SAT-BASED BOUNDED MODEL CHECKING

Formal Models SS19

Martina Seidl
Institute for Formal Models and Verification
Model Checking

Requirements

- Formal Specification (Temporal Formula)

Model Checker

Implementation

- Model (Kripke Structure)

VERIFIED
Model Checking

Requirements → Formal Specification (Temporal Formula) → Model Checker → ERROR + Error Trace → Implementation

ERROR:

- Implementation
 - Model (Kripke Structure)
 - Debug arrow pointing back to Model Checker
Types of Model Checking

General question: Given a system K and a property p, does p hold for K (i.e., for all initial states of K)?

- Explicit state model checking
 - enumeration of the state space
 - state explosion problem

- Symbolic model checking
 - representation of model checking problem as logical formula (e.g., in propositional logic (SAT) or QBF)
Some Properties

■ **Reachability**: property p holds in one reachable state
■ **Invariant**: property p holds in all reachable states
■ **Safety**: some bad property p never holds
 “something bad will never happen”
■ **Liveness**: something good will eventually happen
■ **Fairness**: under certain conditions, some property holds repeatedly
Example: Mutual Exclusion

Given two processes P and Q which share a resource R.

- If R is accessed by P, then property p is true.
- If R is accessed by Q, then property q is true.

The behavior of P and Q is modeled by this Kripke structure:

\[A \
\begin{array}{c}
\bar{p}, \bar{q} \\
\hline \\
B \
\begin{array}{c}
p, \bar{q} \\
\hline \\
C \
\begin{array}{c}
\bar{p}, q \\
\hline \\
D \
\begin{array}{c}
p, q \\
\end{array} \\
\end{array} \\
\end{array} \\
\end{array} \]

Question: Does \(F(p \land q) \) hold?
Limboole

- SAT-solver for formulas in non-CNF
- available at http://fmv.jku.at/limboole/
- input format in BNF:

\[
\langle expr \rangle ::= \langle iff \rangle \\
\langle iff \rangle ::= \langle implies \rangle \mid \langle implies \rangle "<->" \langle implies \rangle \\
\langle implies \rangle ::= \langle or \rangle \mid \langle or \rangle "->" \langle or \rangle \mid \langle or \rangle "<-" \langle or \rangle \\
\langle or \rangle ::= \langle and \rangle \mid \langle and \rangle "|" \langle and \rangle \\
\langle and \rangle ::= \langle not \rangle \mid \langle not \rangle "&" \langle not \rangle \\
\langle not \rangle ::= \langle basic \rangle \mid "!" \langle not \rangle \\
\langle basic \rangle ::= \langle var \rangle \mid "(" \langle expr \rangle ")"
\]

where 'var' is a string over letters, digits, and \["-_\[\\]@$\]

- J\$KU
Symbolic Encoding of Kripke Structures

Given Kripke structure $K = (S, I, T, L)$ over $A = \{a_1, \ldots, a_n\}$.

1. Introduce sets $A' = \{a'_1, \ldots, a'_n\}$ and $A'' = \{a''_1, \ldots, a''_n\}$ for the definition of one transition step \mathcal{T} over A' and A''.

2. Associate each state $s \in S$ with two conjunctions of literals $\text{current}(s)$ and $\text{next}(s)$:

 $$\square \text{ current}(s) := (l_1 \land \ldots \land l_n)$$
 such that $l_i = a'_i$ if $a_i \in L(s)$ else $l_i = \bar{a}'_i$;

 $$\square \text{ next}(s) := (k_1 \land \ldots \land k_n)$$
 such that $k_i = a''_i$ if $a_i \in L(s)$ else $k_i = \bar{a}''_i$.

3. Define prop. formula \mathcal{T} over A', A'' such that $\forall s_i, s_j \in S$

 $$(\mathcal{T} \land \text{current}(s_i) \land \text{next}(s_j)) \text{ is satisfiable iff } (s_i, s_j) \in T.$$

\[\text{note: the mapping “state to conjunction” has to be bijective}\]
Naive Encoding of Kripke Structures in SAT

Let $K = (S, I, T, L)$ be a Kripke structure over \mathcal{A}.

$T := \top$

while $S \neq \emptyset$ do

select $s \in S$

$S := S \setminus \{s\}$

$N := \bot$

for all $(s, t) \in T$ do

$N := N \lor \text{next}(t)$

end for

$T := T \land (\text{current}(s) \rightarrow N)$

end while

return T
Naive Encoding of Kripke Structures in SAT

\[\mathcal{T} := \top \land (\bar{p} \land \bar{q}) \rightarrow (\bot \lor (\bar{p}' \land q') \lor (p' \land \bar{q}')) \land \\
(p \land \bar{q}) \rightarrow (\bot \lor (\bar{p}' \land \bar{q}') \lor (p' \land q')) \land \\
(\bar{p} \land q) \rightarrow (\bot \lor (\bar{p}' \land \bar{q}')) \land \\
(p \land q) \rightarrow (\bot \lor (\bar{p}' \land \bar{q}')) \]
Naive Encoding of Kripke Structures in SAT

