SAT-BASED BOUNDED MODEL
CHECKING
Formal Models SS19

4

Martina Seidl
Institute for Formal Models and Verification

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Model Checking

Requirements Implementation
Formal Specification Model
(Temporal Formula) (Kripke Structure)

Model Checker

l

VERIFIED

JXU 1/22

Model Checking

Requirements Implementation
Formal Specification Model
(Temporal Formula) (Kripke Structure)

Model Checker /!

o
ERROR +

Error Trace
JXU 1/22

Types of Model Checking

General question: Given a system K and a property p,
does p hold for K (i.e., for all initial states of K) ?

B Explicit state model checking

0 enumeration of the state space
O state explosion problem

B Symbolic model checking

O representation of model checking problem as logical
formula (e.g., in propositional logic (SAT) or QBF)

JXU 2/22

Some Properties

B Reachability: property p holds in one reachable state
B Invariant: property p holds in all reachable states

B Safety: some bad property p never holds
“something bad will never happen”

B Liveness: something good will eventually happen

B Fairness: under certain conditions, some property holds
repeatedly

JXU 3/22

Example: Mutual Exclusion

Given two processes P and Q which share a resource R.

B If Ris accessed by P, then property p is true.
B If Ris accessed by Q, then property q is true.

The behavior of P and Q is modeled by this Kripke structure:

QOCDV@

@

JXU Question: Does F(p A q) hold? 4/22

Limboole

B SAT-solver for formulas in non-CNF
W available at http://fmv.jku.at/limboole/
B input format in BNF:

(expr) == (iff)
(iff) == (implies) | (implies) “<->" (implies)
(implies) ::= (or) | (or) “->" {or) | (or) “<-" (or)
(or) = (and) | (and)“|” {(and)
(and) = (not) | (not) “&” (not)
(not) == (basic) |“'” (not)
(basic) = (var) |“C" (expr))"

where ’var’ is a string over letters, digits, and

-_.[]1¢%a
JXU 5/22

http://fmv.jku.at/limboole/

Symbolic Encoding of Kripke Structures

Given Kripke structure K = (S,I,T, L) over A = {ay,...,ay}.

1. Introduce sets A" = {a},...,al,} and A" = {df, ... al'} for
the definition of one transition step 7 over A’ and A”.
2. Associate each state s € S with two conjunctions of literals
current(s) and next(s):’
O current(s) == (i A ... Aly)
such that ; = a} if a; € L(s) else I; = a;
O next(s):= (k1 A... ANkp)
such that k; = af if a; € L(s) else k; = a}.
3. Define prop. formula 7 over A’, A” such that Vs;, s; € S
(T A current(s;) A\ next(s;)) is satisfiable iff (s;,s;) € T.

"note: the mapping “state to conjunction” has to be bijective

JXU 6/22

Naive Encoding of Kripke Structures in SAT

Let K = (S,I,T, L) be a Kripke structure over A.
T:=T
while S +# () do

selects € S

S = S\{s}

N =1

for all (s,t) € T do

N := NV next(t)

end for

T :=T A (current(s) — N)
end while
return 7

JXU 7/22

Naive Encoding of Kripke Structures in SAT

P, g l p,q P, q
()< () <>(c)

N
N

T =T A
PAG) = (LVE' AD)V(P'AT)) A
(PAG) = (LVE'AT)V(P'AD)) A
(PAa) = (LV(P'AT)) A
(pAg) = (LV(P'AT))

JXU 8/22

Naive Encoding of Kripke Structures in SAT

Encoding in Limboole syntax:

(('p & 'q) -> (!p-next & g-next) | (p-next & !q-next)) &
((p & 'q) -> (!p-next & !'q-next) | (p-next & q-next)) &
(('p & Q) -> (!'p-next & !'q-next)) &

((p & @0 -> (!p-next & !q-next))

> limboole limboole/mutual.boole -s
SATISFIABLE formula (satisfying assignment follows)

==

g
|
2]
o
o
ot

I

<
2]
o
N
o
I

JXU 9/22

Symbolic Encoding of Kripke Structures

Alternative encoding of transition function:

Successor states p’, q':

/

~

~

(P < (PAG)AG < 0)

\

(P < (PAG) NG < Q)

JXU

P, q l p,q P, q
T
()=o)

()

P9

P 9P g O p ¢
0O 01 O 0 1
0 10 O 0 O
1 00 O 1 1
1 1]0 O 0 O

10/22

Example: One Step

Encoding in Limboole syntax:

(((p-next <-> (!'p & !q)) & (!q-next)) |
((p-next <-> (p & !'q)) & (g-next <-> !q)))

> limboole -s mutual2.boole
% SATISFIABLE formula (satisfying assignment follows)

o ==t
L

JXU 11/22

p=20
q=0

p-next

U}
O =

q-next

Multiple Transition Steps

B 7 over A’ and A” defines one transition step

O we also write T (sq, s1) indicating that
we can go from state sq to a state s;

B 7 over A” and A" defines one transition step

O we also write 7 (s1, s2) indicating that
we can go from state a s; to a state s

