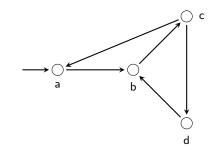
Formal Models SS 2020: Assignment 9

Based on Video "Lecture 22. May 2014" on our webpage. Institute for Formal Models and Verification, JKU Linz

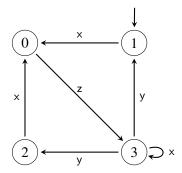
due 04.06.2020


Guideline:

- To indicate that you solved an exercise, tick it off in our MOODLE course until 10am on the day of the exercise (04.06.2020). Unmarking and marking exercises later is not possible.
- Upload your solved exercises in the Moodle course. Generate a single PDF file, which contains all solved exercises, your name, and your matriculation number. Upload the PDF file do not generate a ZIP! Not following the format leads to deduction of points!
- We will randomly select and correct solved exercises.
- A sample solution will be provided.

Exercise 33

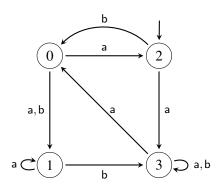
Given LTS L as shown on the right.


- a) List 5 different infinite traces in L, using ω -notation, e.g. $ababab \cdots = (ab)^{\omega}$.
- b) Find 6 equivalences between traces from part a), using notation π^i , e.g. $\pi_2 = \pi_1^1$ for $\pi_1 = xyz$ and $\pi_2 = yz$.

Exercise 34

Given LTS *L* and CTL/HML formulae 1 to 6 as shown below. For each state *s* of *L*, determine which of formulae 1 to 6 hold in *s*.

1.	$\mathbf{EX}(\langle x \rangle 1)$	2.	$\mathbf{AX}([y]0)$
3.	$\mathbf{AG}(\langle z \rangle 1 \rightarrow \langle y \rangle 1)$	4.	$\mathbf{E}[\langle x \rangle 1 \mathbf{U} \langle z \rangle 1]$
5.	$\mathbf{EG}(\langle y \rangle 1)$	6.	$\mathbf{EF}(\mathbf{EG}\langle x\rangle 1)$



Exercise 35

Give a formal proof for the proposition on slide 60 (hint: use induction).

Exercise 36

Draw the Kripke structure for the LTS as shown below.

