

Reasoning with Quantified Boolean Formulas Martina Seidl

Institute for Formal Models and Verification Johannes Kepler University Linz

ı

What are QBF?

Quantified Boolean formulas (QBF) are

formulas of propositional logic + quantifiers

- Examples:
 - $(x \lor \neg y) \land (\neg x \lor y)$ (propositional logic)
 - $\exists x \forall y (x \lor \neg y) \land (\neg x \lor y)$ Is there a value for x such that for all values of y the formula is true?
 - $\forall y \exists x (x \lor \neg y) \land (\neg x \lor y)$ For all values of y, is there a value for x such that the formula is true?

2

SAT vs. QSAT aka NP vs. PSPACE

Is there a satisfying assignment tree?

The Two Player Game Interpretation of QSAT

Interpretation of QSAT as *two player game* for a QBF $\exists x_1 \forall a_1 \exists x_2 \forall a_2 \cdots \exists x_n \forall a_n \psi$:

- Player A (existential player) tries to satisfy the formula by assigning existential variables
- Player B (universal player) tries to falsify the formula by assigning universal variables
- Player A and Player B make alternately an assignment of the variables in the outermost quantifier block
- Player A wins: formula is satisfiable, i.e., there is a strategy for assigning the existential variables such that the formula is always satisfied
- Player B wins: formula is unsatisfiable

Promises of QBF

- QSAT is the prototypical problem for *PSPACE*.
- QBFs are suitable as host language for the encoding of many application problems like
 - verification
 - artificial intelligence
 - knowledge representation
 - game solving
- In general, QBF allow more succinct encodings then SAT

Application of a QBF Solver

QBF Solver returns

- 1. yes/no
- 2. witnesses

The Language of QBF

The language of quantified Boolean formulas $\mathcal{L}_{\mathcal{P}}$ over a set of propositional variables \mathcal{P} is the smallest set such that

- if $v \in \mathcal{P} \cup \{\top, \bot\}$ then $v \in \mathcal{L}_{\mathcal{P}}$ (variables, truth constants)
- lacksquare if $\phi \in \mathcal{L}_{\mathcal{P}}$ then $eg \phi \in \mathcal{L}_{\mathcal{P}}$

- if $\phi \in \mathcal{L}_{\mathcal{P}}$ then $\exists v \phi \in \mathcal{L}_{\mathcal{P}}$ (existential quantifier)
- lacksquare if $\phi \in \mathcal{L}_{\mathcal{P}}$ then $\forall v \phi \in \mathcal{L}_{\mathcal{P}}$

(universal quantifier)

(negation)

(disjunction)

7

Some Notes on Variables and Truth Constants

- ⊤ stands for top
 - always true
 - empty conjunction
- ⊥ stands for *bottom*
 - always false
 - empty disjunction
- literal: variable or negation of a variable
 - \blacksquare examples: $I_1 = v$, $I_2 = \neg w$
 - \blacksquare var(I) = v if I = v or I = $\neg v$
 - complement of literal I: Ī
- $var(\phi)$: set of variables occurring in QBF ϕ

Some QBF Terminology

- Let $Qv\psi$ with $Q \in \{\forall, \exists\}$ be a subformula in a QBF ϕ . Then
 - \blacksquare ψ is the *scope* of v
 - Q is the quantifier binding of v
 - \blacksquare quant(v) = Q
- **free** variable w in ϕ : w has no quantifier binding in ϕ
- **bound variable w** in QBF ϕ : w has quantifier binding in ϕ
- closed QBF: no free variables

Prenex Conjunctive Normal Form (PCNF)

A QBF ϕ is in prenex conjunctive normal form iff

- ϕ is in *prenex normal form* $\phi = Q_1 v_1 \dots Q_n v_n \psi$
- \blacksquare matrix ψ is in *conjunctive normal form*, i.e.,

$$\psi = C_1 \wedge \cdots \wedge C_n$$

where C_i are clauses, i.e., disjunctions of literals.

$$\forall x \exists y ((x \lor \neg y) \land (\neg x \lor y))$$
prefix matrix in CNF

Some Words on Notation

If convenient, we write

a conjunction of clauses as a set, i.e.,

$$C_1 \wedge \ldots \wedge C_n = \{C_1, \ldots, C_n\}$$

a clause as a set of literals, i.e.,

$$I_1 \vee \ldots \vee I_k = \{I_1, \ldots, I_k\}$$

- $var(\phi)$ for the variables occurring in ϕ
- var(I) for the variable of a literal, i.e.,

$$var(I) = x \text{ iff } I = x \text{ or } I = \neg x$$

Semantics of QBFs

A valuation function $\mathcal{I}: \mathcal{L}_{\mathcal{P}} \to \{\mathcal{T}, \mathcal{F}\}$ for closed QBFs is defined as follows:

