Formal Models
#342215

SS 2010
Johannes Kepler University
Linz, Austria

Prof. Armin Biere
Institute for Formal Models and Verification

http://fmv.jku.at/fm

Version 2010.12

Finite Automaton (FA)
use automata for modeling, specification and verification

Definition a finite automaton A = (S,1,X,T, F) consists of the following components

e set of states S (usually finite)

e set of initial states I C S

e input-alphabet X (usually finite as well)

e transition relation 7T C S x X x S
written s = ' iff (s,a,s’) € T iff T(s,a,s’) “holds”

e set of final states F C §

fa 2

Language of an FA fa 3

Definition FA A accepts a word w € X* iff there exists s; and a; with
Soﬂsl gszg ...an—_>1 Sn—1 %Sn,

where n>0, so€l, sp,€F and w=a;--rap (n=0=>w=g¢).

Definition the language L(A) of A is the set of words accepted by it

e use regular languages for syntax specification (e.g. in a scanner / parser)

e use FA or regular languages to specify event streams

Product Automaton fal 4

Definition the product automaton A =A; x A, of two FA A; and A, over the same alpha-
bet ¥; = ¥, has the following components:

S=81%X$ I=0LHXxD
Y=XYX1=2X F=FxPk

T((s1,52),a,(s],s85)) iff Ti(s1,a,5]) and Tr(s2,a,s5)

Theorem letA, A;, and A, as above, then L(A) = L(A;) NL(A3)

Example construct automaton, which accepts words with prefix ab and suffix ba.

(as regular expression: a-b-1* N 1*-b-a, where 1 denotes all letters)

Completeness and Determinism fa s

Definition forse S, acXlets % denote the set of successors of s defined as

s S ={seS|T(s,a,5)}

Definition an FA is completeiff |I|>0and |s = |>0forallsc Sand a € X.

Definition ... deterministic iff |I| <1 and |[s > | < 1forallse Sand a € ¥.

Proposition ... deterministic and complete iff [I|=1and |[s = |=1foralls€ S, a € X.

Sub-Set Construction fa g

Definition the power-automaton A =P(A) of an FA A consists of the components:

S=P(S;) (P =power set) =1L}
Y= F={F' CS|F'nF #0}
T(8,a,8") iff §"=U s>
seS’

Theorem let A, A as above, then L(A) = L(A;) and A is deterministic and complete.

Example: spam-filter based on the white-list “abb”, “abba”, and “abacus”!

(regular expression: “abb”

“abba” | “abacus”)

Complement-Automaton fa 7

Definition the complement-automaton A =C(A;) of an FA A has the same components
as A, except for the set of final states, which is F = S\ Fj.

Theorem the complement-automaton A = C(A;) of a deterministic and complete

FA A, accepts the complement language L(A) = L(A;) = X"\L(A}).

Example: spam-filter based on the black-list “abb”, “abba”, and “abacus”!

“abba”

(regular expression: “abb”

“abacus”)

Oracle-Automaton fa g

Idea: replace non-determinism with oracle

Definition the oracle-automaton A = Oracle(A;) of FA A has the following components:

e =251
o /=1
e X =>1XY§

o T(s,(a,t),s)iff s =t and Ty (s,a,t)

o ['=1FI

Optimized Oracle-Automaton Construction fa g
Proposition 1 (L(Oracle(A))) =L(A;) (m; projection on first component)
Proposition Oracle(A;) is deterministic iff |I;] < 1.

Proposition Oracle(A;) is almost always incomplete (e.g. 71 # S; x £; x S1 and [S;] > 1).

Note completeness can be achieved, if A| is complete, and if {0,...,n— 1} is added to
X instead of S, where n is the maximum number of successors: n = maxscg 4cx|s .

T(s,(a,i),s) iff S/:Sj, s ={50,-.-,Sm_1}, Jj=imodm

Exercise construct the oracle automatonfora-6-1* N 1*-b-a

Digital Design

D

D

Q

fa 10

|/O-Automaton fa 11

implementations of automata have to be deterministic

Definition //O-automaton A = (S,i,X,T,®,0) consists of:

e a (finite) set of states S,

exactly one initial state i,

an input alphabet X,

a transition function 7 C Sx X — S

e an output alphabet ® , with

e output function 0:S x ¥ — ® (Moore machine: 0:§ — 0)

Behavior of an I/O-Automaton fa 12

letweX*andaecX.

