

« correctness errors (SAT instead of UNSAT)
But not of:

« performance bugs (restarts)

What do you trust?

IsaSAT/SML

Parser

Code equations

Compiler

IsaSAT/LLVM

Parser

Isabelle’s LLVM Se-
mantics

LLVM

~2 faster than SML,
~10 times less mem-

ory

CaDiCalL
The parser
CDCL

Implementation

Compiler

What do you trust?

IsaSAT/SML IsaSAT/LLVM

Parser Parser

Code equations Isabelle’s LLVM Se-
mantics

Compiler LLVM

~2 faster than SML,
~10 times less mem-

ory

CaDiCalL
The parser
CDCL

Implementation

Compiler

There is no bug that happens after two years of calculation because
youwrote uint64_max - 4insteadofuint64_max - 5

Features

Techniques in IsaSAT

VMTF decision heuristic Critical

Conflicts as hash-table and array Critical

Recursive conflict minimization Critical

Arena-based memory I never saw a difference

Blocking literals + position saving Helps a lot

EMA-14 restarts + trail reuse Helps, but I still don’t understand

what CaDiCaL does
Special handling of binary clauses | never saw a difference

Missing Features

Missing Features

Two trivial but key features

« deletion of true clauses

« removal of false literals

Solution: “pragmatic CDCL” with resolution rules to simplify clauses
set

CDCL

Is Weidenbach’s CDCL the right CDCL?

Easy to add:
Definition (Conflict Minimisation)

LearnaclauseD' vL' cDvVLifNED v L

Impossible to add (it breaks invariants):

Definition (Inprocessing)
An irredundant clause is subsumed by a learned clause: make the
latter irredundant.

If we go with
(M7 N7 Nsubsumedv U7 Usubsumeda D)

and do not consider subsumed clauses, CDCL can see

(Ma N + Nsubsumeda U+ Usubsumed> D)

and everything will work as expected.

Complexity

Complexity

As for SAT implementations,

Never-ending task there is always one more heuristic or one more
technique to implement...

No tooling ... makes it even harder

Testing a heuristic is hard

Complexity

On the proof side

Proving Correctness time consuming (overflow problems), Isabelle
is slow

Side conditions of CDCL

Property (CDCL Invariant)
The set of all literals you consider is exactly the set of literals in the set
of clauses.

Evaluator Performance
MLton 2.5s includes parsing
PolyML 43s
value ? requires 64-bit PolyML
nbe, simp 1L do not know about Imperative HOL

What makes refinement hard?

Refinement is easy when:

+ you can ignore the result of operations

« i.e., reduce interdependency between components of the state

M <- RETURN (Decided L . M)
What is the impact on the other components?

What makes refinement hard?

. conflict decision
trail clauses L
S clause heuristic
every b
literal every
isin literal

isin

What makes refinement hard?
mdecision

trail clauses o
~_ - clause heuristic
literal every
isin literal

isin

Importing Correctness in Isabelle

Abstract code:

ASSERT(1i < length xs);
RETURN (xs ! i);

After synthesis, done automatically by Sepref:
return xs[i]
Canwe runitinIsabelle?

« result cannot be extracted from the return (imperative
monad)...

+ ... but we can generate a purely functional version...

« ... which is what | optimised for

Evaluator Performance
MLton 2.5s includes parsing
PolyML 43s
value ? requires 64-bit PolyML
nbe, simp 1 do not know about Imperative HOL,

so you cannot allocate arrays

IsaSAT/LLVM vs IsaSAT/MLton

LLVM is better and has an easier job

« LLVM has more man-power: MLton’s LLVM backend produces
slightly better code

+ LLVM’s IR is the target for tools vs target for humans (Isabelle’s
code generator produces terrible and unreadable code)

« LLVM’s input is the code you would expect

LLVM has more freedom to do a good job

« The code is not functional at all and contains barely any
datatype
« ML enforces sharing, which is good until is not

1. M(#props, stats). (#props + 1, stats) reallocates

2. clause_ref * (bool * literal)?needsmore
memory than struct {clause_ref; struct {bool;
literal};} (cache problems!)

« Array access and conversions are checked?®

’|sabelle is not able to generate clause_ref * bool * literal and using
a tuple made things worse
3although | deactivate these checks

Memory is not cheap

+ 1saSAT/ML uses 10 times more memory

« IsaSAT/ML uses the GC... but | have no idea why: IsaSAT uses
base types (or with in-place operations) and arrays resizing
(freeing the old one is enough)

Performance

Performance

(=]
(=3
(=3
N
(=3
o
Lo
o 9
E 8 A
 versat
S -+~ IsaSAT (SML)
n 1saSAT (LLVM)
-+ versat
CabiCaL.
—— IsaSAT (LLVM, latest)
-=- microsat
«-- crypominisat
glucose
® 5 minisat
T T T T T
0 500 1000 1500 2000

#solved

Comparison of various SAT solvers on preprocessed instances

OCDCL

Conjecture

OCDCL+stgy performs at most
3" Backtrack steps.

Lemma (verified in Isabelle) Conjecture

ODPLL+stgy performs at most ~ OCDCL+stgy performs at most
3" Backtrack steps. 3" Backtrack steps.

Lemma (verified in Isabelle) Conjecture

ODPLL+stgy performs at most ~ OCDCL+stgy performs at most
3" Backtrack steps. 3" Backtrack steps.

Proof.

« trails are not repeated
« trails have a certain form

« and they are such 3" such
trail

Lemma (verified in Isabelle)

ODPLL+stgy performs at most
3" Backtrack steps.

Proof.

« trails are not repeated
« trails have a certain form

« and they are such 3" such
trail

O

Conjecture

OCDCL+stgy performs at most
3" Backtrack steps.

Proof.
. trailsarenotrepeated
« trails have a certain form

« and they are such 3" such
trail

Problem: backjump is nearly a restart.

Related Work

Related Work

Backjumping
Learning
Soundness
Compeleteness
Implementa-
tion
Termination

Maric Les-

cuyer
2008 2011 Coq
Isabelle

Schankar Oeetal
et al
2011 PVS 2012 Guru

Restart+Forget
WL

	Introduction
	Motivation
	IsaFoL
	Motivation

	Conflict-Driven Clause Learning
	Abstract CDCL
	A less Abstract CDCL

	Refining Data Structures
	Generating Code
	Imperative Code
	Performance

	Conclusion
	Appendix
	What is hard?
	Refinement
	Correctness and Trust
	Features
	Missing Features
	CDCL
	Complexity
	Importing Correctness in Isabelle
	IsaSAT/LLVM vs IsaSAT/MLton
	Performance
	OCDCL
	Related Work

