Formal Models SS 2012: Assignment 8

Institute for Formal Models and Verification, JKU Linz

Due 24.05.2012

Exercise 29

Draw the LTS for PTN *N* shown on the right with the initial marking as given in the figure.

Exercise 30

- a) Reformulate $\forall x. (\phi \leftrightarrow \psi)$ using only \exists and operators \neg and \land . Specify all intermediate steps.
- b) Explain in your own words the effects of reordering quantifiers. More precisely, explain the semantical difference between $\forall x \exists y$. ϕ and $\exists y \forall x$. ϕ in general.
- c) Define the semantics of the boolean operators \neg , \land , \lor , \rightarrow , and \leftrightarrow in Simplified HML analogously to the definitions of the modal operators and boolean constants (see slide 53).
- d) Referring to the semantical rules of Simplified HML on slide 53, explain in detail why formula [a] 1 is always true in a state s and why formula $\langle a \rangle$ 0 is always false.

Exercise 31

Given LTS L and Simplified HML formulae 1 to 5 as shown below.

- 1. $\langle y \rangle$ 1
- 2. [x] 0
- 3. [y][y]0
- 4. $[y] \langle x \rangle 1$
- 5. $\langle x \rangle([y] 0 \land \langle x \rangle 1)$

- a) For each state s of L, determine which of formulae 1 to 5 hold in s.
- b) Given formula f := [y][y]0. Explain in detail how f is evaluated recursively in states 1 and 5 of LTS L. That is, check if $1 \models f$ and if $5 \models f$, and show recursive applications of \models .

Exercise 32

Given an LTS L as above with $\Sigma = \{x, y, z\}$. Do the following formulas hold in states 0, 1, 2, 3?

- a) $[y]\langle x\rangle 1 \leftrightarrow [x]\langle y\rangle 0$
- b) $(\neg[x]0) \land \langle y \rangle 1$
- c) $\langle x \rangle [y] \langle x \rangle 0$
- d) $[\neg z][y]\langle x\rangle 1$
- e) $\langle y \rangle 1 \rightarrow ([x]1 \land [y]0)$