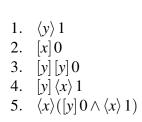
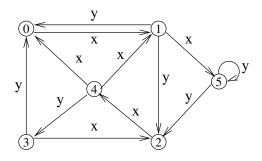
Group:	 Assignment 9
Name:	 Formal Models
Matr.Nr.:	 Summer Semester 2010
Points:	 Due: 10.06.2010 08:30


Institute for Formal Models and Verification, Dr. Robert Brummayer, Dipl.-Ing. Florian Lonsing

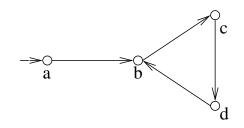

Exercise 33

- a) Define the semantics of the boolean operators \neg , \land , \lor , \rightarrow , and \leftrightarrow in HML analogously to the semantical definitions of the modal operators and boolean constants (see lecture slide 53).
- b) Referring to the semantical rules of HML, explain in detail why formula [a] 1 is always true and formula $\langle a \rangle 0$ is always false.
- c) Draw an LTS *L* such tthat $L \models \langle a \rangle (\langle a \rangle 1 \rightarrow \langle a \rangle \langle a \rangle 1)$ but $L \not\models \langle a \rangle \langle a \rangle \langle a \rangle 1$.

Exercise 34

Given LTS L as shown below. For each state s of L, determine which of the following formulae hold in s.

Exercise 35


Same as Exercise 34, but with the following formulae:

1. $((\langle x \rangle \langle x \rangle 1) \lor (\langle x \rangle [y] 0))$ 2. $((\langle y \rangle 1) \rightarrow (\langle x \rangle \langle y \rangle 1))$ 3. $((\langle y \rangle \langle y \rangle 1) \leftrightarrow (\langle x \rangle [x] 0))$ 4. $[y] [x] \langle y \rangle 1$

Exercise 36

Given LTS *L* as shown on the right.

- a) List all different infinite traces in *L*, using ω -notation, e.g. $ababab \cdots = (ab)^{\omega}$.
- b) Find 6 equivalences between traces from part a), using notation π^i , e.g. $\pi_2 = \pi_1^1$ for $\pi_1 = xyz$ and $\pi_2 = yz$.

