Group:	 Assignment 10
Name:	 Formal Models
Matr.Nr.:	 Summer Semester 2010
Points:	 Due: 17.06.2010 08:30

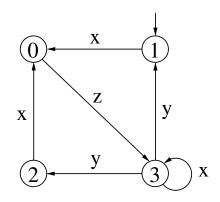
Institute for Formal Models and Verification, Dr. Robert Brummayer, Dipl.-Ing. Florian Lonsing

Exercise 37

Given LTS L as shown on the right. For each state s of L, determine which of the following CTL/HML formulae hold in s.

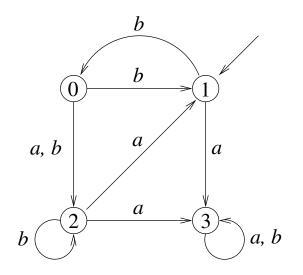
1.	$\mathbf{EX}(\langle x \rangle 1)$	2.	$\mathbf{AX}([y]0)$
3.	$\mathbf{AG}(\langle z \rangle 1 \rightarrow \langle y \rangle 1)$	4.	$\mathbf{E}[\langle x \rangle 1 \mathbf{U} \langle z \rangle 1]$
5	$\mathbf{EC}(/)$ 1)	6	$\mathbf{EE}(\mathbf{EC} /) 1)$

5. **EG**($\langle y \rangle 1$) 6. **EF**(**EG** $\langle x \rangle 1$)



Exercise 38

Draw the Kripke structure for the LTS as shown below.



Exercise 39

Draw a computation tree for each of the following CTL formulae (see also lecture slides 63-65).

1. **EF**
$$p$$
 2. **EX** p 3. **EG** p
4. **AX** p 5. **A**[p **U** q] 6. **E**[p **U** q]

Exercise 40

Given Kripke structure K as shown below. For each of the following CTL formulae f, determine whether $K \models f$ or not. *Note* that there are two initial states. *Justify your answers* by referring to the semantical definitions, i.e. name paths and/or states sufficient to explain your answers.

For example, $K \not\models \mathbf{AX} (q \lor s)$ because for initial state 0, path $\pi = 0, 1, ...$ is a counterexample for that property: $\pi(1) = 1$ and $1 \not\models (q \lor s)$.

- 1. AG $(q \rightarrow r)$
- 2. **E** (*r* **U** *s*)
- 3. **AG** $((p \land r) \rightarrow \mathbf{EG} p)$
- 4. **AG** $((p \land r) \rightarrow \mathbf{EG} s)$
- 5. **EF** $(s \rightarrow \mathbf{EX} s)$

