Formal Models SS 2020: Assignment 8

Based on Video "Lecture 15. May 2014" on our webpage. Institute for Formal Models and Verification, JKU Linz

due 28.05.2020

Guideline:

- To indicate that you solved an exercise, tick it off in our MOODLE course until **10am on the day of the** exercise (28.05.2020). Unmarking and marking exercises later is **not** possible.
- Upload your solved exercises in the Moodle course. Generate a single PDF file, which contains all solved exercises, your name, and your matriculation number. Upload the PDF file do not generate a ZIP! Not following the format leads to deduction of points!
- We will randomly select and correct solved exercises.
- A sample solution will be provided.

Exercise 29

- a) Reformulate $\forall x. (\phi \leftrightarrow \psi)$ using only \exists and operators \neg and \land .
- b) Define the semantics of the boolean operators \neg , \land , \lor , \rightarrow , and \leftrightarrow in Simplified HML analogously to the definitions of the modal operators and boolean constants (see slide 53).
- c) Referring to the semantical rules of Simplified HML on slide 53, explain in detail why formula [a] 1 is always true in a state *s* and why formula $\langle a \rangle$ 0 is always false.

Exercise 30

Given LTS L and Simplified HML formulae 1 to 5 as shown below.

- a) For each state *s* of *L*, determine which of the formulae 1 to 5 hold in *s*.
- b) Give the *nesting depth* of modal operators for each formula. What is the significance of the *nesting depth* of a formula in relation to the length of a *trace*.

Given an LTS *L* as above with $\Sigma = \{x, y, z\}$. Calculate $[[\langle y \rangle 1 \rightarrow ([x]1 \land [y]0)]]$.

Exercise 32

Given the LTS *L* shown in the figure below.

Decide for which states of L the following Simplified HML expressions hold. Put a cross into each cell of the table to indicate that the corresponding formula holds in the corresponding state. Otherwise leave the cell empty.

Simplified HML expression	State 0	State 1	State 2	State 3
$\langle x \rangle \langle x \rangle 1$				
$[x](\langle x angle 1 \wedge [y] 0)$				
$([x] \langle y \rangle 1) \leftrightarrow ([y] \langle x \rangle 1)$				
$([x \lor y] \langle \neg y \rangle 1) \to ([y] \langle x \rangle 1)$				

Which of the formulae hold in *L*?