Definition interpret T as extended transition function T C S x £* — S as follows:

s=T(s,e) and ' =T(s,a-w)< Is"[s'=T(s,a)Ns'=T(s",w)].

Definition interpret O as extended output function 0: 5 x £* — ©* as follows:

O(s,e)=¢ and O(s,a-w)=b-w, with §=T(s,a) and w =0(s,w).

Definition the behavior V:X* — ®* of an I/O-automaton is defined as V(w) = O(i, w).

0 1
Example S={0,1},X={a}, ®={g,u}, —)Q

T7(0,a*") =0, T(0,a2H)=1, T1,a*)=1, T(1,a*"T1)=0

V(™) = (ug)", V(@)= (ug)'u

I/O-Automaton as FA fa 13
given an l/O-automaton A = (S,i,X,7,0,0).
Definition the FA for A is defined as A’ = (S, {i}, X x ©,T’,S) with
T'(s,(a,b),s) iff s =T(s,a) and b= 0(s,a).
Proposition V(w)=w'iff (w,w') € L(A’)

(au)

0 1
Example continued: H@

(@)

(graphically almost no difference)

FA as I/O-Automaton fa 14
letA=(S,I,X,T,F) be an FA

Definition the I/O-automaton for A is defined as A’ = (P(S),1,X,7’,{0,1},0) with T’ the
transition relation of P(A) and O(S",a) = 1 iff S NF # 0.

Proposition weL(A) iff V(w-x)ell.1 foronexex

Conclusion of the comparison of I/O-automata with FA:
In substance both are the same mathematical structure
we concentrate on the more compact and more elegant FA version

In particular non-determinism is easier to use with FA

Process Algebra (PA) pa 15

e modeling of distributed systems
— Calculus of Communicating Systems (CCS) [Milner80]
— Communicating Sequential Processes (CSP) [Hoare85]

— more specifically: asynchronously communicating processes (protocols / SW)

synthesis: process algebra (PA) as programming language (e.g. Occam, Lotos)

e verification of (abstract) PA models is simpler

e theory: mathematical properties of distributed systems
— how to compare distributed systems?

— simulation, bisimulation, observability, divergence (= model checking course)

PA Equations (PAE) pal 16

e right linear grammar = regular language = Chomsky 3 language

grammar G: N=¢|aM | bDM M =cN | dN start symbol N

= language L(G) = ((a | b)(c|d))* (as regular expression)

e syntax in PA:
— same idea: equations of non-terminals = processes

— concatenation not with juxtaposition but with “." operator

)

— choice represented with ‘+’ operator (not with

e semantics

— we are only interested in potential sequences = event streams

Concatenation pa 17

graphical representation

F)
a
P=alP R, a
a.P— P
equation operational semantics rule

(here P is only a meta variable)

operator means sequential composition

Choice pa 18

. . i PSP
graphical representation R, -
(P+Q)—P

F)
a b a . f
_>

P=aP+b.P R < Qa

(P+Q) =0
equation operational semantics rule

(here again P,Q are meta variables)

‘+’ operator means non-deterministic choice

Ticket-Vending-Machine pa 19

P = J5Euro.Payed5 + 10Euro.Payedl0
Payed5 = button.childTicket.P + 5Euro.Payedl(
Payedl0 = button.adultTicket.P

childTicket 5 adultTicket
5Euro
10Euro
Payed5 PrintAdultTicket
5Euro
button
button

PrintChildTicket Payed10

Labelled Transition Systems (LTS) pal 20

e LTS as operational semantics of PAE

e almost the same as an automaton, but ...
— no final states: in some sense all states are final

— only possible event streams matter

o LTS A=(S,1,X,T) with
— state set §
— actions X
— transition relation T C § x £ x § defined through operational semantics

— initial states 1 C §

Syntactical Restrictions pa 21

e divergent self-cycles
— P=a.P+P isaninvalid PAE

— there are no e-transitions in contrast to FAs

(actions “need time”, € has connotation of not really taking time)

e avoid self-cycles

— term T is guarded if T only occurs in the form a.T

(where a can be different for all occurrences of T of course)
— simplest restriction:
process variables on the right hand side (RHS) of an PAE are all guarded

— or more complex: each “cycle” contains at least one action

Data in PA pa 22

e actions and states can be parameterized

— which also gives rise to parameterized equations

e previous example with x € {5,10}:

P = euro(x).Payed(x)
Payed(5) = button.print(childTicket).P + euro(5).Payed(10)
Payed(10) = button.print(adultTicket).P

e it is possible to operate on data as well:

Payed(x) = euro(y).Payed(x+y)+ button.ticket(x).P
— actually allows modeling of infinite systems

— and turns PA into a real programming language

Conditions pa 23

o Pp&p 5
th
- if B then P else O > P’
050
Relse —-B

if B then P else O 5 O/

(and similar rules for if-then alone)

Payed(X) = euro(Y).Payed(X +Y)+ button.Print(X)
Print(X) = if (X =5) then childTicket.P+ if (X = 10) then adultTicket.P

Parallel-Operator
synchronization through rendezvous in CSP

OCX

P4 p 0% 0

o ; a€® rendezvous
PllgQ = Pllg @
p&p . .
Rh , ad® interleaving
© PllgQ > Pllg0
/
4 | .
R? 00 ad® interleaving

lo Pl % Plle
rendezvous does not distinguish sender and receiver

PllogQ = P'llg @
Pllo 5 PO

R|| @ZZ(P)HZ(Q)

Y.(P) is the subset of actions of X which occur in P syntactically

Pa 24

Parallel-Operator Properties pal 25

Proposition || is commutative: P||Q 5P || Q' iff Q|| P> Q || P

proof follows directly from the rules

Proposition || is associative

proof: Let P=Py || (Py || P3), P =P} || (P4 || P5), @ = (Py || P2) || P3, @' = (P} || Pb) | P}
Toshow: P&P < 050

8 cases of a € L(P;) resp. a ¢ X(P;) for each direction

intuition:
1.acX(P) = P P
2. P; with a ¢ £(P;) does not change (P] = P;)

3. the sames applies for every “parallel composition” of the P,

Implications of Properties of the Parallel-Operator

e “parenthesis” around || can be omitted:

P||(Q]||R) verhaltsichwie (P||Q)||R verhaltsichwie P/ Q|R

e order is irrelevant:

P|[Q]||R verhaltsichwie P||R|[Q verhaltsichwie QI/P|[R etc.

e parallel composition || P; of arbitrary processes P; over an index set J:
icJ

VP,acX(P) PP VP,ag X(P) P/=P

R| 3P, P, 5P

17 = P

l

Pa 26

Hiding 27

e hiding resp. abstraction of internal, unobservable actions

e abstracted to “silent” action t

— assumption: t€X

+ formally consider only X U {t} as actions
It is not possible to synchronize on t

— 1t still needs time

a PS5
P20 L q6 RE C ico
Vo peSo\e

RE
VP e40\e

e typical usage of internal synchronization R = (||'_; Qi)\{x1,--.,xn}

Railroad Crossing
[BradfieldStirling]

Road = car.up.ccross.down.Road
Rail = train.green.tcross.red.Rail
Signal = green.red.Signal + up.down.Signal
Crossing = (Road || Rail || Signal)\{green,red,up,down}
(@] red
Crossing Road green

tcross
CCross

up Sgnal
down

Pa 28

Linking pa 29

Linking as substitution of actions
P50
b
Plb/a] = Q|b/d]

R| Example: (a.P)[b/a] 2 P[b/a]

needed to “link” processes or instantiate templates:

P = abcP Plx/bl || Ply/b]

Parameterized Linking pa| 30

P = a.b.c.P P[b;/b]

| — w

i

Milner’s Scheduler pa 31

e classical example of process algebra

— modeling of a round robin scheduler

e scheduling of n processes ||P; with P=a.zbP and P;=Pla;/a,zi/z,b;/D]
— a start one run of a process
— z internal action(s)

— b end of one run of a process

e Restrictions:
— processes are started round robin in the order Py, P, ...

— nothing is about execution order of the b;!