- $\blacksquare \mathcal{I}(\top) = \mathcal{T}; \mathcal{I}(\bot) = \mathcal{F}$
- $\mathcal{I}(\neg \psi) = \mathcal{T} \text{ iff } \mathcal{I}(\psi) = \mathcal{F}$
- $\mathcal{I}(\phi \lor \psi) = \mathcal{T} \text{ iff } \mathcal{I}(\phi) = \mathcal{T} \text{ or } \mathcal{I}(\psi) = \mathcal{T}$
- $lacksquare \mathcal{I}(\phi \wedge \psi) = \mathcal{T} ext{ iff } \mathcal{I}(\phi) = \mathcal{T} ext{ and } \mathcal{I}(\psi) = \mathcal{T}$
- $lacksquare \mathcal{I}(orall v\psi) = \mathcal{T} ext{ iff } \mathcal{I}(\psi[\perp/v]) = \mathcal{T} ext{ and } \mathcal{I}(\psi[\top/v]) = \mathcal{T}$

Note: For QBFs with free variable an additional valuation function $v: \mathcal{P} \to \{\mathcal{T}, \mathcal{F}\}$ is needed.

```
Boolean split (QBF \phi)
switch (\phi)
  case T: return true:
  case \(\percase\): return false:
  case \neg \psi: return (not split(\psi));
  case \psi' \wedge \psi'': return split(\psi') && split(\psi'');
  case \psi' \vee \psi'': return split(\psi') || split(\psi'');
  case QX\psi:
     select x \in X; X' = X \setminus \{x\};
     if (Q == \forall)
        return (split(QX'\psi[x/\top]) &&
                   split (QX'\psi[x/\perp]);
     else
        return (split(QX'\psi[x/\top]) ||
                   split (QX'\psi[x/\perp]);
```

Some Simplifications

The following rewritings are *equivalence preserving*:

- 1. $\neg \top \Rightarrow \bot$; $\neg \bot \Rightarrow \top$;
- 2. $\top \land \phi \Rightarrow \phi$; $\bot \land \phi \Rightarrow \bot$; $\top \lor \phi \Rightarrow \top$; $\bot \lor \phi \Rightarrow \phi$;
- 3. $(Qx \phi) \Rightarrow \phi, Q \in \{\forall, \exists\}, x \text{ does not occur in } \phi;$

```
\forall ab \exists x \forall c \exists yz \forall d \{ \{a, b, \neg c\}, \{a, \neg b, \neg \top\}, \\ \{c, y, d, \bot\}, \{x, y, \neg \bot\}, \{x, c, d, \top\} \} 
\approx \\ \forall abc \exists y \forall d \{ \{a, b, \neg c\}, \{a, \neg b\}, \{c, y, d\} \}
```

```
Boolean splitCNF (Prefix P, matrix \psi)
if (\psi == \emptyset): return true;
if (\emptyset \in \psi): return false;
P = QXP', x \in X, X' = X \setminus \{x\};
if (Q == \forall)
     return (splitCNF(QX'P', \psi') &&
                splitCNF(QX'P', \psi''));
else
     return (splitCNF(QX'P', \psi') ||
                 splitCNF (QX'P', \psi'')):
where
\psi': take clauses of \psi, delete clauses with x, delete \neg x
\psi'': take clauses of \psi, delete clauses with \neg x, delete x
```

Unit Clauses

▶ Definition of Unit Literal Elimination

A clause C is called **unit** in a formula ϕ iff

- C contains exactly one existential literal
- the universal literals of C are to the right of the existential literal in the prefix

The existential literal in the unit clause is called *unit literal*.

$$\forall ab \exists x \forall c \exists y \forall d \{\{a,b,\neg c,\neg x\},\{a,\neg b\},\{c,y,d\},\{x,y\},\{x,c,d\},\{y\}\}$$
 Unit literals: x,y

Unit Literal Elimination

▶ Definition of Unit Literal

Let ϕ be a QBF with unit literal / and let ψ be a QBF obtained from ϕ by

- removing all clauses containing /
- removing all occurrences of \bar{I}

Then

$$\phi \approx \psi$$

Example

 $\forall ab \exists x \forall c \exists y \forall d \{\{a, b, \neg c, \neg x\}, \{a, \neg b\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}, \{y\}\} \}$ After unit literal elimiation: $\forall ab \forall c \{\{a, b, \neg c\}, \{a, \neg b\}\} \}$

Pure Literals

▶ Definition of Pure Literal Elimination

A literal / is called **pure** in a formula ϕ iff

- \blacksquare I occurs in ϕ
- \blacksquare the complement of I, i.e., $\bar{\it I}$ does not occur in ϕ

Example

 $\forall ab\exists x \forall c\exists yz \forall d\{\{a,b,\neg c\},\{a,\neg b\},\{c,y,d\},\{x,y\},\{x,c,d\}\}$

Pure: *a*, *d*, *x*, *y*

Pure Literal Elimination

Definition of Pure Literal

Let ϕ be a QBF with pure literal / and let ψ be a QBF obtained from ϕ by

- removing all clauses with I if quant(I) = \exists
- lacksquare removing all occurences of I if quant(I) $= \forall$

```
\forall ab \exists x \forall c \exists yz \forall d \{\{a,b,\neg c\}, \{a,\neg b\}, \{c,y,d\}, \{x,y\}, \{x,c,d\}\} After Pure Literal Elimination: \forall b \{\{b\}, \{\neg b\}\}
```