[| N T (s1,s2) defines two transition steps from a
state s(to a state s;

B Example (previous slides):

() A

((p" = B AT)) A (@ < 0) vV ((E" < (' AT)) A" < T)))

JXU 12/22

Example: Two Steps

Encoding in Limboole syntax:

((((p-next <-> (!'p & !q)) & (!g-next)) |

((p-next <-> (p & !q)) & (g-next <-> !q)))) &

((((p-next2 <-> (!p-next & !q-next)) & (!q-next2)) |
((p-next2 <-> (p-next & !q-next)) & (g-next2 <-> !q-next))))

> limboole -s mutual2-twoSteps.boole
% SATISFIABLE formula (satisfying assignment follows)

p=20

q=1

p-next = 0

q'neXt =0 .\J@\/@

I}
o =

p-next2 =
q-next2
: P;q

JXU 13/22

Example: Three Steps

Encoding in Limboole syntax:

((((p-next <-> (!p & !'q)) & (!'g-next)) |

((p-next <-> (p & !q)) & (g-next <-> !q)))) &

((((p-next2 <-> (!p-next & 'q-next)) & (!q-next2)) |

((p-next2 <-> (p-next & !q-next)) & (q-next2 <-> !q-next)))) &
((((p-next3 <-> (!p-next2 & !q-next2)) & (!q-next3)) |
((p-next3 <-> (p-next2 & !q-next2)) & (g-next3 <-> !q-next2))))

limboole -s mutual2-threeSteps.boole
% SATISFIABLE formula (satisfying assignment follows)

p=20

q=1 _ [_
p-next = 0 P, q) p;q
q-next = 0 A@ @
p-next2 = 1 ~ ~

q-next2 = 0

p-next3 = 1 T

q-next3 =1 P-4

JXU @ 14/22

Bounded Model Checking (Safety)

B Given a Kripke structure K. Is there a path of length & to a
bad state s, i.e., a certain property p is violated in s?

B In other words: there is a path where Gp does not hold in K

B Observation: if Gp does not hold in K, there is a finite
counter-example.

B Idea: consider paths of fixed length &
0 encode problem to propositional formula ¢
O pass problem to SAT solver
O ¢ is true < model of ¢ is counter-example
O if ¢ is false, then increase k

JXU 15/22

Bounded Model Checking (Safety)

A bounded model checking (BMC) problem for Kripke structure
K and safety property Gp is encoded by
I(s0) AT (so, 81) A T(Sl, S2) A A T(Skfl, sk) A Bl(sg)

where

B /(so) is true & sg is an initial state
B 7 is the transition function of K
B B(s,) istrue < si is a bad state, i.e., —p holds in s

JXU 16/22

BMC Example

We want to know if G(p Vv g) holds for Kripke structure K:

o =008

-

JXU

17/22

BMC Example

We want to know if G(p Vv g) holds for Kripke structure K:

DS

(one step) \@p q

JXU 17/22

BMC Example

We want to know if G(p Vv g) holds for Kripke structure K:

.OCDO@

2 (two steps\ @p 9

JXU 17/22

Bounded Model Checking (Fairness)

B Given a Kripke structure K. Is there a path such that a
property —p holds forever?

B In other words: there is a path such that Fp does not hold
in K

B Observation 1: if Fp does not hold in K, there is an infinite
counter-example.

B Observation 2: if the counter-example is infinite, then it has
to be because of a cycle.

JXU 18/22

Bounded Model Checking (Fairness)

A bounded model checking (BMC) problem for Kripke structure
K and fairness property Fp is encoded by

k—1 k k
I(s0) A /\ T (s1,8141) A \/ T (sk, i) A /\ F(Sj)
=0 i=0 Jj=0

where

B /(s)) is true & sq is an initial state
B 7 is the transition function of K
B F(sy) is true < —p holds in s

JXU 19/22

BMC Fairness

We want to know if Fq holds for Kripke structure K:
()< @/\@
D 4 N~— 7

Initial State:
(PAG) A \ P.q

One Step:
(A

Cycle Check:

(P (P AT)NA (@ 0) V(P (PAT))A(@<T)) V
(" (P AT)) AW < 0) V(P < (PAT)) AW < T))) A
Property Check:

qna

J¥U 20/22

BMC Summary

B BMC is incomplete ...

O if all checked formulas are unsat, no insight
O how to choose k£? when to stop increasing £?

W ... very efficient (e.g., debugging)

B many tuning techniques

O exploit similarities between two transition steps
(structure sharing
O simplification of formula by rewritings)

JXU 21/22

How to choose « for Safety?

Given Kripke structure K, the diameter is the smallest
number d such that for every path sy, . .., sq11 there exists
apath tg,...,t; suchthat! < dandty = sp and t; = sgq41.

B If a state s is reachable from state ¢, then there is a path of
length d or less where d is the diameter.

B The diameter is the longest shortest path.
B Computing the diameter is difficult (solve a QBF).

JXU 22/22