Incorrect Solution for Milner’s Scheduling pal 32

e idea: proxy for each process
e divide scheduler R’ in token ring of n parallel cyclic processes Q’
e each Q) controls start (¢;) and end (b;) of P;, ...

e ... hands over x; control to next Q;_; ...

e and then waits to get control x;_; from previous Q! , in ring
o = a.x.b.y.Q’
Q) = O'lai/a, x1/x, by /b, xn/y]
Qi = (»-Qlai/a, xi/x, bi/b, xi_1/y] i€{2,...,n}

n

R = | O
=1

Correct Solution for Milner’s Scheduler oa 33

e incorrect solution does not accept the legal sequence:

— ending P, before Py: ajarbsby . ..

e decouple ending (b) and accepting control (y)
Q = ax. (by+ yb).0O
Q1 = OQlai/a, x1/x, b1/b, xn/y]
Qi = (vQlai/a, xi/x, bi/b, xi_1/y] i€{2,...,n}

n

R = || O
—1

s

e implemented by non blocking waiting on two different messages

— in programming languages: try-locking, multiple threads, select (java.nio), ...

e slightly sloppy alternative notation b.y+yb=»5b|y (we do not have a nil process)

Differences in CCS pa 34

e actions: X UXU{t} overlined actions are outputs, otherwise inputs
e different hiding principle (new syntax: double instead of single backslash)
P= _
R\\ j 0 aZOUO
P\® = 0\\©

e pairwise explicit synchronization

Pp&pP 0% ¢ o
R||| - acXUX
Pl[|lQ — P'||| ¢

Xl p4 p 2 Q£>Q’
I plio 4 Plo I pio 4 Pl

Comparison of CSP and CCS on Train Collision Example

Road
Rail
Signal

Crossing

Road
Rail
Signal

Crossing

car.up.ccross.down.Road
train.green.tcross.red.Rail

green.red.Signal + up.down.Signal

(Road || Rail || Signal)\{green,red,up,down}

resp. in CCS

car.up.ccross.down.Road

train.green.tcross.red.Rail

green.red.Signal + up.down.Signal
(Road ||| Rail ||| Signal) \\ { green, red,up,down}

Pa 35

Other Variants pa 36

originally CSP had channels with data

— Inputs: channel ? datain, outputs: channel ! dataout

n-calculus after [MilnerParrowWalker]
— (references to) channels / connections can be used as data as well

— example: TimeAnnounce = ring(caller).caller(CurrentTime).hangup.TimeAnnounce

e probabilistic behavior

— transitions have a “transition probability”

timed process algebra

— transitions need (explicitly specified) time

Petri Nets (PN) pn| 37

e beside process algebra the most common modeling language for distributed systems
— investigated since 60ies, now also known as activity diagrams in UML

— again: asynchronously communicating processes (protocols / SW)

modeling and verification tools available

e theory: many interesting results, vast literature

— finiteness, deadlock, ...

extension motivated by practice

— data, coloring, hierarchy, and again quantitative aspects etc.

Condition-Event-Net (CEN) on 3g
Definition

A CEN N = (C,I,E,G) is made of conditions C, an initial marking I C C, events E and a
dependence graph G C (Cx E) U (E x C)

~_ C, | c, /
@ O
CZ@/ C4©/
we also use — instead of G
' P T~

e can be interpreted as bipartite graph oder ...

e ... hyper graph with multiple source resp. target edges E

Producer Consumer CEN: Initial Marking on’ 39

produce receive

O

deliver consume

only one event / transition can [fire

Producer Consumer CEN: Delivered on’ 40

produce receive

O,

deliver consume

two events / transitions can [fire

Producer Consumer CEN: Produced Again on| 41

produce receive

deliver consume

target condition of deliver occupied

Producer Consumer CEN: Consumed on| 42

produce receive

O

deliver consume

again choice of two possible [events’

CEN Semantics as LTS on 43

Definition LetCENN=(C,I,LE,G). The LTS L= (S,{l},X,T) for N is defined as

T(Cy,e,Cy) iff G~ l(e) CC pre-conditions satisfied (1)
Gle)NC; =0 post-conditions satisfied (2)

C, = (C;\G1(e)) U G(e) state update

G(e) = post-conditions of evente (ore —)

G~ l(e) = pre-conditions of evente (or — e)

Ad: CEN Semantics on’ a4

e states M € P(C) of the LTS are also called markings of the CEN

e event ¢ is enabled in M iff M 5 £ 0

e marking M € P(C) is a deadlock iff
— M is is “dead end” in the reachability graph of the LTS iff
— no eventin M is enabled iff
— all events are disabled iff

— Ve e E[M 5 =0

e a CEN has a deadlock iff a deadlock is reachable

Example Dining Philosophers on| 45

n philosophers, n forks, n plates

philosophers alternate in thinking and eating
they need to pick up and use two forks to eat

forks can not be picked up at the same time (atomically)