Universal Reduction

- Let ϕ be a QBF in PCNF and $C \in \phi$.
- Let $I \in C$ with
 - \blacksquare quant(I) = \forall
 - forall $k \in C$ with quant(k) = $\exists k < l$, i.e., all existential variables k of C are to the left of l in the prefix.
- Then I may be removed from C.
- $C\setminus\{I\}$ is called the *forall reduct* (also *universal reduct* of C).

```
\forall ab \exists x \forall c \exists yz \forall d\{\{a, b, \neg c, x\}, \{a, \neg b, x\}, \{c, y, d\}, \{x, y\}, \{x, c, d\}\}\}
After Universal Reduction:
\forall ab \exists x \forall c \exists yz \forall d\{\{a, b, x\}, \{a, \neg b, x\}, \{c, y\}, \{x, y\}, \{x\}\}\}
```

Boolean splitCNF2 (Prefix P, matrix ψ)

```
(P,\psi) = simplify(P,\psi);
```

if $(\psi == \emptyset)$: return **true**; if $(\emptyset \in \psi)$: return **false**;

$$P = QXP', x \in X, X' = X \setminus \{x\};$$

if
$$(Q == \forall)$$

return (splitCNF2($QX'P', \psi'$) &&
splitCNF2($QX'P', \psi''$));
else

return (splitCNF2($QX'P', \psi'$) || splitCNF2($QX'P', \psi''$)); where

 ψ' : take clauses of ψ , delete clauses with x, delete $\neg x$ ψ'' : take clauses of ψ , delete clauses with $\neg x$, delete x

Resolution for QBF

Q-Resolution: propositional resolution + universal reduction (UR).

Definition

Let C_1 , C_2 be clauses with existential literal $v \in C_1$ and $\neg v \in C_2$.

- 1. Tentative Q-resolvent: $C_1 \otimes C_2 := (UR(C_1) \cup UR(C_2)) \setminus \{v, \neg v\}.$
- 2. If $\{x, \neg x\} \subseteq C_1 \otimes C_2$ then no Q-resolvent exists.
- 3. Otherwise, Q-resolvent $C := (C_1 \otimes C_2)$.

- Q-resolution is a sound and complete calculus.
- Dual variant for QBFs in QDNF.
- Universals as pivot are also possible.

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Exclusive OR (XOR): QBF
$$\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$$

Truth Table

X	У	ψ	unsat
0	0	0	
0	1	1	
1	0	1	wiisat
1	1	0	

Exclusive OR (XOR): QBF
$$\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$$

Exclusive OR (XOR): QBF
$$\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$$

Exclusive OR (XOR): QBF
$$\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$$

Exclusive OR (XOR): QBF
$$\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$$

Truth Table

X	У	ψ	
0	0	0	
0	1	1	unsat
1	0	1	urisat
1	1	0	

$$\longrightarrow$$
 $y = x \Rightarrow \psi = 0$

$$\longrightarrow$$
 $f_y(x) = x$ (counter model)

Exclusive OR (XOR): QBF $\psi = \exists x \forall y (x \lor y) \land (\neg x \lor \neg y)$

Truth Table

x	y	ψ	
0	0	0	
0	1	1	unsat
1	0	1	unsai
1	1	0	

$$\longrightarrow$$
 $y = x \Rightarrow \psi = 0$
 \longrightarrow $f_y(x) = x$ (counter model)

Example: Q-Resolution

Input Formula

$$\exists x_1 \forall y_1 \exists x_2 x_3 \forall y_2 \exists x_4 x_5. (\neg x_1 \vee \neg x_5) \wedge (y_1 \vee x_4 \vee x_5) \wedge (x_2 \vee \neg y_2 \vee \neg x_4) \wedge \\ (x_3 \vee \neg y_2 \vee \neg x_4) \wedge (\neg x_2 \vee \neg x_3 \vee y_2) \wedge (x_1 \vee x_4)$$

Q-Resolution Proof DAG

Example: Q-Resolution

Input Formula

$$\exists x_1 \forall y_1 \exists x_2 x_3 \forall y_2 \exists x_4 x_5. (\neg x_1 \lor \neg x_5) \land (y_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg y_2 \lor \neg x_4) \land (x_3 \lor \neg y_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor y_2) \land (x_1 \lor x_4)$$

$$\exists x_1 \forall y_1 \exists x_2 x_3 \forall y_2 \exists x_4 x_5. (\neg x_1 \lor \neg x_5) \land (y_1 \lor x_4 \lor x_5) \land (x_2 \lor \neg y_2 \lor \neg x_4) \land (x_3 \lor \neg y_2 \lor \neg x_4) \land (\neg x_2 \lor \neg x_3 \lor y_2) \land (x_1 \lor x_4)$$

Q-Resolution Proof DAG

