Formal Models SS 2015: Assignment 4

Institute for Formal Models and Verification, JKU Linz

Due 16.04.2015

Exercise 13

Given an automation A with state $S = \{A, B, C, D\}$, alphabet $\Sigma = \{a, b\}$, initial states $I = \{A, C\}$, final state $F = \{B, D\}$, and transitions $T = \{(A,a,B), (A,a,C), (B,a,B), (C,a,C), (C,b,D), (D,a,D), (D,a,B), (A,a,A)\}$.

Draw the I/O automaton, which describes exactly the language complementary to the language described by A.

Exercise 14

a) Draw the LTS for A and B.

b) Interpret A and B as finite automata A_{FA} and B_{FA}, assuming that the initial state is the only final state. Is $L(A_{FA}) = L(B_{FA})$?

c) Does the behaviour of A and B differ from the perspective of a user when buying a drink?

Exercise 15

Exercise 16

Draw the LTS for PA system $P = b.(b.R + a.Q)$, $Q = c.a.Q + b.R$, $R = b.P + b.c.R$. Show that action $Q \xrightarrow{b} R$ can be executed by subsequently applying the semantical rules of PA.