Encoding in Limboole syntax:

\[
\begin{align*}
((!p & !q) & \rightarrow (!p\text{-next} & q\text{-next}) | (p\text{-next} & !q\text{-next})) & \land \\
((p & !q) & \rightarrow (!p\text{-next} & !q\text{-next}) | (p\text{-next} & q\text{-next})) & \land \\
((!p & q) & \rightarrow (!p\text{-next} & !q\text{-next})) & \land \\
((p & q) & \rightarrow (!p\text{-next} & !q\text{-next})) & \\
\end{align*}
\]

> limboole limboole/mutual.boole -s

% SATISFIABLE formula (satisfying assignment follows)

\[
\begin{align*}
p &= 0 \\
q &= 0 \\
p\text{-next} &= 0 \\
q\text{-next} &= 1
\end{align*}
\]
Symbolic Encoding of Kripke Structures

Alternative encoding of transition function:

Successor states p', q':

$$(p' \leftrightarrow (\bar{p} \land \bar{q}) \land q' \leftrightarrow 0)$$

\lor

$$(p' \leftrightarrow (p \land \bar{q}) \land q' \leftrightarrow \bar{q})$$

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p'</th>
<th>q'</th>
<th>or</th>
<th>p'</th>
<th>q'</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Diagram:

- **B**: p, \bar{q}
- **A**: \bar{p}, \bar{q}
- **C**: \bar{p}, q
- **D**: p, q
Example: One Step

Encoding in Limboole syntax:

```
(((p-next <-> (!p & !q)) & (!q-next)) |
((p-next <-> (p & !q)) & (q-next <-> !q)))
```

> limboole -s mutual2.boole

% SATISFIABLE formula (satisfying assignment follows)

\[p = 0 \]
\[q = 0 \]
\[p\text{-next} = 1 \]
\[q\text{-next} = 0 \]
Multiple Transition Steps

- \mathcal{T} over \mathcal{A}' and \mathcal{A}'' defines one transition step
 - we also write $\mathcal{T}(s_0, s_1)$ indicating that we can go from state s_0 to a state s_1

- \mathcal{T} over \mathcal{A}'' and \mathcal{A}''' defines one transition step
 - we also write $\mathcal{T}(s_1, s_2)$ indicating that we can go from state s_1 to a state s_2

- $\mathcal{T}(s_0, s_1) \land \mathcal{T}(s_1, s_2)$ defines two transition steps from a state s_0 to a state s_1

- Example (previous slides):

 $(((p' \leftrightarrow (\bar{p} \land \bar{q}))) \land (q' \leftrightarrow 0)) \lor ((p' \leftrightarrow (p \land \bar{q}))) \land (q' \leftrightarrow \bar{q})) \land

 ((((p'' \leftrightarrow (\bar{p}' \land \bar{q}')))) \land (q'' \leftrightarrow 0)) \lor ((p'' \leftrightarrow (p' \land \bar{q}'))) \land (q'' \leftrightarrow \bar{q}'))$
Example: Two Steps

Encoding in Limboole syntax:

\[
(((p\text{-}next \leftrightarrow (!p \& !q)) \& (!q\text{-}next)) \ |
((p\text{-}next \leftrightarrow (p \& !q)) \& (q\text{-}next \leftrightarrow !q))) \&
(((p\text{-}next2 \leftrightarrow (!p\text{-}next \& !q\text{-}next)) \& (!q\text{-}next2)) \ |
((p\text{-}next2 \leftrightarrow (p \& !q\text{-}next)) \& (q\text{-}next2 \leftrightarrow !q\text{-}next))))
\]

> limboole -s mutual2-twoSteps.boole
% SATISFIABLE formula (satisfying assignment follows)
p = 0
q = 1
p\text{-}next = 0
q\text{-}next = 0
p\text{-}next2 = 1
q\text{-}next2 = 0
Example: Three Steps

Encoding in Limboole syntax:

```
((((p-next <-> (!p & !q)) & (!q-next)) | 
((p-next <-> (p & !q)) & (q-next <-> !q))))) & 
(((p-next2 <-> (!p-next & !q-next)) & (!q-next2)) | 
((p-next2 <-> (p-next & !q-next)) & (q-next2 <-> !q-next2))) & 
(((p-next3 <-> (!p-next2 & !q-next2)) & (!q-next3)) | 
((p-next3 <-> (p-next2 & !q-next2)) & (q-next3 <-> !q-next2))))
```

```
limboole -s mutual2-threeSteps.boole
% SATISFIABLE formula (satisfying assignment follows)
p = 0
q = 1
p-next = 0
q-next = 0
p-next2 = 1
q-next2 = 0
p-next3 = 1
q-next3 = 1
```
Bounded Model Checking (Safety)

- Given a Kripke structure K. Is there a path of length k to a bad state s, i.e., a certain property p is violated in s?