Capacities on| 26

N conditions:
produce consume

@,

oo ()
N

K@/ deliver receive

buffer capacity n

produce

() ()
/ /

W deliver receive

N

buffer capacity 2

Place Transition Net (PTN) on’ 47

Definition APTNN = (P I,T,G,C) consists of places P, initial marking 7: P — N,
transitions T, connection graph G C (P x T) U (T x P), and capacities C:P U G — Ne.

o0
o0 3

t %

5

e capacity of a connection is finite and is one if not specified explicitly

e capacity of a place can be « and is « if not specified explicitly

e CEN can be interpreted as PTN with constant capacity C = 1

Filling Station

from [W. Reisig, A Primer in Petri Net Design, 1992]

%Q carsin

cars in filling

Pn 48

cars leave
filling station

station exitway

e) free

(o) free.
cashiers

O—

cars enter f|”|ng Station freed pumps
filling station ®
do free pumps
unfueled cars
at pump
drive up N M (Y cars leave
to a pump N e e pumps
tanks are fueled cars payment cars ready
filled at pump to leave

free spaces
) P

PTN Semantics as LTS
givena PINN = (PI,T,G,C)

Definition transition ¢ € T can [fire in a state / marking M: P — N iff
C((p,t)) <M(p) for all p € G~1(¢) and
C((t,q)) +M(q) <C(q) forallge G(z).

Definition transitionz< T leads from M{:P — NtoM:P —- N iff

tcanfirein My, and M, = My — M_ + M, with

Mp={ S0 PG O = { () B

0 otherwise 10 otherwise

Definition the LTS L= (S,{/},X,T;) of N is defined through

s=N' =T and Ti(My,1,M,) iff tleads from M, to M,

pn 49

Temporal Logic
application in computer science goes back to A. Pnueli

e often used to specify concurrent and reactive systems

e allows to relate properties at different time points
— “tomorrow the weather is nice”
— “reactor is not going to overheat”
— “central locking of a car opens immediately after a crash”
— “airbag only inflates if a car crash happens”
— “acknowledge (ack) has to be preceded by a request (req)”

— “if the elavtor is called it will show up eventually”

e granularity of time steps has to be defined

tl 50

Simplified Hennessy-Milner Logic (HML)
HML is an example for temporal logic over LTS

let X be the alphabet of actions

Definition syntax consists of the usual boolean constants {0,1}, boolean

operators {A,—,—,...} and unary modal operators [a]| and (a) with a € X.
read [a] f as for all a-successors of the current state f holds

read (a) f as for one a-successor of the current state f holds

abbreviations (@) f denotes V (a)f resp. ©O]f for A [a]f
ac® ac®

® can also be written as a boolean expression over

e.g. lavblf = [{a,b}]f oder (—an-b)f = (E\{a,b})f

tl 51

Examples Simplified HML
1.

2.

la]1

[a] 0

(a) 1

(a)0

(a)1 N [b]O
(a)1 N [—a]0
laVvb]{aVb)l
(a) [b][b]0

for all a-successor 1 holds (always true)

for all a-successor 0 holds

(a is not possible)

for one a-successor 1 holds

(a should be possible)

for one a-successor 0 holds (always wrong)
a has to be possible but not b

a and only a should be possible

after a or b again a or b should be possible

a should be possible and afterwards b not twice

la]({a)1 — a1) Iifais possible after a again, then also a second time

tl 52

Semantics Simplified HML
Given LTS L= (S,1,%,T).

Definition semantics are defined recursively as s = f (read “f holds in s”),
with s € § and f a simplified HML formula.

s F 1

s O

s = [@lg iff Yaec®OVreS: ifsSrthenrl=g
s = (@)g iff Jae®IresS: sSrandil=g

Definition L |~ f holds (read “f holds in L") iff s = f forall s e 1

Definition expansion of f is the set of states [|f]] in which f holds.

Al =1{seS|s=f}

tl 53

Finite and Infinite Traces il 54
Let L=(S,1,X,T) be an LTS.

Definitions A Trace n of L is a finite or infinite sequence of states

T = (50,51,---)

For each pair (s;,s;11) in w there is an a € X with s; 4 sii1- Therefore there exist ag,ay,...
with

SoﬂslﬂSQCg...

