DISCRETE
PROBABILISTIC SYSTEMS

Formal Models SS18

4

Martina Seidl
Institute for Formal Models and Verification

EEEEEEEEEEEEEE
IIIIIIIIIIIIII



Motivation

challenge: capture random phenomena
= models for probabilistic systems

examples

B randomized algorithms
e.g., leader election, consensus

B modeling of unreliable/unpredictable system behavior
e.g., message loss, garbling

B model-based performance evaluation
e.g., distribution of message transmission delay, failure
rate of a processor
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Probabilities Revisited
terminology

B sample space 2: possible outcomes of an experiment
B event: subset of (2
B probability P: likelihood that an event occurs

examples

B toss a fair coin: Q = {h,t}

events: H = {h} (head), T = {t} (tail), P(H) = P(T) = 0.5
B toss two fair coins: Q = {(h, h), (h,t),(t,h), (t,t)}

event E: at least one h, P(E) = 0.75
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Example: Coins and Dices

aim: model a six-sided die by tossing a fair coin
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Example: Coins and Dices

aim: model a six-sided die by tossing a fair coin
(algorithm by Knuth/Yao)

algorithm:

B start in state sg
B repeat until the
value is decided
O toss the coin

O if h:

left branch

O if ¢

right branch
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Markov Chain

Definition A Markov chain M = (S, , P) consists of the
following components:

B a set of states S
B initial distribution ¢: .S — [0, 1] with
du(s)=1

seS
B transition probability function P: S x S — [0, 1] with

forallse S: > P(s,s')=1
s'eS

alternative representations: ¢ as vector and P as matrix

JXU

4/15



Properties of Markov Chains

B state-transition system (no labels!) augmented with
probabilities

B no memory: In the current state, the future states are
independent of the past states

every state has at least one outgoing transition
states s with «(s) > 0 are possible initial states
states s’ with P(s, s’) > 0 are possible successors of s

absorbing state s: P(s,s) =1and forall s # s': P(s,s') =0

forT' C S: P(s,T) = Y P(s,t)
teT
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LTS vs Markov Chain

B LTS
O, LET)withT CSx¥ xS
O non-deterministic behavior

B Markov chain
O (S,¢, P)with P: S x S —[0,1]
O probabilistic behavior

How to combine probabilistic and non-deterministic behavior?

= Markov Decision Processes (MDP)

JXU 6/15



Motivation MDP

W probabilistic and non-deterministic choices in one model

O randomized distributed algorithms
O quantify outcomes of randomized actions

B formalization of agent-environment interaction

O agent’s utility depends on sequence of decisions
O produce optimal behavior that balances risks and rewards
of acting in uncertain environment
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Markov Decision Process

Definition A Markov Decision Process M = (S,¢,%,T, R, )
consists of the following components:

B set of states S
B initial distribution ¢: .S — [0, 1] with
> us)=1

SES
B transition probability function 7: S x ¥ x S — [0, 1] with
forallse S,aeX: Y T(s,a,s) € {0,1}
s'eS
B reward function R: S x ¥ = R

B discount factor v
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Properties of MDP

B action a is enabled in state s iff > T'(s,a,s’) =1
s'eS
B every state has at least one enabled action
B MDP is MC iff each state of MDP has exactly one enabled
action
Bl intuitive operational behavior:
O a starting state sq is entered according to « by a stochastic
experiment
O when a state s is entered
1. an enabled action a € X is selected
2. asuccessor state s’ with T'(s, a, s’) # 0 is selected randomly
according to distribution T'(s, a, *)
3. s’ is entered

B forS"CS,aeX:T(s,a,58)= > T(s,a,s)
s'es’
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Example (without rewards)

B S = {sg,s1, 52,53}

W o(sg) =1

B X ={abc}

B T(so,a,s0) =0.8,T(sp,a,s1) = T(so,a,s2) = 0.1
T(s1,b,83) =1 T(sl,a s9) =1
T(s2,c,83) =
T(s3,a,s3) =
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Rewards
idea: maximize the cumulative reward in the long run

Definition Let R, 1, R;12,. .. be the sequence of rewards
received after time step ¢t. The expected return at ¢, denoted by
Gy, is a specific function of the reward sequence like

Gi=Riyy1+Rijo+ ...+ Ry

where

B T is the final time step for episodic tasks (e.g., a game)

B T = oo for continuous tasks with infinite horizons (e.g.,
robot with long life span)
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E

xample (with rewards)

HS= {80,81,82,53}
| L(S(]) =1

B XY= {abc}

|

S0, a,s0) = 0.8,T(s0,a,s1) = T(sg,a,s2) =0.1
s1,b,53) =1 T(sl,a s9) =1

T(
( )
(s2,¢,83) =
( ) =
R(

e B B

S3, @, S3
(s3,a) = 3, R(é].d) =1,R(s1,b) = —1,R(s2,¢c) =4
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Discounts

idea: realize a more farsighted agent = discounting

a reward might be more valuable now than in the future,
because of

B inflation
B obliteration

Definition The discounted return is defined by

Gt:Rt+1—|—’7Rt+2—|—...—{—’)/2Rt+3—}—...
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Policies

Given an agent who wants to achieve a goal.

Question: what is the solution to achieve the goal?

B a fixed sequence of actions is not a solution

B a solution is a policy = that specifies what the agent should
do in any state that it reaches

B if a policy is complete, the agent will always know what to
do next

B a policy is optimal, if it yields the highest expected utility
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