- In other words: there is a path where Gp does not hold in K

- Observation: if Gp does not hold in K, there is a finite counter-example.

- Idea: consider paths of fixed length k
 - encode problem to propositional formula ϕ
 - pass problem to SAT solver
 - ϕ is true \iff model of ϕ is counter-example
 - if ϕ is false, then increase k
A bounded model checking (BMC) problem for Kripke structure K and safety property $G p$ is encoded by

$$I(s_0) \land T(s_0, s_1) \land T(s_1, s_2) \land \ldots \land T(s_{k-1}, s_k) \land B(s_k)$$

where

- $I(s_0)$ is true \Leftrightarrow s_0 is an initial state
- T is the transition function of K
- $B(s_k)$ is true \Leftrightarrow s_k is a bad state, i.e., $\neg p$ holds in s_k
BMC Example

We want to know if $G(\bar{p} \lor \bar{q})$ holds for Kripke structure K:
We want to know if $G(\bar{p} \lor \bar{q})$ holds for Kripke structure K:

$k = 1$ (one step):

$$(\bar{p} \land \bar{q}) \land ((p' \leftrightarrow (\bar{p} \land \bar{q})) \land (q' \leftrightarrow 0)) \lor ((p' \leftrightarrow (p \land \bar{q})) \land (q' \leftrightarrow \bar{q})) \land (p' \land q')$$
BMC Example

We want to know if $G(\overline{p} \lor \overline{q})$ holds for Kripke structure K:

$k = 2$ (two steps):

$$(\overline{p} \land \overline{q}) \land$$

$$((((p' \leftrightarrow (\overline{p} \land \overline{q})) \land (q' \leftrightarrow 0))) \lor (((p' \leftrightarrow (p \land \overline{q})) \land (q' \leftrightarrow \overline{q}))) \land$$

$$((((p'' \leftrightarrow (\overline{p}' \land \overline{q}')) \land (q'' \leftrightarrow 0))) \lor$$

$$(((p'' \leftrightarrow (p' \land \overline{q}')) \land (q'' \leftrightarrow \overline{q}')))) \land$$

$$(p'' \land q'')$$
Bounded Model Checking (Fairness)

- Given a Kripke structure K. Is there a path such that a property $\neg p$ holds forever?

- In other words: there is a path such that Fp does not hold in K

- Observation 1: if Fp does not hold in K, there is an infinite counter-example.

- Observation 2: if the counter-example is infinite, then it has to be because of a cycle.
Bounded Model Checking (Fairness)

A bounded model checking (BMC) problem for Kripke structure K and fairness property F_p is encoded by

$$I(s_0) \land \bigwedge_{l=0}^{k-1} T(s_l, s_{l+1}) \land \bigvee_{i=0}^k T(s_k, s_i) \land \bigwedge_{j=0}^k F(s_j)$$

where

- $I(s_0)$ is true \iff s_0 is an initial state
- T is the transition function of K
- $F(s_k)$ is true \iff $\neg p$ holds in s_k
BMC Fairness

We want to know if F_q holds for Kripke structure K:

Initial State:
$$(\bar{p} \land \bar{q})$$

One Step:
$$(((p' \leftrightarrow (\bar{p} \land \bar{q})) \land (q' \leftrightarrow 0)) \lor ((p' \leftrightarrow (p \land \bar{q})) \land (q' \leftrightarrow \bar{q})))$$

Cycle Check:
$$(((p \leftrightarrow (\bar{p'} \land \bar{q'})) \land (q \leftrightarrow 0)) \lor ((p \leftrightarrow (p' \land \bar{q'})) \land (q \leftrightarrow \bar{q'}))) \lor (((p' \leftrightarrow (\bar{p'} \land \bar{q'})) \land (q' \leftrightarrow 0)) \lor ((p' \leftrightarrow (p' \land \bar{q'})) \land (q' \leftrightarrow \bar{q'}))))$$

Property Check:
$$\bar{q} \land \bar{q'}$$
BMC Summary

- BMC is incomplete...
 - if all checked formulas are unsat, no insight
 - how to choose \(k \)? when to stop increasing \(k \)?

- ... very efficient (e.g., debugging)

- many tuning techniques
 - exploit similarities between two transition steps
 (structure sharing
 - simplification of formula by rewritings)
How to choose k for Safety?

Given Kripke structure K, the **diameter** is the smallest number d such that for every path s_0, \ldots, s_{d+1} there exists a path t_0, \ldots, t_l such that $l \leq d$ and $t_0 = s_0$ and $t_l = s_{d+1}$.

- If a state s is reachable from state t, then there is a path of length d or less where d is the diameter.
- The diameter is the longest shortest path.
- Computing the diameter is difficult (solve a QBF).