7| is the length of &, e.g. |n| =2 for © = (s,s1,52), and |x| = e for infinite traces.
nt(i) is the i'th state s; of = for i < ||

n' = (s;,5;41,...) denotes the suffix of n starting with the i'th state s; for i < |x|

Note: if |n| =oothen || = forallic N

Computation Tree Logic for HML (CTL/HML)
first only in combination with HML

Definition CTL/HML syntax based on the syntax of HML and additionally
unary temporal path operators X, F, G and one binary temporal path operator U.

Path operators have to be prefixed with a path-quantifier E or A.

EXf in one (immediate) successor state f holds =X) f

AXf in all successor states f holds = 2] f

EF f in one future f holds eventually exists finally
AFf in all possible orders of events f holds eventually always finally
EGf in one future f holds all the time exists globally
AGf f holds always always globally
E[f Ug] potentially f holds until finally g gilt exists until

(note g has to hold on this trace eventually)

A[fUg| f always holds until finally g occurs always until
(note g has to hold on all traces eventually)

tl 55

Examples zu CTL/HML

~EXf = AX—f —(®)f = [0]~f —EFf = AG-f -EGf = AF~f

(De’Morgan for E[- U -] requires additional temporal path operator)

AG |[—safe] 0 it is never possible to execute unsafe actions
EF (—safe) 1 potentially an unsafe action can be executed

—E[—(req) 1 U (ack) 1] there is an order of events in which ack becomes possible

and req was not possible before

AG |req| AF [-ack]0 always after req a point is reached,
from no other action than ack is possible

CTL/HML allows to combine requirements about states and actions

which is required to express useful facts and unfortunately not very elegant

tl 56

Semantics of CTL/HML Operators tl 57

Let f be a CTL/HML formula, L an LTSL, ® a trace of L, and i, j € N.

Definition semantics are defined recursively: sk f (read “f holds in s”)

(only for the new CTL operators here)

s = EXf iff Jn|(0)
s = AXf iff Vr|w(0)

s A (1) = f]
s=7(1) = f]

sEEFf iff Jnr(0) =s A Jili <|n| A n(i) = £]]
sEAFf iff Var(0) =s= 3i[i < || A 7() = f]]

sEEGSF iff 3nn(0) =s A Vili < 1| = n(i) = £]]
sEAGS iff Var(0) =s = Vi[i < |n| = n(i) |= f]]

s=E[fUg| iff 3n[n(0)=s A Jili <[x| A n(i) =g A Vjlj <i=n(j) = fll]
s=AlfUg] ift Vr[r(0) =s=3ili <|n| A n(i) =g A Vjlj <i=n(j) = fl]

Kripke Structures

e classical semantic model for temporal logic

e only states, no actions
— LTS with exactly one action (|X| =1)

— additionaly annotation of states with atomic propositions

e has its roots in modal logics:
— different “worlds” from § are connected through — resp. T
— [] f iff for all immediate successor worlds f holds

— () fiff there is an immediate successor world in which f holds

tl 58

Kripke Structures

Let 4 be the set of atomic propositions (boolean predicates).

Definition a Kripke structure K = (S,1,T, L) consists of the following components:

e set of states S.

e initial states I C S with I #£ 0

e a fotal transition relation T C Sx S (T total iff Vs[3t[T (s,)]])

labelling/marking/annotation £:S — P(A4).

Labelling maps a state s on to the set of atomic propositions that hold in s:

L(s) = {gray,warm,dry}

tl 59

LTS as Kripke Structure tl 60

Definition the Kripke structure K = (S, Ik, Tk, L) for a complete LTS L = (S;,I;,X,Ty) is
defined with the following components

A=X Sk =8 xX Ig =1 XX L:(s,a) —a

Tx((s,a),(s',d")) iff Tp(s,a,s’) and & arbitrary

similar construction as the oracle automaton

Proposition 5 aq

ap—1

sp s, inL
ff

(sg,a9) = (s1,a1) - — (sp,an) INK

Note often SCB", X={ay,...,an}, and L((sy,...,s,)) ={a;|si=1}

2-Bit Counter as Kripke Structure

D Q

D

Q

D Q

D

-

S =B
1 =B
T ={((0,0),(0,1)),
((0,1),(1,0)),...}
aecL(s)iffse{(0,1),(1,1)}
be L(s)iff s € {(1,0),(1,1)}

S =B
=1
T =
aGL(s)IffsE{(,—, 1)}
belL(s)iffse{(—,1,—)}
relL(s)iffse{(1,—,—)}

we assume that circuits abstracted to netlists do not have an initial state

tl 61

Computational Tree Logic (CTL) tl 62
classical version of CTL on Kripke structures

Definition CTL syntax contains all p € 4, all boolean operators A,—,V,—,... and the
temporal operators EX,AX,EF,AF,EG,AG,E[- U-| and A[- U -].

