| Group:    | <br>Supplementary Exercises |
|-----------|-----------------------------|
| Name:     | <br>Formal Models           |
| Matr.Nr.: | <br>Summer Semester 2010    |
| Points:   |                             |

Institute for Formal Models and Verification, Dr. Robert Brummayer, Dipl.-Ing. Florian Lonsing

**Please note:** The following exercises are offered in order to get additional preparation for the lecture exam. They will **not** influence final grading, therefore you do **not** have to submit your solution on paper. Results will be discussed informally in class on Thursday, 24th June, where participation is voluntary but recommended.

## Exercise 41

Given Kripke structure *K* as shown below. For the following infinite traces  $\pi$  of *K* and LTL formulae *f*, determine whether  $\pi \models f$  or not. Justify your answer.



## **Exercise 42**

For each of the following temporal formulae, check whether there is an equivalent formula in  $LTL^{det}$ . If so, then specify such an equivalent formula meeting the syntactic criteria for  $LTL^{det}$  as given on lecture slide 69. Note that subformulae p and q are atomic propositions, i.e.  $p, q \in A$ .

- a)  $p \rightarrow \mathbf{AX} q$
- b)  $(\mathbf{AF}p) \wedge \mathbf{AX} \neg p$
- c) EG AX p
- d)  $\neg((\mathbf{E}\mathbf{X}\neg q)\lor(\mathbf{E}\mathbf{F}\neg p))$

## Exercise 43



Given Kripke structure K as shown above. Justify your answers to the following questions.

- a) Does  $K \models f$  for ACTL formula  $f := \mathbf{AX} \ p \lor \mathbf{AX} \ q$ ?
- b) Let  $g := f \setminus \mathbf{A}$ . Does  $K \models g$ ?
- c) Based on the results of a) und b): are f and g equivalent?
- d) Based on the results of a), b) and c): is there an LTL formula which is equivalent to f?

## **Exercise 44**

Apply the semantical rules of CTL in order to prove that CTL formulae **EG** f and  $\neg$ **AF**  $\neg$ f are equivalent.