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Motivation

challenge: capture random phenomena
⇒ models for probabilistic systems

examples

� randomized algorithms
e.g., leader election, consensus

� modeling of unreliable/unpredictable system behavior
e.g., message loss, garbling

� model-based performance evaluation
e.g., distribution of message transmission delay, failure
rate of a processor
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Probabilities Revisited

terminology

� sample space Ω: possible outcomes of an experiment

� event: subset of Ω

� probability P : likelihood that an event occurs

examples

� toss a fair coin: Ω = {h, t}
events: H = {h} (head), T = {t} (tail), P (H) = P (T ) = 0.5

� toss two fair coins: Ω = {(h, h), (h, t), (t, h), (t, t)}
event E: at least one h, P (E) = 0.75
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Example: Coins and Dices

aim: model a six-sided die by tossing a fair coin

(algorithm by Knuth/Yao)

algorithm:

� start in state s0
� repeat until the

value is decided
� toss the coin
� if h:

left branch
� if t:

right branch
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Markov Chain

Definition A Markov chain M = (S, ι, P ) consists of the
following components:

� a set of states S

� initial distribution ι : S → [0, 1] with∑
s∈S

ι(s) = 1

� transition probability function P : S × S → [0, 1] with
for all s ∈ S:

∑
s′∈S

P (s, s′) = 1

alternative representations: ι as vector and P as matrix
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Properties of Markov Chains

� state-transition system (no labels!) augmented with
probabilities

� no memory: In the current state, the future states are
independent of the past states

� every state has at least one outgoing transition

� states s with ι(s) > 0 are possible initial states

� states s′ with P (s, s′) > 0 are possible successors of s

� absorbing state s: P (s, s) = 1 and for all s 6= s′: P (s, s′) = 0

� for T ⊆ S: P (s, T ) =
∑
t∈T

P (s, t)
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LTS vs Markov Chain

� LTS
� (S, I,Σ, T ) with T ⊆ S × Σ× S
� non-deterministic behavior

� Markov chain
� (S, ι, P ) with P : S × S → [0, 1]

� probabilistic behavior

How to combine probabilistic and non-deterministic behavior?

⇒ Markov Decision Processes (MDP)

6/15



Motivation MDP

� probabilistic and non-deterministic choices in one model
� randomized distributed algorithms
� quantify outcomes of randomized actions

� formalization of agent-environment interaction
� agent’s utility depends on sequence of decisions
� produce optimal behavior that balances risks and rewards

of acting in uncertain environment
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Markov Decision Process

Definition A Markov Decision Process M = (S, ι,Σ, T,R, γ)

consists of the following components:

� set of states S

� initial distribution ι : S → [0, 1] with∑
s∈S

ι(s) = 1

� transition probability function T : S × Σ× S → [0, 1] with
for all s ∈ S, a ∈ Σ:

∑
s′∈S

T (s, a, s′) ∈ {0, 1}

� reward function R : S × Σ→ R

� discount factor γ
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Properties of MDP

� action a is enabled in state s iff
∑
s′∈S

T (s, a, s′) = 1

� every state has at least one enabled action
� MDP is MC iff each state of MDP has exactly one enabled

action
� intuitive operational behavior:

� a starting state s0 is entered according to ι by a stochastic
experiment

� when a state s is entered
1. an enabled action a ∈ Σ is selected
2. a successor state s′ with T (s, a, s′) 6= 0 is selected randomly

according to distribution T (s, a, ∗)
3. s′ is entered

� for S′ ⊆ S, a ∈ Σ: T (s, a, S′) =
∑

s′∈S′
T (s, a, s′)
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Example (without rewards)

s0

s1

s2

s3

0.1

0.1

0.8
a

a, 1

a, 1

b, 1

c, 1

� S = {s0, s1, s2, s3}
� ι(s0) = 1

� Σ = {a, b, c}
� T (s0, a, s0) = 0.8, T (s0, a, s1) = 0.1, T (s0, a, s2) = 0.1

T (s1, b, s3) = 1, T (s1, a, s2) = 1

T (s2, c, s3) = 1

T (s3, a, s3) = 1
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Rewards

idea: maximize the cumulative reward in the long run

Definition Let Rt+1, Rt+2, . . . be the sequence of rewards
received after time step t. The expected return at t, denoted by
Gt, is a specific function of the reward sequence like

Gt = Rt+1 +Rt+2 + . . .+RT

where

� T is the final time step for episodic tasks (e.g., a game)

� T =∞ for continuous tasks with infinite horizons (e.g.,
robot with long life span)
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Example (with rewards)
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c, 1, 4

� S = {s0, s1, s2, s3}
� ι(s0) = 1

� Σ = {a, b, c}
� T (s0, a, s0) = 0.8, T (s0, a, s1) = 0.1, T (s0, a, s2) = 0.1

T (s1, b, s3) = 1, T (s1, a, s2) = 1

T (s2, c, s3) = 1

T (s3, a, s3) = 1

� R(s3, a) = 3, R(s1, a) = 1, R(s1, b) = −1, R(s2, c) = 4
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Discounts

idea: realize a more farsighted agent⇒ discounting

a reward might be more valuable now than in the future,
because of

� inflation

� obliteration

Definition The discounted return is defined by

Gt = Rt+1 + γRt+2 + . . .+ γ2Rt+3 + . . .
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Policies

Given an agent who wants to achieve a goal.

Question: what is the solution to achieve the goal?

� a fixed sequence of actions is not a solution

� a solution is a policy π that specifies what the agent should
do in any state that it reaches

� if a policy is complete, the agent will always know what to
do next

� a policy is optimal, if it yields the highest expected utility
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