Definition CTL semantics over a Kripke structure K = (S,1,T, L) are defined recursively
as for CTL/HML, except for the base case in which s = piff p € L(s).

Examples for AG(? N AX(&/\E))
2-Bit counter —
: AG EX(aAb)
with reset B
AGEF(aNb)
AG AF(aNb) infinitely often

AG(@NbAr— AX Al(aVb) U (@aAb)])
(AGr) — AF(aND)

S

A

Q

Definition f holds in K written K = f iff s = fforall s € I generic definition

Computation Tree tl 63

all possible orders of events are represented in one (infinite) computation tree
CTL describes the branching behavior of this computation tree

and has a local state view

every state is the starting point of new branching paths

Computation Tree AGp

tl 64

Computation Tree AFp

g

Ay

tl 65

Linear Temporal Logic (LTL) tl 66

Definition LTL syntax similar to CTL syntax, except that temporal operators do not have
path quantifiers: LTL only has X,F,G and U.

Definition LTL semantics defined recursively along infinite paths & in K:

tep iff pe £(x(0)
ne-g iff mhg

nEgANh iff mEgandrniEh

n=Xg iff nlkE=g

n=Fg iff w =gfor one i

n=Gg iff w=gfor all i

nl=gUh iff existsiwithn!=handn/ [=gforall j<i

Definition K |= f iff & |= f for all infinite paths = in K iwth ©(0) € 1

Comparison LTL and CTL tl 67

e LTL only considers one single linear order of events

e then (Gr)—F(anb) suddenly makessense (premisse is a restriction/assumption)

e LTL is compositional (w.r.t. sync. product of Kripke structures):

- KiFEfAKEAL = KxKEAAN

- KiEf—gKEf = KxKkFg

Proposition CTL and LTL have different expressibility:
AXEXp can not be specified in LTL, AFAGp does not have corresponding LTL formula

ACTL Formulas as LTL Formulas i 68
[Clarke and Draghicescu’88]

ACTL is the sub logic of CTL formulas without E path quantifiers in NNF

NNF: negations only occur in front of atomic propositions p € 4

Definition for an ACTL formula f define f\A as the LTL formular obtained from f by
deleting all path quantifiers, e.g. (AGAFp)\A = GFp.

Definition f and g are equivalent iff K = f < K = g for all Kripke structures K.

(f and g can be formulas in different logics)

Theorem if an ACTL formula f is equivalent to an LTL formula g, then also to f\A.

Proof K= f &% vain =g 2" valn= f] & Van = AA] E K E AA

+see below

(assume = to be initialized and in &t = f interpreted as Kripke structure)

Syntactically Characterized Intersection of LTL and ACTL
[M. Maidl’00]

Let fand g be CTL resp. LTL formulas and p € 4.

Definition every sub formula of an CTLYt formula is of the following form:

p, fNg, AXf, AGf, (=pAf)V(pAg) or Al(-pAf)U(pAg)]

Definition every sub formula of an LTLY€t formula is of the following form:

p, fAg Xf, Gf, (=pAf)V(pAg) or (=pAf)U(pAg)

Theorem the intersection of LTL and ACTL is equivalent to LTLdet resp. CTLdet
Intuition CTL semantics for CTLdet are restricted to one path
Hint A[fUp|] = A[(-pAf)U (pA1)] AFp = A[1U p]

=- non deterministic specificiations can be misinterpreted

tl 69

You can not count with LTL and CTL i 70
[P. Wolper'83]

Specification “after m-th step p” holds (at least)

Proposition for all m > 1 there is no CTL nor LTL formula f with

KE=f iff =(i) = p forallinitialized paths = of K and all i =0 mod m.

Problem pAG(p<+ —Xp) denotes “exactly every 2nd step p holds”

Losungen

e add modulo m counter to model (problems with compositionality)

e logic extensions
— ETL with additional temporal operators defined through automata ...

— ... resp. quantifiers over atomic propositions (embed automata into the logic)

m—1 m—1

— regular expressions: - ((1;...;l;p)*;l;...;l;ﬂp> resp. (1;...;1;p)®

m—1

